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Abstract

Background: Identification of the residues in protein-protein interaction sites has a significant impact in problems
such as drug discovery. Motivated by the observation that the set of interface residues of a protein tend to be
conserved even among remote structural homologs, we introduce PrISE, a family of local structural similarity-based
computational methods for predicting protein-protein interface residues.

Results: We present a novel representation of the surface residues of a protein in the form of structural elements.
Each structural element consists of a central residue and its surface neighbors. The PrISE family of interface
prediction methods uses a representation of structural elements that captures the atomic composition and
accessible surface area of the residues that make up each structural element. Each of the members of the PrISE
methods identifies for each structural element in the query protein, a collection of similar structural elements in its
repository of structural elements and weights them according to their similarity with the structural element of the
query protein. PrISEL relies on the similarity between structural elements (i.e. local structural similarity). PrISEG relies
on the similarity between protein surfaces (i.e. general structural similarity). PrISEC, combines local structural
similarity and general structural similarity to predict interface residues. These predictors label the central residue of
a structural element in a query protein as an interface residue if a weighted majority of the structural elements
that are similar to it are interface residues, and as a non-interface residue otherwise. The results of our experiments
using three representative benchmark datasets show that the PrISEC outperforms PrISEL and PrISEG; and that PrISEC is
highly competitive with state-of-the-art structure-based methods for predicting protein-protein interface residues.
Our comparison of PrISEC with PredUs, a recently developed method for predicting interface residues of a query
protein based on the known interface residues of its (global) structural homologs, shows that performance superior
or comparable to that of PredUs can be obtained using only local surface structural similarity. PrISEC is available as a
Web server at http://prise.cs.iastate.edu/

Conclusions: Local surface structural similarity based methods offer a simple, efficient, and effective approach to
predict protein-protein interface residues.

Background
Protein-protein interactions play a central role in many
cellular functions. In the past decade, significant efforts
have been devoted to characterization as well as discovery
of these interactions both in silico and in vivo [1-5]. Of
particular interest is the identification of the amino acid
residues that participate in protein-protein interactions
because of its importance in elucidation of mechanisms
that underlay biological function and rational drug design

(among other applications) [6]. However, experimental
determination of interface residues is expensive, labor
intensive, and time consuming [7]. Hence, there is an
urgent need for computational methods for reliably iden-
tifying from the sequence or structure of a query protein,
the subset of residues that are likely to be involved in
the interaction of that protein with one or more other
proteins.
Several methods for predicting protein-protein inter-

face residues have been proposed in the literature (see
the reviews in [8-10]). A variety of features of the target
residue (and often its sequence or structural neighbors)
have been explored [11,12] in combination with machine
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learning techniques [13-23] or scoring functions [24-29]
to construct predictors of interface residues. Of particular
interest are recent methods for protein interface predic-
tion based on the structural similarity between a query
protein and proteins with known structure. These meth-
ods are motivated by observations that suggest that inter-
action sites tend to be conserved among structurally
similar proteins [30-34]. As the number of experimentally
determined complexes in the Protein Data Bank (PDB)
[35] increases, the likelihood of success of such an
approach to interface prediction can be expected to
increase as well. Hence, there is growing interest in struc-
tural similarity based approaches to protein-protein
interface prediction. For example, Konc and Janežič [36]
and Carl et al. [37] developed a method that utilizes a
graph based representation of protein surfaces to predict
interface residues that exploits the higher degree of con-
servation of topological and physico-chemical features
among interaction sites as compared to non-interaction
sites of proteins. Zhang et al. [38] introduced PredUs, a
new method that predicts interaction sites using counts
of interface residues derived from alignments between
the structure of a query protein and the structures of a
set of proteins that are structurally similar to the query
protein. More recently, PredUs has been updated [39] to
incorporate a support vector machine that uses accessible
surface area of regions on the protein surface and the
counts of interface residues derived from the structural
alignments to predict interface residues.
A potential limitation of structural similarity based inter-

face prediction methods is that they are effective only to
the extent that a set of proteins (with experimentally
determined interface residues) that are structurally similar
to the query protein can be reliably identified. In light of
evidence that the degree of conservation of interfaces
tends to be substantially higher than that of non-interfaces
[30] and hence that of whole protein structures, there is
increasing interest in methods for predicting interface resi-
dues based on experimentally determined interface resi-
dues in proteins that are locally (as opposed to globally)
similar in structure to the query protein [40,41].
Against this background, we introduce PrISE (Predictor

of Interface Residues using Structural Elements), a novel
family of predictors of protein-protein interface residues
based on local structural similarity. The PrISE family of
interface prediction methods utilizes a repository of
structural elements constructed from a dataset of pro-
teins that are part of experimentally determined protein
complexes retrieved from the PDB. A structural element
is defined as a protein surface residue surrounded by its
neighbors on the protein surface. The PrISE methods uti-
lize a novel representation of each structural element
that captures the distribution of the constituent atoms
and the solvent accessible surface areas of residues

(calculated from the individual proteins). The prediction
of protein-protein interface residues using any of the
PrISE methods is based on the identification of a collec-
tion of structural elements in the repository that are simi-
lar to the structural elements of a query protein. The
PrISE predictors label the central residue of each struc-
tural element in the query protein as an interface residue
if a weighted majority of the similar structural elements
are interface residues and as a non-interface residue
otherwise. PrISEL relies on the similarity between struc-
tural elements to assign the weights to each query struc-
tural element whereas PrISEG relies on the similarity
between protein surfaces in terms of structural elements.
PrISEC combines the local and global approaches of
PrISEL and PrISEG. We assessed the performance of the
PrISE family of predictors using several benchmark data-
sets. The results of experiments show that PrISEC outper-
forms PrISEL and PrISEG. The three PrISE family of
predictors outperform two other local structural similar-
ity based interface residue predictors [37,41]. PrISEC also
outperforms methods that use diverse structural, evolu-
tionary, and physico-chemical properties to perform pre-
diction of interface residues using machine learning and
scoring functions, even in the absence of proteins with
similar structure. The performance of PrISEC is superior
or comparable to that of PredUs [38,39], a novel method
that predict interface residues using the known interface
residues on proteins with similar structure to a query
protein. Unlike PredUs, that require the existence of
structural homologs to perform predictions, PrISEC is
able to generate prediction for all the proteins with
known structure.

Methods
Structural elements and their representation
A structural element is defined by an amino acid residue
on the protein surface (referred to as a surface residue)
and its neighboring surface residues. Thus, the number
of structural elements in a protein equals the number of
its surface residues. An amino acid residue is considered
a surface residue if its accessible surface area in the
monomer is greater than zero. Two residues are consid-
ered neighbors if the distance between the Van der
Waals surface of an atom of one residue and the Van der
Waals surface of an atom of the other residue is ≤ 1.5 Å.
Accessible surface areas were computed using Naccess
[42].
A structural element is represented using four features:

(i) The name of the central residue of the structural ele-
ment; (ii) the accessible surface area of the central resi-
due of the structural element; (iii) the accessible surface
area of the structural element (computed as the addition
of the accessible surface areas of its residues); and (iv) a
histogram of atom nomenclatures representing the
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atomic composition of the surface of the structural ele-
ment. A histogram of atom nomenclatures contains the
count of the number of atoms on the surface of the
structural element for each atom nomenclature (e.g.
number of a-carbons, number of b-carbons, etc.). There
are 36 atom nomenclatures (a list is presented in section
one of the Additional File 1), hence, a histogram of atom
nomenclatures has 36 bins. An atom is considered to be
in the surface of a protein if its accessible surface area is
> 0 Å2. The four features that represent a structural ele-
ment are used to define a similarity measure between
structural elements that consider structural and physico-
chemical properties. The rationale behind this represen-
tation is that structural elements with similar accessible
surface areas and centered on identical residues with
similar surface areas have similar structure. In addition,
two structural elements with similar atomic composition
of the surface of the structural element (represented by
the histogram of atom nomenclatures) have similar
physico-chemical properties.

Distance between histogram of atom nomenclatures
The distance between the histograms of atom nomen-
clatures of two structural elements provides a measure
of their physico-chemical similarity. The distance
between two histograms of atom nomenclatures x and y
is computed using the city block metric:

∑ 36
i=1

∣∣xi − yi
∣∣ ,

where xi and yi denote the number of atoms (corre-
sponding to the ith nomenclature in the histograms) on
the surface of the two structural elements (e.g. number
of a-carbons exposed to the solvent)a.

Repository of structural elements
A repository of structural elements stores all the structural
elements extracted from a set of proteins. To perform
different experiments, we built two repositories from two
different sets of proteins. The first, called the ProtInDB
repository, was built from the biological assemblies stored
in ProtInDB [43], a database of protein-protein interface
residues, which in turn was derived from protein com-
plexes in PDB [35]. This repository is composed of
21,289,060 structural elements extracted from 88,593
interacting chains (as of February 21, 2011). The second
repository, called the ProtInDB ⋂ PQS repository, is com-
posed of the structural elements extracted from proteins
that are common to both ProtInDB and the Protein Qua-
ternary Structure database (PQS) [44]. This repository
contains 13,396,420 structural elements extracted from
55,974 interacting chains in 21,786 protein complexes. A
protein chain is considered an interacting chain if it con-
tains at least five contact amino acid residues. An amino
acid residue in a protein chain is considered a contact
amino acid if the Van der Waals surface of at least one of

its heavy atoms is no further than at most 0.5 Å from the
Van der Waals surface of some heavy atom(s) of an
amino acid residue belonging to another chain.

Retrieving similar structural elements
The prediction of interface residues in a query protein is
based on the existence of similar structural elements for
each structural element in the protein. The process of
retrieval similar structural elements from a repository of
structural elements should satisfy two requirements: It
should be efficient and it should retrieve similar struc-
tural elements for every structural element in the query
protein. These requirements are satisfied using four con-
straints that every structural element qs retrieved from
the repository and associated with a query structural
element qr should comply: (i) qr and qs must not be
from the same protein complex; (ii) the central residues
r and s of the structural elements qr and qs respectively,
must be identical; (iii) the difference between the acces-
sible surface areas of r and s should be ≤ 5% of the max-
imum accessible surface area of residues identical to r;
and (iv) the differences between the accessible surface
areas of qr and qs must be ≤ 15% of the maximum esti-
mated accessible surface area of any structural element
centered on a residue identical to r. These constraints
were experimentally determined, as explained in the
Additional File 1.

PrISE algorithm
The PrISE algorithm is summarized in Figure 1. First, a
query protein structure is decomposed into a collection of
structural elements. For each structural element in the
query protein, PrISE retrieves a collection of similar struc-
tural elements (referred as samples) from the repository of
structural elements. PrISE uses the collection of retrieved
samples and information derived from their associated
proteins to predict whether the central residue of each
structural element is an interface residue. The information
derived from the associated proteins can be incorporated
into our proposed method using three different
approaches (Equations 1-3) that result in three variants of
the PrISE algorithm for predicting protein interface resi-
dues. The first method, PrISEL, uses similarity between
structural elements (i.e. local structural similarity). The
second method, PrISEG, utilizes a measure of similarity
between protein surfaces (i.e. general structural similarity).
The last method, PrISEC, combines local and general
structural similarity. A detailed description of these
approaches as well as the rationales behind them are
provided next.
Let S be a repository of structural elements (where

each element is indexed by the protein from which the
structural element is derived and the surface residue
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that it represents). Let Q be a query protein. Let S(Q)
be the collection of structural elements of Q (recall
that there are as many structural elements in S(Q) as
there are surface residues in Q). To predict whether
the central residue r(q) of a structural element q Î S
(Q) is an interface residue, a collection Sq of structural
elements that are most similar to q is retrieved from
the repository S based on the distance between the his-
togram of atom nomenclatures q and that of each ele-
ment in Sb. In the event of a tie, the sample with the
lowest difference in accessible surface area between its
central residue and residue r(q) is chosen.
For each structural element s in S, let denote

the protein from which s was extracted. Given a protein
P and an arbitrary collection R of structural elements,
we define the contribution, cont(P, R), as the number of
structural elements in R that are associated with the
protein P. For each q Î S (Q), the collection of struc-
tural elements of protein Q, and for each structural ele-
ment s Î Sq, we define the weights wG(s, q), wL(s, q) and
wC(s, q) (used by PrISEG, PrISEL, and PrISEC respec-
tively) as follows:

wG(s, q) = cont(π(s), zQ) (1)

where zQ =
⋃

q∈s(Q)

sq . Intuitively, the more similar the

query protein Q containing the structural element q is
to the protein from which the structural element s was
derived, the greater the influence of s to the prediction
on q.
Given a structural element q Î S(Q), let Re(q) be the

set of surface residues of Q that belong to q. Let N(q)
be the set of structural elements associated with residues

in Re(q). Let Nq =
⋃

n∈N(q)

sn (where Sn, the collection of

structural elements that are most similar to n, is
retrieved from the repository S of structural elements),
we define the weight for PrISEL as:

wL(s, q) = cont(π(s), Nq)) (2)

Intuitively, the more similar the local surface patch of
the structural element q is to a local surface patch of
the protein from which the structural element s was
derived, the greater the influence of s to the prediction
on q.
For PrISEC,

wc(s, q) = wG(s, q) × wL(s, q) (3)

Figure 1 Prediction of interface residues using surface structural similarity.
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Let S+(q) = {s Î Sq|r(s) is an ineterface residue} and S-
(q) = {s Î Sq|r(s) is a non-interface residue}. Thus, PrI-
SEC combines the predictions of PrISEL and PrISEG.
Because PrISEL and PrISEG weight each sample based
on different criteria, this allows PrISEC potentially to
outperform each of them by taking advantage of com-
plementary methods.
In the case of PrISEG, the weight of positive samples

associated with structural element q is defined as:

WG + (q) =
∑

s∈S+(q)

wG(s, q)

Similarly, the weight of negative samples associated
with structural element q is defined as:

WG − (q) =
∑

s∈S−(q)

wG(s, q)

Finally, classification is performed by selecting a
threshold c on the probability that indicates whether the
central residue r(q) of the structural element q is likely
to be an interface residue:

probG + (r(q)) =
WG + (q)

WG + (q) + WG − (q)

In the case of PrISEL, and PrISEC, the corresponding
quantities WL+(q), WL-(q), and probL+(r(q)) and WC+(q),
WC-(q), and probC+(r(q)) are defined in terms of the cor-
responding weights wL and wC (respectively).

Datasets
Four datasets were used to assess the performance of
the PrISE family of interface predictors. The first data-
set, DS24Carl [37], is composed of 24 chains: 16
extracted from transient complexes and eight extracted
from complexes of different types. In this dataset, a resi-
due is defined as an interface residue if the distance of
the Van der Waals surface of any of its heavy atoms to
a Van der Waals surface in any heavy atom of a differ-
ent chain is ≤ 3 Å. The other three datasets were
defined in [38] from complexes used to evaluate protein
docking software. DS188 is composed of 188 proteins
chains derived from the Docking Benchmark 3.0 [45]
sharing at most 40% sequence identity and containing
39,799 residues and 7,419 interacting residues. The
other two datasets, DS56bound and DS56unbound, are
composed by 56 protein chains derived from bound and
unbound structures from the first 27 targets in CAPRI
[46]. DS56bound and DS56unbound have a total of
12,123 and 12,173 residues, and 2,154 and 2,112 inter-
acting residues respectively. For these three datasets,
interface residues are defined as amino acids on two dif-
ferent protein chains with at least a pair of heavy atoms

separated by at most 5 Å. These interfaces were com-
puted from complexes extracted from PQS by the
authors of [38].

Performance evaluation
The reliability of a prediction may be evaluated using
different performance measures [47]. We focused our
evaluation on the following measures:

precision =
TP

TP + FP

recall =
TP

TP + FN

where TP refers to interface residues correctly pre-
dicted, FP to non-interface residues predicted as inter-
faces, and FN to interface residues predicted as non-
interfaces. Precision evaluates the quality of the predic-
tion in reference to the set of predicted interface resi-
dues, whereas recall measures the quality of the
prediction with respect to the set of actual interface
residues. When possible, the performance of different
classifiers is evaluated by comparison of the precision-
recall curve of each classifier. These curves are gener-
ated by computing precision and recall using different
threshold values on the probability of each residue to be
part of the interface. Therefore, these curves provide a
more comprehensive evaluation than a pair of precision
and a recall values.
For sake of completeness, we computed the following

measures:

F1 =
2 × precision × recall

precision + recall

Accuracy =
TP + TN

N

CC =
(TP × TN) − (FP × FN)√
(TP + FN) × (TP + FP)×
×(TN + FP) × (TN + FN)

The F1 score computes the harmonic mean between
precision and recall. Accuracy measures how well inter-
face and non-interface residues are correctly predicted.
CC refers to the Matthews correlation coefficient. In
addition, we use the area under the receiver operating
characteristic (AUC ROC). This measure computes the
area under the curve generated by computing the sensi-
tivity and the false positive rate using different thresh-
olds on the probabilities that indicates whether a
residue belongs to the interface.
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Results and discussion
We compared the PrISE family of algorithms using the
DS188, DS24Carl, DS56bound and DS56unbound data-
sets. We also assessed the extent to which the quality of
predictions is impacted by the presence of structural
elements derived from homologs of the query protein in
the repository of structural elements used to make the
predictions. In addition, the performance of PrISEC was
assessed against the performance of several classifiers
based on machine learning methods, scoring functions,
and local and global structural similarity on different
datasets.

Comparison of PrISEL, PrISEG and PrISEC
Recall that PrISEL relies on the similarity between struc-
tural elements (i.e. local structural similarity), PrISEG

relies on the similarity between protein surfaces (i.e. gen-
eral structural similarity), and PrISEC combines local
structural similarity and general structural similarity to
predict interface residues. The performances of these
three predictors were compared using the DS188 dataset.
For this experiment, samples were extracted from the
ProtInDB repository. In addition, samples extracted from
proteins sharing more than 95% of sequence identity
with the query protein and belonging to the same species
were excluded from the prediction process to avoid over-
estimation on the predictions. To simulate a random pre-
diction, the interface/non-interface labels associated with
the central residue in each sample in the repository were
randomly shuffled. The results of this experiment are
presented in Figure 2 as precision-recall curves. These
results indicate that PrISEL, PrISEG, and PrISEC outper-
form the random predictor. Furthermore, PrISEC

achieves similar or better performance than PrISEG

whereas PrISEG predictions are superior to those of PrI-
SEL. Similar conclusions are supported by experiments
using the DS24Carl, DS56bound and DS56unbound data-
sets d. As a consequence, PrISEC was selected to perform
the experiments presented in the next subsections.

Impact of homologs of the query protein on the quality
of predictions
We assess the extent to which the predictions are
impacted by the presence of structural elements derived
from sequence homologs of the query protein. The first
experiment excludes samples derived from proteins
belonging to the same species that share ≥ 95% of
sequence identity with the query protein (called homo-
logs from the same species). The second experiment
excludes samples from all the proteins that share ≥ 95%
of sequence identity with the query protein (referred to
as homologs).
Figure 3 compares the two methods for excluding

homologs with a setup in which only the samples

derived from proteins with the same PDB ID as the
query proteins are excluded e. As seen from Figure 3,
the prediction performance is better when sequence
homologs of the query protein are not excluded from
the set of proteins used to generate the repository used
for making the predictions. The best performance is
achieved by excluding the proteins with the same PDB
ID as those of the query proteins.

Figure 2 Comparative performances of PrISEL, PrISEG, PrISEC,
and randomly generated predictions on the DS188 dataset.

Figure 3 Comparison of schemes for filtering out similar
proteins from the prediction process. This experiment was
performed using PrISEC with the DS188 dataset.
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Comparison with two prediction methods based on
geometric-conserved local surfaces
We compared the three predictors from the PrISE
family with the predictors proposed by Carl et al. in
[37,41]. These methods rely on conservation of the geo-
metry and the physico-chemical properties of surface
patches to predict interfaces. In [37], the conserved
regions were extracted from proteins with similar struc-
tures. In [41], similar performance was achieved using
conserved regions extracted using local structural align-
ments. This comparison was performed using the
DS24Carl dataset composed of 24 proteins and gener-
ated in [41]. In the case of the PrISE family of methods,
samples were retrieved from the ProtInDB repository.
Samples extracted from proteins sharing more than 95%
of sequence identity with the query protein and belong-
ing to the same species were not used in the prediction
process. The results of the experiment, presented in
Table 1, indicate that each of the three predictors from
the PrISE family outperforms the predictors described in
[37,41]. The differences in performances may be
explained by the differences in the prediction techni-
ques. In particular, PrISE family of predictors, unlike
those of Carl et al., exploit the interface/non-interface
labels associated with surface patches that share struc-
tural similarity with the surface neighborhood of each
surface residue of the query protein.
Results of a similar experiment excluding samples

extracted from homologs of the query proteins, as well
as results of experiments using the protInDb ⋂ PQS
repository, are presented in section six of the Additional
File 1.

Comparison with a prediction method based on protein
structural similarity
We compared PrISEC with PredUs [38,39], a method
that relies on protein structural similarity, using the
DS188, DS56bound and DS56unbound datasets. PredUs
is based on the idea that interaction sites are conserved
among proteins that are structurally similar to each
other. PredUs computes a structural alignment of the
query protein with every protein in a set of proteins

with known interface residues. The alignments are used
to extract a contact frequency map which indicates for
each residue in the query protein, the number of inter-
face residues that are structurally aligned with it. The
contact frequency map is then used to predict whether
each residue on the query protein is an interface resi-
due. In [38], the prediction was performed using a logis-
tic regression function that receives as inputs the counts
contained in the contact frequency maps. In [39], the
logistic regression function was replaced by a support
vector machine (SVM) classifier that uses accessible sur-
face areas and the counts contained in the contact fre-
quency maps to perform prediction.
In order to perform a fair comparison between PrISE

and PredUs, the structural elements used by PrISE and
the structural neighbors used by PredUs were extracted
from the same dataset of proteins. This dataset corre-
sponds to the subset of proteins that are common to
both ProtInDB and PQS which ensures the largest over-
lap between the proteins used by PredUs (which relies
on the structural neighbors extracted from the PDB and
PQS) and PrISE (which relies on the proteins extracted
from biological assemblies in the PDB and deposited in
ProtInDB). This resulting dataset, used to create the pro-
tInDB∩ PQS repository, includes 55,974 protein chains
derived from 21,786 protein complexes. PredUs predic-
tions were obtained from the available web server [39].
This server allows us to choose the set of structural
neighbors to be considered in the prediction process.
Using this feature, we were able to exclude from the
sets of structural neighbors those proteins that were not
in the intersection of ProtInDB and PQS as well as
homologs or homologs from the same species.
A first comparison of the PrISE family of predictors

and PredUs was carried out using the DS188 dataset.
However, since the SVM used by PredUs was trained
using this dataset [39], it is likely that the estimated per-
formance of PredUs in this case is overly optimistic,
resulting in an unfair comparison with PrISE. We found
that in 7 of 188 cases (corresponding to the PDB Ids
and chains 1ghq-A, 1gp2-G, 1t6b-X, 1wq1-G, 1xd3-B,
1z0k-B, and 2ajf-A) PredUs failed to find structural
neighbors, and hence failed to predict interfaces. In con-
trast, the PrISE predictors found the structural elements
needed to produce predictions for the 188 cases. Predic-
tions including these seven cases are labeled as PrISEC
188 in Figure 4, whereas predictions of PrISEC and Pre-
dUs considering the set of 181 proteins are labeled with
the suffix 181. The performances of PrISEC in the two
cases are similar. PredUs generally outperforms PrISEC,
the best performing predictor from the PrISE family.
This result is not surprising given that the SVM used by
PredUs was trained on this dataset whereas PrISE did
not have this advantage.

Table 1 Performance of different methods on the
DS24Carl dataset

Predictor Precision% Recall% F1% Accuracy% CC% AUC%

Carl08 31.5 35.3 33.3 - - -

Carl10 32.0 34.0 33.0 - - -

PrISEL 45.1 56.2 50.0 69.1 27.1 70.5

PrISEG 53.9 58.7 56.2 75.1 36.8 75.6

PrISEC 58.3 58.3 58.3 77.5 40.6 77.1

Performance measures are computed as the average on the set of 24
proteins. Precision and recall values for Carl08 and Carl10 were taken from
[37] and [41] respectively.
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A second comparison of PrISEC and PredUs was per-
formed using the DS56bound dataset. PrISEC and Pre-
dUs generated predictions for all the proteins in this
dataset. The precision-recall curves presented in Figure
5 show that when homologs from the same species are
excluded from the collection of similar structures, PrI-
SEC outperforms PredUs, but when homologs are
excluded regardless of the species, the performances of
PrISEC and PredUs are comparable. These results indi-
cate that the use of local surface structural similarity is
a competitive alternative to the use of protein structural
similarity for the problem of predicting protein-protein
interface residues.
An evaluation considering additional performance

measures is presented in Table 2. The data in this table
indicates that PrISEC outperforms PredUs in terms of
F1, correlation coefficient, or area under the ROC. The
values for precision, recall, F1, Accuracy and CC were
computed using the default cutoff values for PrISEC and
PredUs.
A final comparison between PrISEC and PredUs was

performed using the DS56unbound dataset. Three out
of the 56 proteins (corresponding to the PDB IDs-chains
1ken-H, 1ken-L, and 1ohz-B) were not processed by
PredUs because no structural neighbors were found.
Figure 6 shows the precision-recall curves of PrISEC and
PredUs on the 53 cases covered by PredUs, as well as
the performance of PrISEC when all the 56 proteins are

considered. A comparison of both predictors using the
set of 53 proteins and excluding homologs from the
same species indicates that PrISEC outperforms PredUs
for precision values > 0.4. On the contrary, when homo-
logs are excluded, the performance of PredUs is better
than the performance of PrISEC for precision values ≥
0.3. Finally, the performance of PrISEC computed on 56
proteins is, surprisingly, slightly better than the perfor-
mance computed on 53 proteins. This suggests that
local structural similarity based interface prediction
methods can be effective even in the absence of globally
similar structures.
An evaluation of PrISEC and PredUs using additional

performance measures is presented in Table 3. PrISEC
outperforms PredUs in terms of F1, CC and AUC when
homologs from the same species are excluded from the
set of similar structures. When homologs are excluded,
PredUs outperforms PrISEC on the set of 53 proteins
predicted by PredUs.

Comparison with other prediction methods
We compared the performances of PrISEC, Promate
[25], PINUP [48], Cons-PPISP [49], and Meta-PPISP
[50] using all the proteins in the DS56bound and
DS56unbound datasets. The choice of the predictors
used in this comparison was based on the results of a
comparative study in which they were reported to
achieve the best performance among the six different

Figure 4 Comparison of PredUs and PrISEC using the dataset DS188, derived from the docking benchmark 3.0. (A) performance of
predictions from which homologs from the same species were not used to compute the structural neighbors and the samples used in PredUs
and PrISE respectively. (B) performance of predictions that did not consider homologs. Both images show results for the 181 proteins that were
predicted by PredUs and PrISEC and for the 188 proteins predicted by PrISEC.
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classifiers on two different datasets [8]. Promate uses a
scoring function based on features describing evolution-
ary conservation, chemical character of the atoms, sec-
ondary structures, distributions of atoms and amino
acids, and distribution of b-factors. Cons-PPISP’s predic-
tions are based on a consensus between different artifi-
cial neural networks trained on conservation sequence
profiles and solvent accessibilities. PINUP uses an
empirical scoring function based on side chain energy
scores, interface propensity and residue conservation.
Meta-PPISP uses linear regression on the scores pro-
duced by Cons-PPISP, Promate and PINUP.
In the experiments presented in this subsection, we

considered the performance of two PrISEC classifiers
according to which proteins were filtered out from the
process of extraction of samples: homologs from the
same species as the query protein and homologs regard-
less of the species. The scores used to generate the pre-
cision-recall curves of Promate, PINUP, Cons-PPISP
and Meta-PPISP were computed using Meta-PPISP’s
web server.

The precision-recall curves corresponding to the eva-
luation of the classifiers on the DS56bound and
DS56Unbound datasets are shown in Figure 7. On both
datasets, PrISEC predictors outperform Meta-PPISP for
precision values > 0.35 and achieve performance com-
parable to that of Meta-PPISP for precision values ≤
0.35. Furthermore, PrISEC outperform Promate, PINUP,
and Cons-PPISP over the entire range of precision and
recall values.
An evaluation considering additional performance

measures is presented in Table 4. All the performance
measures, with exception of AUC ROC, were computed
using threshold values of 0.56, 0.28, 0.41, 0.34, and 0.34
on the scores generated by Promate, PINUP, Cons-
PPISP, Meta-PPISP, and PrISEC respectively. These
threshold values correspond to the default values
defined in the Meta-PPISP and PrISEC web servers. The
results show that the PrISEC predictors outperform the
other predictors on both datasets in terms of F1, corre-
lation coefficient and area under the ROC.

Figure 5 Comparison of PrISEC and PredUs using the dataset DS56bound, derived from CAPRI. The results in (A) correspond to
predictions in which homologs from the same species were excluded from the collection of samples and the set of structural neighbors. The
results in (B) were obtained excluding homologs from the sets of similar structures.

Table 2 Evaluation of PrISEC and PredUs on DS56bound using different performance measures

Filter out Predictor Precision% Recall% F1% Accuracy% CC% AUC%

Homologs from the same species PredUs 44.3 39.8 41.9 80.4 30.2 75.1

PrISEC 46.1 45.4 45.7 80.9 34.1 77.6

Homologs PredUs 44.5 38.5 41.3 80.6 29.8 74.9

PrISEC 43.6 42.4 43.0 80.0 30.9 76.3

The table is divided into two sections depending on which proteins are excluded from the set of similar structures (First column)
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The results of an experiment using 187 proteins from
the DS188 dataset are presented in Figure 8. Protein chain
2vis-C was excluded from the experiment given that Pro-
mate could not generate a prediction. When homologs
from the same species are excluded, PrISEC outperforms
the other predictors except Meta-PPISP. PrISEC outper-
forms Meta-PPISP for precision values > 0.4 and achieves
comparable performance to that of Meta-PPISP for preci-
sion values ≤ 0.4. When homologs are excluded, the per-
formance of PrISEC is superior that the performance of
PINUP and Promate. PrISEC outperforms Meta-PPISP
and Cons-PPISP for precision values > 0.5, and is outper-
formed by Meta-PPISP for precision values ≤ 0.45.
An evaluation using different performance measures is

presented in Table 5. According to this table, the perfor-
mance of both PrISE predictors is superior that the per-
formance of the other classifiers in terms of F1 and CC.
Furthermore, when homologs from the same species are

excluded, PrISEC outperforms the other classifiers in
terms of AUC.

Prediction performances in the absence of similar
proteins
To evaluate the extent to which the performances of
PrISEC and PredUs depend on the degree of homology
between the query proteins and the proteins used to
extract samples or structural neighbors, we compare the
results obtained using three different sequence homol-
ogy cutoffs: 95%, 50% and 30%. The results, shown in
Figure 9, indicate that PredUs is more sensitive than
PrISEC to the lack of similar proteins in the sets used to
extract similar structures. The figure also shows that the
performance of PrISEC is competitive with that of Meta-
PPISP even when the repository used by PrISEC is com-
posed by proteins sharing < 30% of sequence identity
with the query proteins.

Figure 6 Comparison of PrISEC and PredUs using the DS56unbound dataset, derived from CAPRI. (A) shows the performance achieved
after removing homologs from the same species from the set of similar structures in PredUs and PrISEC. (B) shows the performances when
homologs are excluded. The suffixes 53 and 56 indicate the number of proteins that were used in the experiment.

Table 3 Evaluation of PrISEC and PredUs on DS56unbound using different performance measures

Filter out Predictor Precision% Recall% F1% Accuracy% CC% AUC%

Homologs from the same species PredUs 53 43.2 37.2 39.9 81.8 29.4 73.6

PrISEC 53 42.3 42.1 42.2 81.2 31.0 74.8

PrISEC 56 43.7 44.0 43.8 81.2 32.6 75.5

Homologs PredUs 53 42.6 36.8 39.5 81.6 28.8 73.5

PrISEC 53 38.8 37.9 38.4 80.1 26.5 72.9

PrISEC 56 40.5 40.0 40.2 80.2 28.4 73.7
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Conclusions
We have shown that it is possible to reliably predict
protein-protein interface residues using only local sur-
face structural similarity with proteins with known
interfaces.
The experiments comparing the performance of the

PrISE family of predictors with the structural similarity
based interface predictors of Carl et al. [37,41] show
that the use of interface/non interface labels of residues
in structurally similar surface patches leads to improved
predictions by PrISE. This observation is also supported

by the results obtained using PredUs, that implicitly
exploits information about non-interface residues
reflected in the contacting frequencies of interface
residues.
Surface structural similarity based methods for inter-

face residue prediction may use local similarity, overall
similarity, or a combination of both. PrISEL, which relies
on the similarity between structural elements (i.e. local
structural similarity), outperforms random prediction;
PrISEG which relies on the similarity between protein
surfaces (i.e. general structural similarity) outperforms

Figure 7 Performance of different classifiers evaluated on the DS56bound (A) and the DS56unbound (B) datasets. For the PrISE
classifiers, “spe.” and “hom.” show predictions in which samples extracted from homologs from the same specie and homologs, respectively, has
been excluded from the prediction process.

Table 4 Evaluation on the datasets DS56bound and DS56unbound

Dataset Predictor Precision% Recall% F1% Accuracy% CC% AUC%

Promate 31.9 27.3 29.4 76.7 15.6 63.3

PINUP 37.3 31.9 34.4 78.4 21.7 63.7

DS56bound Cons-PPISP 39.8 36.1 37.9 78.9 25.2 72.6

Meta-PPISP 43.3 25.8 32.3 80.8 22.9 74.4

PrISEC spe. 46.1 45.4 45.7 80.9 34.1 77.6

PrISEC hom. 43.6 42.4 43.0 80.0 30.9 76.3

Promate 28.7 27.3 28.0 76.6 14.0 62.7

PINUP 30.4 30.1 30.2 76.9 16.4 60.0

Ds56unbound Cons-PPISP 37.4 34.5 35.9 79.5 23.8 71.2

Meta-PPISP 38.9 24.0 29.7 81.1 20.2 71.5

PrISEC spe. 43.7 44.0 43.8 81.2 32.6 75.5

PrISEC hom. 40.5 40.0 40.2 80.2 28.4 73.7

“PrISEC spe.” refers to the performance computed after filtering out from the repository samples extracted from homologs from the same species. “PrISEC hom.”
indicates that samples extracted from homologs were not considered in the prediction process.
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PrISEL. This result may not be surprising in light of the
influence that regions outside the immediate local envir-
onment have on the conformation of protein complexes.
However, our results show that the best predictions are
achieved by PrISEC, using a combination of local and
overall surface similarity.
Our results indicate that, in general, PrISEC outper-

forms several state of the art predictors such as Pro-
mate, PINUP, Cons-PPISP, and Meta-PPISP. Blind
comparisons of PrISEC and PredUs using the same pro-
teins to extract samples and structural neighbors respec-
tively, indicate that PrISEC achieves performance that is
superior to or comparable with that of PredUs. Further-
more, PrISEC is more robust that PredUs at low levels
of homology between the query proteins and proteins in

the sets used to extract similar structures, while remains
competitive with Meta-PPISP.
The interface residue prediction methods such as

PrISE that use only local surface structural similarity
have an advantage relative to methods that rely on glo-
bal structural similarity: The former can produce predic-
tions whereas the latter cannot in the absence of protein
with structures that are sufficiently similar to the struc-
ture of the query protein.

Figure 8 Precision-recall curves of different classifiers
evaluated on 187 proteins from the DS188 dataset. For the
PrISE classifiers, “spe.” and “hom.” show predictions in which
homologs from the same species and homologs, respectively, has
been excluded from the repository of structural elements.

Table 5 Evaluation on 187 proteins from DS188

Predictor Precision% Recall% F1% Accuracy% CC% AUC%

Promate 36.5 30.3 33.1 77.1 19.5 67.7

PINUP 40.7 34.7 37.5 78.3 24.6 66.0

Cons-PPISP 46.5 30.6 36.9 80.4 26.7 73.2

Meta-PPISP 49.0 26.7 34.6 81.1 26.2 74.6

PrISEC spe. 48.0 43.2 45.5 80.6 33.8 77.2

PrISEC hom. 43.2 38.1 40.5 79.0 27.9 74.2

“PrISEC spe.” refers to the performance computed after excluding from the
prediction process samples extracted from homologs of the same species that
the query proteins. “PrISEC hom.” indicates that samples extracted from
homologs were filtered out from the repository

Figure 9 Performance computed in absence of similar proteins
at different similarity levels. Figures (A) and (B) show the precision
recall curves computed after excluding from the sets of similar
structures homologs (without regarding the species) sharing ≥ 95%
of sequence identity with the query proteins. Similarly, figures (C) and
(D) show the performances after excluding proteins sharing ≥ 50%
sequence identity, and (E) and (F) display the results after filtering out
proteins with sequence identity ≥ 30%. The precision-recall curves
corresponding to the DS56bound dataset are shown at (A), (C), and
(E), and the results computed using the DS56Unbound dataset are
labeled as (B), (D), and (F). Figures (E) and (F) were computed using
55 and 52 proteins respectively given that PredUs could not find
structural elements for the protein chain 1ynt-L.
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Another advantage of the PrISE family of predictors is
that the information needed to compute similar struc-
tural elements (i.e. residues in the structural elements,
accessible surface area of these residues and their histo-
gram of atom nomenclatures) can be obtained in a rea-
sonable amount of time. The time required for
retrieving the samples associated with a query protein
from a repository of 21,289,060 structural elements
extracted from 88,593 protein chains is in average 90
seconds using a personal computer (Intel Core2 Duo
CPU at 2.40 GHz, 4 MB of RAM and a hard disk of 232
GB).
We conclude that methods based on local surface

structural similarity are a simple yet effective approach
to the problem of prediction of protein-protein interface
residues.

Endnotes
a. An explanation of the process used to select the city
block metric from a set of different metrics is presented
in the Additional File 1.
b. Based on results of exploratory experiments, we

found that 50, 200, and 500 similar structural elements
are adequate (respectively) for performing prediction
using PrISEL, PrISEG, and PrISEC. See Figures 4 to 6 and
the corresponding discussion in the Additional File 1 for
details.
c. See the Additional File 1 for a discussion on the

choice of the threshold.
d. See section four of the Additional File 1, that also

includes an example of the relationship between the
scores of the predictors in the PrISE family.
e. Additional results using DS24Carl, DS56bound and

DS56unbound are presented in section five of the Addi-
tional File 1.

Additional material

Additional file 1: Supplementary information.
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