organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Steviamine, a new class of indolizidine alkaloid [(1*R*,2*S*,3*R*,5*R*,8a*R*)-3-hydroxymethyl-5-methyloctahydroindolizine-1,2diol hydrobromide]

Amber L. Thompson,^a* Agnieszka Michalik,^b Robert J. Nash,^b Francis X. Wilson,^c Renate van Well,^c Peter Johnson,^c George W. J. Fleet,^d Chu-Yi Yu,^e Xiang-Guo Hu,^e Richard I. Cooper^a and David J. Watkin^a

^aChemical Crystallography, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, England, ^bPhytoquest Limited, IBERS, Plas Gogerddan, Aberystwyth SY23 3EB, Ceredigion, Wales, ^cSummit PLC, 91, Milton Park, Abingdon, Oxfordshire OX14 4RY, England, ^dChemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England, and ^eInstitute of Chemistry, Chinese Academy of Science, Beijing 100190, People's Republic of China

Correspondence e-mail: amber.thompson@chem.ox.ac.uk

Received 28 September 2009; accepted 22 October 2009

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; some non-H atoms missing; R factor = 0.025; wR factor = 0.052; data-to-parameter ratio = 19.3.

X-ray crystallographic analysis of the title hydrobromide salt, $C_{10}H_{20}N^+ \cdot Br^-$, of (1R,2S,3R,5R,8aR)-3-hydroxymethyl-5methyloctahydroindolizine-1,2-diol defines the absolute and relative stereochemistry at the five chiral centres in steviamine, a new class of polyhydroxylated indolizidine alkaloid isolated from *Stevia rebaudiana* (Asteraceae) leaves. In the crystal structure, molecules are linked by intermolecular O– $H \cdot \cdot \cdot Br$ and N– $H \cdot \cdot \cdot Br$ hydrogen bonds, forming double chains around the twofold screw axes along the *b*-axis direction. Intramolecular O– $H \cdot \cdot \cdot O$ interactions occur.

Related literature

For background to the biological activity of indolizidines, see: Asano *et al.* (2000*a*,2000*b*); Colegate *et al.* (1979); Davis *et al.* (1996); Donohoe *et al.* (2008); Durantel (2009); Hakansson *et al.* (2008); Hohenschutz *et al.* (1981); Kato *et al.* (1999, 2007); Klein *et al.* (1999); Lagana *et al.* (2006); Sengoku *et al.* (2009); Watson *et al.* (2001); Whitby *et al.* (2005); Yamashita *et al.* (2002). For the Hooft parameter, see: Hooft *et al.* (2008). For the extinction correction, see: Larson (1970).

V = 1188.72 (2) Å³

Mo $K\alpha$ radiation

 $0.46 \times 0.46 \times 0.26 \text{ mm}$

2675 measured reflections

2658 independent reflections

2484 reflections with $I > 2\sigma(I)$

Absolute structure: Flack (1983),

 $\mu = 3.45 \text{ mm}^{-3}$

T = 150 K

 $R_{\rm int} = 0.042$

 $\Delta \rho_{\text{max}} = 0.37 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

1102 Friedel pairs Flack parameter: 0.002 (10)

Z = 4

Experimental

Crystal data $C_{10}H_{20}N^+ \cdot Br^ M_r = 282.18$ Orthorhombic, $P2_12_12_1$ a = 8.4616 (1) Å b = 8.8762 (1) Å c = 15.8270 (2) Å

Data collection

Nonius KappaCCD area-detector diffractometer Absorption correction: multi-scan (*DENZO/SCALEPACK*; Otwinowski & Minor, 1997) $T_{\rm min} = 0.20, T_{\rm max} = 0.41$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.052$ S = 1.002658 reflections 138 parameters H-atom parameters constrained

Table 1

Hydrogen-bond geometry (A,	°)	١.
----------------------------	----	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O5-H51···O2	0.84	2.34	2.684 (3)	105
O5−H51···O15	0.84	2.53	3.018 (3)	118
N7-H71···Br1	0.98	2.29	3.268 (2)	172
$O2-H21\cdots Br1^{i}$	0.82	2.55	3.364 (2)	177
O15−H151···Br1 ⁱⁱ	0.84	2.39	3.211 (2)	169
	1 2			

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) x, y - 1, z.

Data collection: *COLLECT* (Nonius, 2001).; cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2918).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Asano, N., Kuroi, H., Ikeda, K., Kizu, H., Kameda, Y., Kato, A., Adachi, I., Watson, A. A., Nash, R. J. & Fleet, G. W. J. (2000b). *Tetrahedron Asymmetry*, **11**, 1–8.
- Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000a). *Tetrahedron* Asymmetry, **11**, 1645–1680.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Colegate, S. M., Dorling, P. R. & Huxtable, C. R. (1979). Aust. J. Chem. 32, 2257–2264.
- Davis, B., Bell, A. A., Nash, R. J., Watson, A. A., Griffiths, R. C., Jones, M. G., Smith, C. & Fleet, G. W. J. (1996). *Tetrahedron Lett.* 37, 8565–8568.
- Donohoe, T. J., Thomas, R. E., Cheeseman, M. D., Rigby, C. L., Bhalay, G. & Linney, I. D. (2008). Org. Lett. 10, 3615–3618.
- Durantel, D. (2009). Curr. Opin. Invest. Drugs, 10, 860-870.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hakansson, A. E., van Ameijde, J., Horne, G., Nash, R. J., Wormald, M. R., Kato, A., Besra, G. S., Gurcha, S. & Fleet, G. W. J. (2008). *Tetrahedron Lett.* 49, 179–184.
- Hohenschutz, L. D., Bell, E. A., Jewess, P. J., Leworthy, D. P., Pryce, R. J., Arnold, E. & Clardy, J. (1981). *Phytochemistry*, **20**, 811–14.
- Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.

- Kato, A., Adachi, I., Miyauchi, M., Ikeda, K., Komae, T., Kizu, H., Kameda, Y., Watson, A. A., Nash, R. J., Wormald, M. R., Fleet, G. W. J. & Asano, N. (1999). *Carbohydr. Res.* **316**, 95–103.
- Kato, A., Kato, N., Adachi, I., Hollinshead, J., Fleet, G. W. J., Kuriyama, C., Ikeda, K., Asano, N. & Nash, R. J. (2007). J. Nat. Prod. 70, 993–997.
- Klein, J. L. D., Roberts, J. D., George, M. D., Kurtzberg, J., Breton, P., Chermann, J. C. & Olden, K. (1999). Br. J. Cancer, 80, 87–95.
- Lagana, A., Goetz, J. G., Cheung, P., Raz, A., Dennis, J. W. & Nabi, I. R. (2006). Mol. Cell. Biol. 26, 3181–3193.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sengoku, T., Satoh, Y., Takahashi, M. & Yoda, H. (2009). *Tetrahedron Lett.* 50, 4937–4940.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
- Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). *Phytochemistry*, 56, 265–295.
- Whitby, K., Pierson, T. C., Geiss, B., Lane, K., Engle, M., Zhou, Y., Doms, R. W. & Diamond, M. S. (2005). J. Virol. 79, 8698–8706.
- Yamashita, T., Yasuda, K., Kizu, H., Kameda, Y., Watson, A. A., Nash, R. J., Fleet, G. W. J. & Asano, N. (2002). *J. Nat. Prod.* **65**, 1875–1881.

Acta Cryst. (2009). E65, o2904-o2905 [doi:10.1107/S1600536809043827]

Steviamine, a new class of indolizidine alkaloid [(1*R*,2*S*,3*R*,5*R*,8a*R*)-3-hydroxymethyl-5-methyloc-tahydroindolizine-1,2-diol hydrobromide]

A. L. Thompson, A. Michalik, R. J. Nash, F. X. Wilson, R. van Well, P. Johnson, G. W. J. Fleet, C.-Y. Yu, X.-G. Hu, R. I. Cooper and D. J. Watkin

Comment

Well over 100 iminosugars - analogues of sugars in which the ring oxygen is replaced by nitrogen - have been isolated as natural products (Asano *et al.*, 2000*a*; Watson *et al.*, 2001). This paper establishes both the relative and absolute stereochemistry of the five chiral centres in steviamine (1), recently isolated from the leaves of Stevia rebaudiana (Asteraceae); (1) is the first example of a new class of indolizidine alkaloid with an alkyl group attached to the piperidine ring. Swainsonine (2, see Fig. 1), a trihydroxyindolizidine isolated from Swainsona canescens (Colegate *et al.*, 1979), is a powerful inhibitor of α -mannosidases and has potential as a chemotherapeutic agent for the treatment of cancer (Lagana *et al.*, 2006; Klein *et al.*, 1999). I-Swainsonine 3, the enantiomer of 2, is a very powerful α -rhamnosidase inhibitor (Davis *et al.*, 1996); 4 in which a methyl group is introduced into the piperidine ring is nearly 100 times more potent an inhibitor than 2 (Hakansson *et al.*, 2008). Castanospermine 5, isolated from Castanospermum australe (Hohenschutz *et al.*, 1981), is an inhibitor of some α -glucosidases and a potent inhibitor of dengue virus infection *in vivo* (Whitby *et al.*, 2005); Celgosivir, a simple derivative of 5, is in development for the treatment of HCV infection (Durantel, 2009). Hyacinthacine A4 6, isolated from Scilla sibirica (Asano *et al.*, 2000*b*; Yamashita *et al.*, 2002), is the pyrrolizidine equivalent of steviamine 1. Many hyacinthacines have been isolated from a range of plants (Kato *et al.*, 1999; Kato *et al.*, 2007) and have attracted considerable attention from synthetic organic chemists (Sengoku *et al.*, 2009; Donohoe *et al.*, 2008). Steviamine 1 is unlikely to be the only naturally occurring indolizidine with a methyl branch which will provide similarly challenging synthetic targets.

As a natural product, the crystal was expected to be enantiopure and the Flack *x* parameter refined to 0.002 (10) (Flack, 1983). Analysis of the Bijvoet differences using within *CRYSTALS* (Betteridge *et al.*, 2003) gives the Hooft *y* parameter as 0.023 (6), indicating that the probability that the configuration is incorrect allowing for the posibility of racemic twinning is less than 0.000001% (Hooft *et al.*, 2008).

On examination of hydrogen bonding interactions in 1, the position of H51 initially seemed incorrect, lying between atoms O2 and O15. However, examination of the difference map indicates the presence of a peak believed to be a hydrogen atom which moves little on refinement suggesting the hydrogen bond is bifurcated (Fig. 2, Table 1). The molecules are linked together by three hydrogen bonds (two O—H···Br and one N—H···Br, Table 1) to form double chains around the twofold screw axes along the *b* direction (Fig. 3).

Experimental

Steviamine was isolated by a combination of strongly acidic cation, and strongly basic anion, exchange chromatography. The compound was retained on cation exchange resin (IR120) and was chromatographed on the anion exchange resin (CG400) from which it was eluted with water. Isolation was monitored using GC-MS of the trimethylsilyl-derivative (distinctive major ion at 314 amu). Steviamine was crystallized as its hydrobromide salt from ethanol.

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined separately with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

On comparison of F_0 and F_c , it was apparent that for large values, of F_0 was noticably less than F_c , so an extinction parameter was refined (Larson, 1970).

Figures

(1R,2S,3R,5R,8aR)-3-Hydroxymethyl-5- methyloctahydroindolizine-1,2-diol hydrobromide

Crystal data

$C_{10}H_{20}N_1^+ \cdot Br^-$	$D_{\rm x} = 1.577 \ {\rm Mg \ m}^{-3}$
$M_r = 282.18$	Melting point: not measured K
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 1544 reflections
a = 8.4616(1) Å	$\theta = 5-27^{\circ}$
b = 8.8762 (1) Å	$\mu = 3.45 \text{ mm}^{-1}$

c = 15.8270 (2) Å	T = 150 K
V = 1188.72 (2) Å ³	Plate, colourless
Z = 4	$0.46 \times 0.46 \times 0.26 \text{ mm}$
$F_{000} = 584$	
Data collection	
Nonius KappaCCD area-detector diffractometer	2484 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\text{int}} = 0.042$
T = 150 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 5.1^{\circ}$
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997)	$h = -10 \rightarrow 10$
$T_{\min} = 0.20, \ T_{\max} = 0.41$	$k = -11 \rightarrow 11$
2675 measured reflections	$l = -20 \rightarrow 20$
2658 independent reflections	
Refinement	
Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + (0.01P)^2 + 0.86P],$ where $P = [\max(F_o^2, 0) + 2F_c^2]/3$
$R[F^2 > 2\sigma(F^2)] = 0.025$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.052$	$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.00	$\Delta \rho_{min} = -0.52 \text{ e } \text{\AA}^{-3}$
2658 reflections	Extinction correction: Larson (1970), Equation 22
138 parameters	Extinction coefficient: 75 (8)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1102 Friedel-pairs
Hydrogen site location: inferred from neighbouring sites	Flack parameter: 0.002 (10)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.29652 (3)	0.79140 (2)	0.693045 (16)	0.0373
02	-0.0613 (2)	0.2681 (2)	0.63610 (12)	0.0470
C3	0.0377 (3)	0.3939 (3)	0.65007 (17)	0.0381
C4	0.1564 (4)	0.3703 (3)	0.72343 (15)	0.0436
05	0.1230 (3)	0.2427 (2)	0.77338 (12)	0.0682
C6	0.3207 (4)	0.3611 (2)	0.68353 (14)	0.0362
N7	0.2994 (3)	0.45785 (19)	0.60566 (10)	0.0248
C8	0.1381 (3)	0.4183 (3)	0.57125 (14)	0.0267
C9	0.0873 (3)	0.5356 (3)	0.50829 (16)	0.0349
C10	0.2069 (4)	0.5435 (3)	0.43633 (14)	0.0389

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C11	0.3726 (3)	0.5724 (3)	0.47093 (16)	0.0394
C12	0.4244 (3)	0.4594 (3)	0.53787 (15)	0.0330
C13	0.5841 (3)	0.4996 (4)	0.5756 (2)	0.0490
C14	0.3784 (4)	0.2019 (3)	0.66419 (17)	0.0517
O15	0.2695 (3)	0.12282 (19)	0.61308 (12)	0.0522
H31	-0.0258	0.4840	0.6613	0.0459*
H41	0.1545	0.4576	0.7609	0.0522*
H61	0.4003	0.4116	0.7186	0.0435*
H81	0.1481	0.3216	0.5435	0.0325*
H92	0.0822	0.6334	0.5366	0.0421*
H91	-0.0170	0.5096	0.4861	0.0419*
H102	0.1762	0.6219	0.3973	0.0473*
H101	0.2044	0.4458	0.4063	0.0468*
H111	0.3741	0.6720	0.4958	0.0478*
H112	0.4450	0.5700	0.4237	0.0485*
H121	0.4243	0.3580	0.5138	0.0384*
H132	0.6602	0.5024	0.5310	0.0746*
H131	0.5781	0.5970	0.6021	0.0735*
H133	0.6131	0.4254	0.6167	0.0738*
H141	0.3923	0.1509	0.7163	0.0614*
H142	0.4798	0.2080	0.6355	0.0607*
H151	0.2850	0.0336	0.6278	0.0778*
H21	-0.1216	0.2726	0.6762	0.0723*
H51	0.0999	0.1687	0.7424	0.1018*
H71	0.2900	0.5607	0.6279	0.0500*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.04557 (13)	0.02142 (11)	0.04505 (13)	-0.00181 (11)	0.00573 (13)	-0.00477 (10)
O2	0.0451 (11)	0.0463 (11)	0.0495 (11)	-0.0168 (9)	0.0134 (8)	0.0013 (9)
C3	0.0472 (16)	0.0264 (12)	0.0406 (14)	-0.0030 (11)	0.0188 (12)	-0.0031 (10)
C4	0.078 (2)	0.0311 (12)	0.0220 (11)	-0.0217 (13)	0.0128 (12)	-0.0036 (9)
O5	0.1153 (19)	0.0591 (14)	0.0301 (9)	-0.0488 (13)	-0.0052 (11)	0.0145 (9)
C6	0.0647 (17)	0.0209 (10)	0.0230 (11)	-0.0009 (11)	-0.0096 (13)	0.0022 (9)
N7	0.0324 (9)	0.0199 (8)	0.0220 (8)	-0.0004 (9)	0.0005 (9)	-0.0002 (6)
C8	0.0307 (12)	0.0229 (10)	0.0266 (11)	-0.0031 (9)	0.0027 (10)	-0.0016 (8)
C9	0.0349 (13)	0.0358 (13)	0.0339 (13)	0.0056 (11)	-0.0047 (11)	-0.0005 (11)
C10	0.0489 (14)	0.0414 (13)	0.0263 (11)	0.0028 (14)	-0.0021 (13)	0.0093 (10)
C11	0.0466 (15)	0.0391 (14)	0.0326 (13)	-0.0071 (12)	0.0113 (12)	0.0065 (11)
C12	0.0317 (13)	0.0356 (13)	0.0316 (12)	0.0015 (10)	0.0044 (10)	-0.0048 (10)
C13	0.0316 (14)	0.0627 (19)	0.0526 (17)	0.0008 (13)	0.0022 (13)	-0.0101 (14)
C14	0.091 (2)	0.0238 (12)	0.0401 (13)	0.0082 (16)	-0.0209 (14)	-0.0002 (12)
015	0.0927 (18)	0.0219 (8)	0.0419 (10)	0.0030 (10)	-0.0184 (11)	-0.0038 (7)

Geometric parameters (Å, °)

O2—C3	1.414 (3)	С9—Н92	0.978
O2—H21	0.815	С9—Н91	0.977

C3—C4	1.549 (4)	C10-C11	1.527 (4)
C3—C8	1.525 (3)	C10—H102	0.965
С3—Н31	0.980	C10—H101	0.989
C4—O5	1.409 (3)	C11—C12	1.523 (4)
C4—C6	1.529 (4)	C11—H111	0.968
C4—H41	0.976	C11—H112	0.967
O5—H51	0.843	C12—C13	1.519 (4)
C6—N7	1.513 (3)	C12—H121	0.977
C6—C14	1.526 (3)	С13—Н132	0.955
С6—Н61	0.981	C13—H131	0.963
N7—C8	1.511 (3)	С13—Н133	0.958
N7—C12	1.507 (3)	C14—O15	1.412 (3)
N7—H71	0.982	C14—H141	0.949
C8—C9	1.504 (3)	C14—H142	0.972
C8—H81	0.967	O15—H151	0.836
C9—C10	1.525 (4)		
C3—O2—H21	102.1	С8—С9—Н91	109.4
O2—C3—C4	113.2 (2)	С10—С9—Н91	110.0
O2—C3—C8	108.3 (2)	H92—C9—H91	109.5
C4—C3—C8	105.7 (2)	C9—C10—C11	110.44 (19)
O2—C3—H31	110.4	С9—С10—Н102	109.4
C4—C3—H31	109.3	С11—С10—Н102	110.8
C8—C3—H31	109.8	С9—С10—Н101	107.7
C3—C4—O5	113.5 (2)	C11—C10—H101	109.8
C3—C4—C6	106.69 (19)	H102—C10—H101	108.6
O5—C4—C6	111.8 (2)	C10-C11-C12	113.8 (2)
C3—C4—H41	109.7	C10-C11-H111	108.1
O5—C4—H41	107.1	C12—C11—H111	108.4
C6—C4—H41	107.9	C10-C11-H112	107.5
C4—O5—H51	110.3	C12-C11-H112	109.9
C4—C6—N7	101.4 (2)	H111—C11—H112	109.0
C4—C6—C14	115.0 (2)	C11—C12—N7	107.4 (2)
N7—C6—C14	113.58 (19)	C11—C12—C13	112.0 (2)
С4—С6—Н61	111.5	N7—C12—C13	110.3 (2)
N7—C6—H61	106.4	C11—C12—H121	109.6
С14—С6—Н61	108.5	N7—C12—H121	105.6
C6—N7—C8	105.63 (18)	C13—C12—H121	111.7
C6—N7—C12	120.1 (2)	C12—C13—H132	108.4
C8—N7—C12	112.30 (16)	C12—C13—H131	109.6
C6—N7—H71	104.2	H132—C13—H131	109.5
C8—N7—H71	105.8	C12—C13—H133	109.5
C12—N7—H71	107.6	H132—C13—H133	110.3
C3—C8—N7	103.98 (19)	H131—C13—H133	109.6
C3—C8—C9	118.7 (2)	C6—C14—O15	111.5 (2)
N7—C8—C9	109.66 (19)	C6—C14—H141	107.9
C3—C8—H81	107.1	O15—C14—H141	110.0
N7—C8—H81	106.9	C6—C14—H142	108.9
C9—C8—H81	109.8	O15—C14—H142	109.6
C8—C9—C10	109.7 (2)	H141—C14—H142	108.8

С8—С9—Н92	108.9		C14—O15—H151	1	02.1
С10—С9—Н92	109.3				
Hydrogen-bond geometry (Å, S	2)				
D—H···A		D—H	$H \cdots A$	$D \cdots A$	D—H…A
O5—H51…O2		0.84	2.34	2.684 (3)	105
O5—H51…O15		0.84	2.53	3.018 (3)	118
N7—H71…Br1		0.98	2.29	3.268 (2)	172
O2—H21…Br1 ⁱ		0.82	2.55	3.364 (2)	177
O15—H151…Br1 ⁱⁱ		0.84	2.39	3.211 (2)	169
Symmetry codes: (i) $-x$, $y-1/2$, $-z$	x+3/2; (ii) x, y-1,	<i>z</i> .			

