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Pathomechanism of intervertebral disc degeneration
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Abstract

Intervertebral disc degeneration (IDD) is the main contributor to low back pain, which is

a leading cause of disability worldwide. Although substantial progress has been made in

elucidating the molecular mechanisms of IDD, fundamental and long-lasting treatments

for IDD are still lacking. With increased understanding of the complex pathomechanism

of IDD, alternative strategies for treating IDD can be discovered. A brief overview of

the prevalence and epidemiologic risk factors of IDD is provided in this review, followed

by the descriptions of anatomic, cellular, and molecular structure of the intervertebral

disc as well as the molecular pathophysiology of IDD. Finally, the recent findings of

intervertebral disc progenitors are reviewed and the future perspectives are discussed.
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1 | INTRODUCTION

Low back pain (LBP) is a common condition affecting approximately

637 million individuals worldwide.1 The high morbidity of LBP is asso-

ciated with lower health-related quality of life2 and high medical

expenses,3 resulting in increased suffering and high socioeconomic

costs. Intervertebral disc degeneration (IDD) is a major contributor to

LBP,4 and it also precedes other spinal disorders such as disc hernia-

tion, spondylosis, and lumbar spinal stenosis.5 Herein, we will discuss

the prevalence of and risk factors for IDD, structure of intervertebral

disc (IVD), pathomechanism and histological features of IDD, and IVD

progenitors.

2 | PREVALENCE OF INTERVERTEBRAL
DISC DEGENERATION

IDD develops during adolescence and progresses with age. In 1995,

the prevalence of IDD, based on magnetic resonance imaging (MRI)

findings, was described in a population-based cohort in Finland.6

Among 232 men with a mean age of 49.3 (range, 35-69) years,

reduced signal intensity on MRI was observed in 41.6% and 86.0% of

the participants at L1/2 and L5/S1, respectively. Reduced disc height

was observed in 9.3% and 55.6% of the participants at L1/2 and

L5/S1, respectively, suggesting that IDD is more frequent and severe

at the lower lumbar disc than at the upper lumbar disc. In 2009, the

prevalence of radiographic spondylosis was investigated in a large-

scale nationwide cohort study (Research on Osteoarthritis Against

Disability; ROAD) performed in Japan.7 Among 2288 participants

(818 men and 1470 women) aged ≥60 years, the prevalence of radio-

graphic spondylosis with Kellgren-Lawrence grade ≥2 was 75.8% in

total, 84.1% in men, and 70.7% in women. Later, the prevalence of

IDD based on MRI findings of the entire spine was reported in a

population-based cohort study in Japan,8 in which the presence of

IDD was defined by Pfirrmann's grading system9 (where grade 4 and

5 indicated IDD). Among 975 participants (324 men and 651 women)

aged 21 to 97 years, the prevalence of IDD was 71% in men and 77%

in women aged <50 years, and >90% in both men and women aged

>50 years. The prevalence of an intervertebral space with IDD was

the highest at C5/6 (men: 51.5%, women: 46%), T6/7 (men: 32.4%,
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women: 37.7%), and L4/5 (men: 69.1%, women: 75.8%). LBP was

associated with the presence of IDD in the lumbar region. Using the

same cohort, Teraguchi et al. also examined the association between

IDD and LBP, taking endplate signal change and/or Schmorl's node on

MRI into consideration.10 Although IDD alone is not associated with

the presence of LBP, the combination of IDD and endplate signal

change was highly associated with the presence of LBP. More

recently, the prevalence of Modic changes based on MRI findings of

the lumbar spine was reported in a population-based cohort study in

China.11 Among 2449 participants with a mean age of 40.4 years, the

prevalence of Modic changes was 5.8%, and the presence of Modic

changes was significantly associated with the presence of IDD and

correlated with the presence of LBP. Considering these results,

endplate degeneration possibly plays an important role in the mecha-

nism by which IDD causes LBP.

3 | RISK FACTORS FOR IDD FROM
EPIDEMIOLOGIC STUDIES

Before mid- to late 1990s, repetitive mechanical loading or wear and

tear were believed to cause IDD. However, recent family and twin

studies have suggested that the occurrence of IDD is determined

largely by genetic factors, with environmental factors having an

important role.12

3.1 | Genetic factors

Genetic influences predominate among the reported risk factors for

IDD. In 1995, a population-based cohort study was performed using

115 male monozygotic twin pairs, in which IDD was evaluated by

MRI.13 Familial aggregation explained 61% and 34% of IDD scores in

the upper and lower lumbar spine, respectively, in multivariate ana-

lyses, suggesting that IDD is substantially affected by genetic factors

and that compared with IDDs in the lower lumbar spines, those in the

upper lumbar spines were more significantly influenced by genetic

factors. The predominance of genetic factors was further confirmed

by other twin studies, estimating that genetic factors account for up

to three-quarters of susceptibility to lumbar IDD.14,15 Several candi-

date genes that may play a role in the onset of IDD have been

reported by affected sib-pair linkage studies or candidate-gene associ-

ation studies, such as ACAN,16 CLIP,17 COL1A1,18 COL9A2,19

COL11A1,20 GDF5,21 IGF1R,22 IL-1,23 IL-6,24 MMP2,25 MMP3,26

MMP9,27 SKT,28 THBS2,29 and VDR.30,31 Further, recent genome-wide

association meta-analyses identified novel candidate genes, including

PARK232 and CHST3.33 An excellent review focusing on the extensive

candidate genes was published recently.34 Many of these candidate

genes are known to constitute the extracellular matrix (ECM) of IVD

or be involved in ECM turnover, and, thus, they determine the size

and mechanical property of the IVD by nature. Genetic defects in

these genes presumably render the IVD more vulnerable against

external force, leading to early onset of IDD. Further studies are

required to elucidate the actual molecular mechanism through which

each gene polymorphism causes IDD.

3.2 | Mechanical stress

Excessive mechanical stress is thought to induce IDD, considering that

IDD is more frequently observed in the lower lumbar spine, where

IVDs suffer higher mechanical stress,35 and that IVDs adjacent to ver-

tebral fusion are more likely to suffer IDD.36 On investigating a cohort

of monozygotic twin pairs with different physical activities, Battie

et al. found that physical activities explained only 2% to 7% of IDD

scores in multivariate analyses.13 Similarly, in the aforementioned

ROAD study, Muraki et al. examined the association between knee

osteoarthritis/lumbar spondylosis and occupation/physical activity of

the participants.7 Interestingly, the association between physical

activity and lumbar spondylosis was weak, whereas the degree of

physical activity was strongly associated with the presence of knee

osteoarthritis, indicating that compared with knee joints, IVDs are less

likely to be affected by mechanical stress.

3.3 | Trauma

A study involving well-matched cohorts, including 50 subjects who

underwent discography and 52 control subjects, revealed that com-

pared to matched controls, subjects who underwent discography

showed accelerated IDD at 7 to 10 years of follow-up; the progres-

sion of disc degeneration assessed by MRI was observed in 54 discs

(35%) in the discography group compared to 21 discs (14%) in the

control group.37 Further, retrospective clinical studies on 14 young

patients with previous vertebral fracture and 14 healthy controls

showed that IDD was more frequently observed in patients with pre-

vious vertebral fracture than in controls (57% and 8%, respectively).38

Hence, trauma is thought to be a risk factor for the onset of IDD.

3.4 | Smoking

Smoking is the only chemical exposure known to be associated with

the onset of IDD. On investigating the cohort of monozygotic twin

pairs with different smoking exposures, Battie et al. found slightly

greater IDD scores in the lumbar spine of smokers than in the lumbar

spine of nonsmokers.39

4 | STRUCTURE OF THE
INTERVERTEBRAL DISC

The IVD is composed of different but interrelated tissues, including the

central highly hydrated gelatinous nucleus pulposus (NP), surrounding

elastic and fibrous annulus fibrosus (AF), and cartilaginous end plates

(CEP), which provides connection to the vertebral bodies (Figure 1).40
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The NP is derived from the notochord, and notochordal cells remain

in the tissue after birth and until around 10 years of age in humans.

These cells are thereafter replaced by small chondrocyte-like cells

with lower metabolic activities.41 The ECM of NP consists of type II

collagen fibers and elastin that contain proteoglycans such as

aggrecan and versican. The presence of proteoglycans with nega-

tively charged side chains makes the NP highly hydrated with high

osmolarity, enabling the IVD to resist compressive loads and to

deform reversibly.

The AF consists of a series of concentric rings, or lamellae, with

collagen fibers lying parallel within each lamellae, providing tensile

strength and the ability to withstand forces applied from any direc-

tion.42 The inner AF consists of several layers of fibrocartilage, while

the outer AF is a fibrous tissue containing highly organized fibers

composed mainly of type I collagen, allowing it to resist tensile

loads.43 Proteoglycans and type II collagen fibers decrease gradually

closer to the outer AF, while the content of type I collagen fibers

increases.44

The CEP is a layer of hyaline cartilage that covers the caudal and

cephalic ends of the disc, which plays an important role in the trans-

port of fluids and solutes in/out of the disc.45 Similar to the articular

cartilage, the ECM of the CEP consists of type II collagen embedded

with chondrocytes.

5 | PATHOMECHANISM AND
HISTOLOGICAL FEATURES OF HUMAN IDD,
AND LESSONS FROM ANIMAL MODELS

IDD can be attributed to several factors, including genetic factors as

well as aging, mechanical stress, and injury. These biological and

environmental factors induce the reduction of cell number and trans-

formation of IVD cells, resulting in decreased production of ECM of

IVD owing to increased catabolic activity and decreased anabolic

activities. Thereafter, the structural integrity of IVD is lost and IDD is

further accelerated.46,47 One of the features of the pathomechanism

of IDD in humans is increased catabolic and decreased anabolic activi-

ties, and the changes in ECM during the IDD process, characterized

by the changes in the expression/structure of collagens/proteogly-

cans. Owing to the difficulty in obtaining human IVD samples, espe-

cially normal human tissue, several animal models that mimic these

features have been developed to elucidate the pathomechanism

of IDD.

5.1 | Expression and structural changes of
collagens

In humans, a general decrease in type II collagen production and a

shift to type I collagen synthesis by NP cells or inner AF cells is

observed as IDD progresses.48 In addition, localization of type X colla-

gen has been observed in degenerated IVD, which is associated with

the formation of cell clusters and clefts.49 During the process of

development of IDD in humans, an increase in nonenzymatic glycosyl-

ation of collagen fibers is observed, leading to an accumulation of

advanced glycation end-products. As a result, cross-linking of collagen

fibers increases, causing tissue stiffness and rendering the IVDs more

susceptible to mechanical damage during degeneration.50

5.2 | Expression and structural changes in
proteoglycans

Similar to the changes in the expression of collagens, a decrease in the

proteoglycan content of human IVD is observed during

degeneration.51–54 In addition, the composition of glycosaminoglycan

chains shifts from chondroitin sulfate to keratin sulfate,52 reducing

the water content in the IVD. In synergy with the increased expres-

sion of type I collagen, the IVD becomes more fibrotic and less capa-

ble of withstanding mechanical stress.

5.3 | Histological features of IDD

During the process of development of IDD in humans, several histo-

logical findings are observed in NP, including loss of demarcation

between NP and AF owing to the shift of synthesis from type II colla-

gen to type I collagen, dehydration caused by the decrease in proteo-

glycan production, presence of fissure, and cell cluster formation

(Table 1).55 With regard to AF, disruption of the lamellar structure of

collagen fibers, presence of fissure, and increased degree of vasculari-

zation and innervation are observed.56 Structural disorganization of

the CEP is observed, including cracks, thinning, mineralization, micro-

fracture in the adjacent subchondral bone, and bone sclerosis.57

F IGURE 1 Hematoxylin and eosin staining of mouse lumbar
intervertebral disc at 8 weeks of age
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5.4 | Pathological IDD and disc aging

Organismal aging results from time-dependent accumulation of

molecular and cellular damage, which leads to impaired tissue homeo-

stasis, and eventual physiological and functional decline.58 Compared

with other tissues, IVDs appear to undergo age-related degenerative

changes earlier in life.35,41 On analyzing 44 human lumbar spines from

deceased individuals without any spinal disorders, Boos et al. reported

that age-related histological changes of IVD include increased

number and size of fissures, presence of granular debris, and

neovascularization of the outer AF.41 On investigating 450 skeletons,

Edelson et al. reported that the histological features of the CEP asso-

ciated with aging include ossification and thinning of the CEP, micro-

fractures in the subchondral bone, bone sclerosis, and reduction in the

number of vascular channels in the CEP.57 As pathological IDD is cau-

sed by factors other than aging, such as genetic predisposition,

trauma, and environmental factors, pathological IDD can occur in

younger individuals and at a single intervertebral level, whereas disc

aging is more systemic and is observed in older individuals in all spinal

discs.58 However, we could not precisely distinguish between patho-

logical IDD and IDD associated with aging owing to the almost similar

histological features of the two conditions.41

With recent progress in aging research, some of the molecular

pathways leading to disc aging have been elucidated. In particular,

genomic instability and resulting cellular senescence have been deter-

mined to be important drivers of IDD.58 Each cell is constantly sub-

jected to the risk of DNA damage due to the chemical instability of

DNA structure, metabolic byproducts, and environmental mutagens

and genotoxins.59 Despite several inherent DNA repair mechanisms

of cells, the frequency of DNA damage becomes greater than that of

DNA repair with aging, resulting in the accumulation of damaged

DNA. It has been shown that accumulated genomic damage can lead

to disc aging. For example, Ercc1−/Δ mice, in which ERCC1-XPF is defi-

cient (involved in DNA damage repair), showed typical features of disc

aging, including loss of proteoglycan, decreased IVD height, and an

increase in the number of senescent cells.60 The evidence that geno-

toxic stresses such as tobacco smoking or radiation cause disc aging

further supports that DNA damage contributes to disc aging.61,62

Other possible causes of DNA damage include oxidative stress induced

by inflammation. Interleukin-1 (IL-1), a predominant cytokine involved

in the pathogenesis of IDD,63,64 has been demonstrated to induce

cellular senescence in NP cells. Furthermore, IL-1 receptor antagonist

(IL1-Ra) knockout mice showed typical features of human IDD, and NP

cells from these mice showed the senescent phenotype.65

There are two types of cellular senescence, namely replicative

senescence and stress-induced premature senescence (SIPS). Replica-

tive senescence is characterized by cessation of cell proliferation due

to critical telomere shortening after consecutive replicative cell

cycles.66 In contrast, SIPS is caused by the accumulation of genomic

and mitochondrial damage. SIPS cells acquire a senescence-associated

secretory phenotype (SASP), which is characterized by the secretion

of several inflammatory cytokines and matrix proteases that have

profound catabolic effects on neighboring cells and ECM, promoting

tissue degeneration.67–69 This pathomechanism of IDD is supported

by previous studies that revealed that the number of senescent

cells, which were assessed by senescence markers such as

senescence-associated β-galactosidase and p16INK4A, were increased

in human IVD samples. These markers were positively correlated

with the expression of matrix metalloproteases including matrix

metalloproteinase 13 (MMP13) and a disintegrin and

metalloproteinase with thrombospondin motifs 5 (ADAMTS5).70–74

Recently, Patil et al. demonstrated the causal relationship between

cellular senescence and age-related IDD using the p16-3MR trans-

genic mouse model in which p16-positive senescent cells can be

selectively eliminated by treatment with ganciclovir.75 The aging

mice (age: 1 year) treated with ganciclovir showed decreased levels

of catabolic factors along with improved histological features of IDD

at age 2 years compared with control mice, indicating that cellular

senescence has a direct impact on IDD development.

5.5 | Lessons from animal models

Various kinds of inducers have been used to reproduce IDD in

experimental animals, including compression,76–78 injury,79–81

instability,82–86 postural bipedality,87,88 chemical,89 genetic,90

vibration,91 spontaneous,92 and smoking.93 Many of these models

recapitulate the radiological and histological features of human IDD.

Recently, we developed a mouse IDD model in which instability was

induced without direct injury to IVDs, by surgical resection of poste-

rior elements of the mouse lumbar spine.94 Radiological decrease in

IVD height and histological findings compatible with human IDD were

TABLE 1 Histological findings of intervertebral disc degeneration

Nucleus pulposus Anulus fibrosus Cartilage end plate

Changes at the molecular level Decrease of proteoglycan

Decrease of type II collagen

Increase of type I collagen

Cross-link of collagen fibers Decrease of proteoglycan

Histological changes Fissure

Fibrosis

Appearance of cell cluster

Loss of notochordal cells and

appearance of chondrocyte-like cells

Disruption of lamella

Fissure

Vascularization and innervation

Microfracture and sclerosis of

subchondral bone

Thinning

Reduction in the number of

vascular channel

Biomechanical changes Decrease of expansive force Vulnerable against mechanical stress
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observed in this model. It is noteworthy that hypertrophic-like cho-

ndrocytes appeared in the inner AF during degeneration, the morphol-

ogies of which apparently differed from those of normal inner AF, and

these cells expressed type X collagen and MMP13,94 suggesting these

cells contribute to IDD phenotypes as is the case in osteoarthritis.95

Thus, we speculate that the appearance of these cells in the inner AF

may be a key event in the development of IDD. Further studies are

warranted to investigate whether these cells are activated-local pro-

genitors or are recruited from other tissues, and whether prevention

of these cells from expressing type collagen X and MMP13 is a poten-

tial intervention for preventing the progression of IDD.

6 | INTERVERTEBRAL DISC PROGENITORS

The presence of local progenitors or the recruitment of appropriate

cells into the damaged sites is required for tissue maintenance and

repair.96 Despite preliminary results showing the positive effects of

cell therapies in regeneration of the IVD, detailed basic research on

IVD cells and their niche indicates that transplanted cells are unable

to survive and adapt in the avascular niche of the IVD.97 It is impera-

tive to identify the IVD progenitors and understand their niche to suc-

ceed in cell therapies for IDD. The IVD niche, which represents the

unique microenvironment and communication network within the

IVD cells, has been investigated by several researchers.97–99 The

intervertebral disc is avascular because the capillaries terminate at the

vertebral endplates and outermost AF, and the nutrition reaches the

nucleus pulposus by diffusion through the CEP and outer AF.100–103

As the NP, which is anatomically farthest from the vascular supply, is

exposed to hypoxia, most energy for the NP is derived from anaerobic

glycolysis.104 Anaerobic glycolysis in NP cells generates lactic acid and

lowers the pH within the IVD. Other features of the IVD niche include

low cellular density,56 high osmotic pressure,105 and high mechanical

stress.97 IVD cells acquire specific adaptation mechanisms to survive

in these harsh microenvironments.

6.1 | IVD specific progenitors in vitro

Considering the harsh microenvironments in IVD, activation of endoge-

nous progenitor cells could be a promising therapeutic strategy for

IDD. In 2007, using an explant culture to isolate progenitors from

degenerate human discs, Risbud et al. identified cells from both NP and

AF, expressing typical marrow mesenchymal stem cell markers such as

CD105, CD166, CD63, CD49a, CD90, CD73, p75 low-affinity growth

factor receptor, and CD133/1, and these results were also confirmed

in rat IVDs.106 Thereafter, several researchers have reported the pres-

ence of cells compatible with MSCs from NP, AF, and CEP of normal or

degenerated IVDs.107–113 Further, several microenvironments of IVDs,

such as extracellular matrix stiffness, pH, and osmotic pressure, have

been shown to affect the properties of these progenitors.114–116

Sakai et al. identified NP progenitors with novel NP-specific cell

markers, and demonstrated that these progenitors are exhausted with

aging and degeneration.117 Using colony-forming assay with methyl-

cellulose semi-solid medium, they identified progenitors from human

and mouse NPs that express tyrosine-protein kinase receptor (Tie2)

and disialoganglioside 2 (GD2). These cells formed spheroid colonies

that highly produced type II collagen and aggrecan and had

multipotent and self-renewal abilities both in vitro and in vivo.

Tie2+GD2− cells were found to be precursors of Tie2+GD2+ cells, and

CD24, which was previously reported to be a specific marker of the

NP,118 was found to be a specific marker of more mature NP cells, which

differentiated from Tie2+GD2+ cells. Using these markers, NP cells were

classified into four subtypes: dormant stem cells (Tie2+GD2−CD24−),

self-renewing stem cells (Tie2+GD2+CD24−), committed NP progenitor

cells (Tie2−GD2+CD24+), and mature NP cells (Tie2−GD2−CD24+).117

Identification of these cell surface markers is epoch-making in that it

enables to evaluate the severity of IDD by quantifying the cell number

and function, and in that it makes an index of induction of differentiation

from other sources to become NP progenitor cells. Sakai et al. further

revealed that angiopoietin-1, a ligand of Tie2, suppressed apoptosis and

promoted the proliferation of Tie2+ cells, enabling the development of a

strategy to stimulate ANG-1 to enhance Tie2+ progenitor cells for pre-

vention of IDD.117 Later, the usefulness of the surface marker Tie2 was

validated in a bovine coccygeal model.119

6.2 | IVD-specific progenitors in vivo

Some of the aforementioned progenitor cells maintain their potential

multipotent differentiation and self-renewal in vitro; however, knowl-

edge regarding their in vivo characteristics, such as development,

localization, or functional role in the maintenance of IVD homeostasis,

is lacking.97

The methods to identify progenitors in vivo include label reten-

tion assay and lineage-tracing experiments. In label retention assay,

synthetic nucleic acid analogs, such as 5-bromo-2-deoxyuridine

(BrdU) or 5-ethynyl-20-deoxyuridine (EdU), are used to detect slow-

cycling cells, which are thought to be potential progenitor cells. A pro-

longed chase period results in dilution of the incorporated nucleic acid

analogs, although the slow-cycling cells remain labeled.120 In knee joints,

slow-cycling cells have been identified in the superficial zone, synovium,

fat pad, top narrow reserve zone of the growth plate, and perichondrium

(groove of Ranvier).120–123 With regard to the IVD, Henriksson et al.

identified slow-cycling cells in a region close to the perichondrium, at

the junction of the outer AF and the vertebral growth plate, suggesting

the presence of stem cell niche.124 This region is analogous to the region

known as the groove of Ranvier in the long bone.122 The same group

proposed the migration routes of the progenitors from this stem cell

niche to the outer AF by analyzing a cell adhesion and migration marker

(β1 integrin), and EMT markers (Snail-1 and -2).125

Lineage tracing provides more direct evidences, allowing us to fol-

low cell fate decisions of progenitor cells and their descendants within

a living organism without any perturbation.126 Lineage tracing typi-

cally uses the Cre-loxP system to permanently mark the cells of inter-

est. Cre recombinase is expressed under the control of a tissue- or
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cell-specific promoter in one mouse line.126 That line is crossed with a

second mouse line, in which a reporter is flanked by a loxP-STOP-loxP

sequence.126 In animals expressing both constructs, Cre specifically

activates the reporter in cells that express the promoter, by excising the

STOP sequence.126 In the knee joint, several novel progenitors have

recently been identified by lineage tracing. For example, Prg4-creERT2

labels the progenitors of the superficial zone of the articular

cartilage,127 PTHrP-creERT2 labels the progenitors in the reserve zone

of the growth plate,128 and Axin2-creERT2 labels the progenitors in and

around the groove of Ranvier.129 In studies on IVD, lineage tracing

experiments by Choi et al. employing Shh-cre and Shh-creERT2 alleles

showed that the notochord is the sole source of cells that form the

entire NP.130 This was further confirmed by the lineage tracing experi-

ments using the Noto-cre allele.131 The AF and the CEP were devoid of

Shh-cre or Noto-cre descendent cells, indicating that the progenitors of

AF and CEP never reside in the NP. Although these studies provided

important developmental findings, no creERT2 lines have been reported

that can specifically mark putative progenitors in IVD tissues.

7 | CONCLUSION AND FUTURE
PERSPECTIVES

Recent population-based cohort studies showed that IDD is very

common and is associated with the presence of LBP and suggested

that the degeneration of CEP has an important role in the pain associ-

ated with IDD. Previous epidemiologic studies have clearly shown

that IDD is highly heritable. Although candidate gene approaches,

family linkage analyses, and recent genome-wide association studies

have revealed several IDD-sensitive genes, further studies are

warranted to elucidate the molecular mechanisms through which each

candidate gene causes IDD. The pathomechanisms of IDD have been

elucidated using several animal models. However, caution should be

exercised while interpreting the information obtained from animal

models, as there are many differences between species, including disc

size, cell type, nutrition, and mechanical forces.132 Several researchers

have reported the presence of progenitors in IVD that behave like

mesenchymal stem cells in vitro. However, the actual role and proper-

ties of the progenitors in vivo remain unknown owing to the lack of

markers that can specifically mark the progenitors in vivo. Recent

availability of single-cell transcriptomic analyses possibly facilitates

the identification of such marker genes that can track and localize

potential progenitors.133 Establishment of the mouse line where Cre

recombinase is expressed under the control of such marker genes will

enable the purification of progenitors (eg, using fluorescence-

activated cell sorting), after knowing the properties of these cells in

detail through comprehensive expression analyses such as RNA-seq.

Investigation of the signals that promote the function of progenitors

will provide essential information for the development of drugs that

can activate resident progenitors and, possibly, prevent IDD. In addi-

tion, identification of cell surface markers of IVD progenitors will con-

tribute to not only the research of human IVD progenitors but also

the development of exogenous cell therapies for IDD.
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