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Abstract

Background: Single-locus markers have many advantages compared with multi-locus markers in genetic and
breeding studies because their alleles can be assigned to particular genomic loci in diversity analyses. However,
there is little research on single-locus SSR markers in peanut. Through the de novo assembly of DNA sequencing
reads of A. hypogaea, we developed single-locus SSR markers in a genomic survey for better application in genetic
and breeding studies of peanut.

Results: In this study, DNA libraries with four different insert sizes were used for sequencing with 150 bp
paired-end reads. Approximately 237 gigabases of clean data containing 1,675,631,984 reads were obtained after
filtering. These reads were assembled into 2,102,446 contigs with an N50 length of 1,782 bp, and the contigs were
further assembled into 1,176,527 scaffolds with an N50 of 3,920 bp. The total length of the assembled scaffold
sequences was 2.0 Gbp, and 134,652 single-locus SSRs were identified from 375,180 SSRs. Among these developed
single-locus SSRs, trinucleotide motifs were the most abundant, followed by tetra-, di-, mono-, penta- and
hexanucleotide motifs. The most common motif repeats for the various types of single-locus SSRs have a tendency
to be A/T rich. A total of 1,790 developed in silico single-locus SSR markers were chosen and used in PCR
experiments to confirm amplification patterns. Of them, 1,637 markers that produced single amplicons in twelve
inbred lines were considered putative single-locus markers, and 290 (17.7 %) showed polymorphisms. A further F2
population study showed that the segregation ratios of the 97 developed SSR markers, which showed
polymorphisms between the parents, were consistent with the Mendelian inheritance law for single loci (1:2:1).
Finally, 89 markers were assigned to an A. hypogaea linkage map. A subset of 100 single-locus SSR markers was
shown to be highly stable and universal in a collection of 96 peanut accessions. A neighbor-joining tree of this
natural population showed that genotypes have obviously correlation with botanical varieties.

Conclusions: We have shown that the detection of single-locus SSR markers from a de novo genomic assembly of
a combination of different-insert-size libraries is highly efficient. This is the first report of the development of
genome-wide single-locus markers for A. hypogaea, and the markers developed in this study will be useful for gene
tagging, sequence scaffold assignment, linkage map construction, diversity analysis, variety identification and
association mapping in peanut.
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Background
Peanut or groundnut (Arachis hypogaea L.), belonging to
the legume genus, is an important oil, food, and feed crop
and is cultivated in more than 100 countries. The annual
planting area of peanuts is approximately 21.8 Mha world-
wide, with an annual production of 38.6 Mt (http://faos
tat.fao.org/faostat/collections?subset=agriculture 2011).
The peanut production and consumption in China account
for approximately 40 % of the worldwide rates, and peanut
export from China has accounted for more than 30 % of
the global trade since 2001 (http://zzys.agri.gov.cn/nongqin
g.aspx). Over 50 % of Chinese peanuts produced are
crushed for extraction of oil, and peanut oil accounts for
25 % of the total domestic vegetable oil, second only to
rapeseed oil. The peanut holds an important status and
substantial efforts have been made to develop various types
of molecular markers in recent years, such as restriction
fragment length polymorphisms (RFLPs) [1, 2], random
amplified polymorphic DNAs (RAPDs) [3–5], amplified
fragment length polymorphisms (AFLPs) [6, 7], simple se-
quence repeats (SSRs) [8, 9], insertions/deletions (INDELs)
[10], and single nucleotide polymorphisms (SNPs) [11, 12].
These markers were developed for genetic linkage mapping
[13, 14], genetic diversity studies [9, 15, 16], and for use in
plant breeding programs [10, 17]. Although many efforts
have been performed by several research groups around the
world, genetic research and molecular breeding of this
plant lag behind those of other crops, such as rice, wheat
and rape. Lack of the tools for ideal molecular markers and
genomic resources are important factors hampering the
development of genetic research and molecular breeding of
peanut.
Single-locus markers have many advantages in molecu-

lar genetics and breeding studies compared with multi-
locus markers [18–20]. The alleles of single-locus markers
can be assigned to particular genomic loci in diversity ana-
lyses, preventing problems of extensive genome duplica-
tion and homology within and between different genomes
caused by multi–locus markers of polyploidy [21, 22]. A
series of diversity parameters can be calculated more
accurately for single-locus markers than multi-locus
markers, such as the number of alleles, allele frequency
and polymorphism information content (PIC) [22]. Mo-
lecular markers with only a single-locus can yield accurate
genotyping and are more suitable for the subsequent ana-
lysis of population structure and linkage disequilibrium
(LD), while the genotyping of multi-locus markers is
always ambiguous, increasing errors and making these
analyses difficult.
Among the various types of molecular markers, SSRs

have become the most widely used in genetic maps, gene
mapping and marker-assisted selection (MAS) because of
their relative abundance, good reproducibility, highly poly-
morphic nature, codominant inheritance pattern and

random distribution in the genome [23, 24]. Based on
their locations in the genome, SSR markers are generally
divided into genomic SSRs and genic SSRs (or expressed
sequence tag (EST)-SSRs) [25]. The usual protocol for the
development of genomic SSRs has been the generation of a
small-insert genomic library, subsequent hybridization with
probes, and the sequencing of candidate clones [26–28].
This process is costly, technically complex, time con-
suming, and labor-intensive. The development of
next-generation sequencing (NGS) technologies cap-
able of quickly and inexpensively producing millions
of short (50–150 bp) DNA sequence reads has prompted
the use of sequence information for the identification of
SSR markers [29–31]. At present, using NGS technology,
the SSR markers developed are often genic SSRs based on
transcriptional assemblies [32–34]. However, the genic
SSRs developed are derived from coding regions that are
usually conserved, leading to lower polymorphism in com-
parison with genomic SSRs. The development of poly-
morphic genic SSRs requires more experimental screening
work, increasing the cost of primer synthesis and wasting
resources and time. For species without a reference
genome sequence, the sequencing of a combination of
libraries and assembly of DNA sequences may represent
an effective approach to developing markers, even single-
locus SSR markers, by genome survey sequencing [35].
Combining libraries with genomic DNA inserts of differ-
ent sizes, thereby randomly breaking long DNA mole-
cules, may provide not only more complete coverage of
the genome but also the necessary information for genome
assembly [36, 37], because with the random positioning of
fragments on the source DNA, a majority of which overlap.
The development of genomic markers using this method
has many advantages: it is high-throughput, fast, and results
in a relatively high polymorphism rates. Markers derived
from de novo DNA assemblies can also exhibit improved
accuracy and avoid some instances of amplification failure
from the transcriptome assembly due to the location of
primers in intron splicing sites, which would produce pri-
mer binding sites separated by genomic introns.
Peanut is an allotetraploid (2n = 4 × = 40, AABB) with

a large genome (~2.7 Gbp). Because of the lack of gen-
omic information, much effort in recent years has still
been focused on developing markers for peanut genetics
[12, 14, 26, 38–45], with very little development of
single-locus markers. In the process of constructing a
consensus genetic map of the markers mapped in ten
RILs and one BC mapping populations, a set of 58
single-dose SSR markers, which consistently amplified
only one locus in the A or B sub-genome, was used to
identify the sub-genomic origin of each linkage group,
and 879 markers were eventually integrated into the
map [46]. Zhou et al. [11] constructed a SNP-based
linkage map that developed SNP markers using read
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mapping uniqueness to the consensus sequences as a
filtering criterion. Consequently, the SNP markers on
this map are for single loci in the AABB genome. Many
existing SSR markers for the allotetraploid peanut are
multi-locus because of polyploidy, and the amplified
multiple fragments or loci may introduce many prob-
lems in population genetic studies. Single-locus markers
can effectively avoid the issues caused by multi-locus
markers. Therefore, it is attractive to develop genomic
single-locus SSR markers in A. hypogaea for better appli-
cation in genetic and breeding studies.
Here, four libraries were constructed and sequenced on

the HiSeq 4000 platform. A de novo assembly of the DNA
sequences was employed to specifically develop single-
locus SSR markers in a genome-wide survey. A total of
134,652 single-locus SSR markers were developed, and
their characteristics were analyzed. To validate the devel-
oped single-locus markers, some of them were evaluated
by PCR-based amplification of twelve cultivated accessions,
one F2 mapping population and one natural population.

Results
DNA sequencing and de novo genome assembly
The libraries with insert sizes of 270 bp, 500 bp, 2 Kbp
and 5Kbp were sequenced with an Illumina HiSeq 4000
platform (Table 1). Massively parallel Solexa sequencing
of the combination of libraries generated ~308 Gbp of raw
data containing 2,056,876,970 paired-end reads, with each
read being ~150 bp in length. After filtering and correc-
tion of the sequence data, a total of ~237 Gbp of clean
data were obtained, with 1,675,631,984 high-quality reads
and approximately 87.8 × coverage of the estimated 2.7
Gbp genome (Table 1).
The program SOAPdenovo and all of the clean reads

were used to generate a de novo assembly. This assembly
included 2,102,446 contigs with an N50 of 1782 bp
(Table 2). The majority of the contigs were in the range of
201–1000 bp (57.1 % of the contigs), and the longest con-
tig length was 310,739 bp (Table 2). For scaffold assembly,
only scaffolds greater than 200 bp in length were further
analyzed. A total of 1,176,527 scaffolds were generated
corresponding to 2.0 Gbp with an N50 length of 3,920 bp
(Table 2). The length of the scaffolds varied from 200 bp
to 576,627 bp, with an average of 1,693 bp; 360,557

scaffolds were longer than 2 Kbp and 9,448 scaffolds were
longer than 10 Kbp (Table 2). The assembled genome size
was ~2.0 Gbp, covering 73.6 % of the estimated 2.7 Gbp
genome size. The GC content of the de novo assembled
genome was 38.1 %.

Development and characterization of genome-wide
single-locus SSR markers
The development of single-locus SSRs was based on all of
the sequences from the 2.0 Gbp de novo genome assem-
bly. We identified motif characters using the PERL5 script
MIcroSAtellite [47] and designed primer pairs from the
flanking sequences of the identified motifs using Primer3
software [48, 49]. Then, we aligned the primer pairs to the
assembled scaffolds and found only one copy numbers as
single-locus SSRs. Ultimately, 375,180 SSRs were found
and 134,652 single-locus SSRs (Additional file 1: Table S1)
were identified from them. The percentage of single-locus
SSRs was 35.89 %. The frequency was 67.7 single-locus
SSRs per Mb or one single-locus SSR per 14.8 Kbp. The
ratio of single-locus SSRs from genetic to those from
intergenetic regions was 11.2 % (13511/121141), and the
ratio of non-selected SSRs from genetic to those from
intergenetic regions was 14.6 % (47735/327441).
For all of the developed genomic single-locus SSR

markers, a total of 155,665 motifs were found that were
classified as mono- to hexanucleotide repeat types (the
compound repeats were divided into corresponding
nucleotide repeat types) (Table 3). The motif repeat num-
ber ranged from 3 to 146, and the repeat length was an
average of 17.5 bp (Table 3). The trinucleotide repeat was
the most abundant motif type, with 42,233 markers, ac-
counting for 27.1 % of the total developed single-locus
SSRs. The tetranucleotide motif also occurred at a high
frequency of 26.5 %. The hexanucleotide motif had the
lowest frequency of 3.9 % (Table 3). The investigation of
nucleotide composition characteristics showed that A
(95.1 %), AT (54.0 %), AAT (33.9 %), AAAT (37.7 %),
AAAAT (29.3 %) and AAAAAT (13.7 %) were the most
common motifs corresponding with the mono- to hexa-
nucleotide repeats, respectively, suggesting that the SSRs
have a tendency to be A/T rich in the peanut (Table 3).
For each motif type, motif abundance decreased as the
motif repeat number increased (Fig. 1). The slowest rate

Table 1 Summary of sequencing data

Library insert-size No. of raw reads Total length (bp)
of raw reads

No. of high-quality
reads after filtering

Total length (bp) of
high-quality reads

270 bp 855,464,570 128,319,685,500 714,934,076 101,712,765,895

500 bp 543,665,696 81,549,854,400 401,580,046 55,276,499,395

2 Kbp 422,214,574 63,332,186,100 363,241,962 52,076,474,416

5 Kbp 235,532,130 35,329,819,500 195,875,900 28,017,291,974

Total 2,056,876,970 308,531,545,500 1,675,631,984 237,083,031,680
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of decrease was for the dinucleotide motifs, and the fastest
rate was for the hexanucleotide motifs (Fig. 1).

Validation and polymorphism detection of single-locus
SSR markers in twelve inbred lines
To test whether the in silico developed SSR markers are
single-locus, 1,790 SSR markers were selected to amplify
the genomic DNA of 12 inbred lines (Additional file 2:
Table S2). A total of 1,687
markers produced clear fragments, of which 1,637
(97.0 %) displayed a single amplicon, 32 (1.9 %) dis-
played two amplicons, and 18 (1.1 %) displayed three or
more amplicons (Table 4). Of the 1,637 putative single-
locus SSR markers, 290 (17.7 %) showed polymorphisms
(Table 4, Additional file 2: Table S2).
We also investigated whether the motif type, repeat

length and repeat number influence the polymorphism
rate of single-locus SSR markers. As shown in Fig. 2a,
the highest polymorphism rate was observed for the di-
nucleotide motifs (36.8 %), with compound motifs also
showing a high rate of 31.5 %, followed by mono-
(16.7 %), tri- (12.0 %), tetra- (4.3 %) and pentanucleotide
motifs (4.0 %), while the lowest rate was observed for
hexanucleotide motifs (1.5 %). This tendency shows that
the rate of polymorphism decreases as the motif length
increases, with the exception of mononucleotide motifs.
No obvious relationship between the polymorphism rate
and repeat length was found. Further investigations of
the polymorphism rate and repeat number revealed that
the maximum polymorphism rate of the developed SSR
markers was 46.4 %, corresponding to a repeat number
of 11. When the repeat number was less than 11, a basic
trend was that the polymorphism rate tended to increase
as the motif repeat number increased (Fig. 2b).

Evaluation of inheritance and assignment of single-locus
SSR markers to the linkage map
To confirm whether the developed markers amplifying a
single amplicon are truly inherited in a single-locus
mode, as well as to assign them to the Arachis linkage

map, 101 high-quality markers that produced only single
amplicons in the twelve inbred lines and also showed
polymorphism between Zhonghua10 and ICG12625
were used for their F2 population survey. Of the 101
markers, 97 (96.0 %) segregated in the F2 population in
accordance with the Mendelian inheritance law for sin-
gle loci (1: 2: 1, P < 0.01); thus, these single-locus
markers were thought to be true. Because segregation dis-
tortion is a common biological phenomenon in analyses
of the genetic localizations of hybrid segregating popula-
tions [50–52], the 4 distorted markers (AHGA331177,
AHGA193642, AHGA75014, AHGA84019) will be fur-
ther tested for possible single-locus nature in subsequent
research.
To assign these single-locus SSR markers to a linkage

map, our previously published map for the F2 population
derived from Zhonghua10 and ICG12625 was used as a
basic frame [53]. We integrated the genotypes of these
markers with previously published SSR markers. Finally,
a linkage map showing the distribution of 504 SSR
markers into 21 linkage groups was constructed, cover-
ing a distance of 1,504.31 cM (Fig. 3). A total of 87
(86.1 %) of the 101 single-locus SSR markers were inte-
grated onto the map, of which 47 (54.0 %) were assigned
to the A genome and 40 (46.0 %) to the B genome. The
87 single-locus markers were distributed among all of
the linkage groups, with A04, at 10 single-locus markers,
containing the largest number of the identified markers.

Stability and universality of polymorphic single-locus SSR
markers in A. hypogaea
To confirm whether the polymorphic single-locus
markers tested in the 12 inbred lines are also stable and
universal in more diverse lines and to test usage of the
markers in DNA fingerprinting and diversity analyses,
we used a population, including a set of 96 A. hypogaea
accessions (Additional file 3: Table S3), for genotyping.
A total of 100 markers were randomly selected from the
polymorphic single-locus SSR markers tested in the 12
inbred lines to amplify the DNA template of this natural
population, including the 4 markers with skewed segre-
gation in the above F2 population. A total of 95 markers
displayed single alleles in more than 95 % of the lines, 3
displayed single alleles in 90 %–95 % of the lines, and 2
displayed single alleles in 80 %–90 %. Furthermore, the
observed heterozygosity (Ho) value at each locus was cal-
culated. The Ho values of the chosen SSR markers varied
from 0 to 0.10 with a mean of 0.01, approaching 0 and
maintaining consistency with the genomic characteristics
of the inbred lines (Table 5). Among them, the Ho value
of 74 (74 %) loci was 0, indicating that these inbred lines
were homozygous at these loci. The remaining 26
markers each detected very few heterozygous lines and
had a Ho value ranging from 0.01 to 0.10. Notably, that

Table 2 Statistics of de novo assembly results

Contig Scaffold

Size (bp) Number Size (bp) Number

N50 1,782 - 3,920 -

Longest 310,739 - 576,627 -

Total size 1,752,933,618 - 1,987,916,087 -

Average 835 - 1,693 -

Total number - 2,102,446 - 1,176,527

Total number
(≥2 kb)

- 171,497 - 360,557

Total number
(≥10 kb)

- 4,709 - 9,448
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the 4 markers that show skewed segregation in the F2
mapping population all appeared as single alleles in
more than 95 % of the lines, suggesting that they were
also single loci. All of the selected markers appeared as
single alleles in most of the A. hypogea accessions, ex-
cept for very few multi- or null loci, suggesting that the
SSR markers have a universal single-locus nature in the
peanut panel.
To ascertain the potential value of the polymorphic

single-locus markers in genetic studies, their genetic

Table 3 The distribution of different types of single-locus SSRs
identified

Motif Number
(%1, %2)

Repeat
number

Total length
(bp3, %4)

Average
length (bp5)

Mono 25 224 (16.2, 100) 12–146 650 581 (23.9) 25.8

A 23 979 (15.4, 95.1) 12–146 630 491 (23.2) 26.3

C 1 245 (0.8, 4.9) 12–145 20 090 (0.7) 16.1

Di 25 460 (16.4, 100) 6–106 501 652 (18.4) 19.7

AT 13 757 (8.8, 54.0) 6–54 232 732 (8.6) 16.9

AG 8 693 (5.6, 34.1) 6–97 209 942 (7.7) 24.2

AC 2 739 (1.8, 10.8) 6–106 55 622 (2.0) 20.3

CG 271 (0.2, 1.1) 6–9 3 356 (0.1) 12.4

Tri 42 233 (27.1, 100) 4–67 672 066 (24.7) 15.9

AAT 14 329 (9.2, 33.9) 4–67 275 664 (10.1) 19.2

AAG 9 709 (6.2, 23.0) 4–49 140 004 (5.1) 14.4

AAC 3 937 (2.5, 9.3) 4–32 57 747 (2.1) 14.7

ACT 2 601 (1.7, 6.2) 4–48 38 688 (1.4) 14.9

AGT 2 586 (1.7, 6.1) 4–51 38 715 (1.4) 15.0

CCG 2 337 (1.5, 5.5) 4–9 29 151 (1.1) 12.5

AGG 2 327 (1.5, 5.5) 4–61 34 473 (1.3) 14.8

ACC 2 316 (1.5, 5.5) 4–29 31 248 (1.1) 13.5

ACG 1 069 (0.7, 2.5) 4–11 13 491 (0.5) 12.6

AGC 1 023 (0.7, 2.4) 4–16 12 885 (0.5) 12.6

Tetra 41 309 (26.5, 100) 3–43 535 760 (19.7) 13.0

AAAT 15 583 (10.0, 37.7) 3–13 205 212 (7.5) 13.2

AATT 6 035 (3.9, 14.6) 3–8 76 076 (2.8) 12.6

AAAG 5 491 (3.5, 13.3) 3–16 71 208 (2.6) 13.0

AAAC 1 949 (1.3, 4.7) 3–9 24 192 (0.9) 12.4

ACAT 1 554 (1.0, 3.8) 3–43 23 452 (0.9) 15.1

AATC 1 372 (0.9, 3.3) 3–9 17 364 (0.6) 12.7

AACT 1 319 (0.8, 3.2) 3–9 16 892 (0.6) 12.8

AATG 890 (0.6, 2.2) 3–9 11 204 (0.4) 12.6

AAGT 861 (0.6, 2.1) 3–6 10 716 (0.4) 12.4

AGAT 841 (0.5, 2.0) 3–18 11 760 (0.4) 14.0

others 5 414 (3.5, 13.1) 3–14 67 684 (2.5) 12.5

Penta 15 399 (9.9, 100) 3–10 243 955 (9.0) 15.8

AAAAT 4 505 (2.9, 29.3) 3–10 71 830 (2.6) 15.9

AAAAG 1 563 (1.0, 10.2) 3–8 24 885 (0.9) 15.9

AAATT 1 114 (0.7, 7.2) 3–6 17 355 (0.6) 15.6

AATAT 622 (0.4, 4.0) 3–8 9 825 (0.4) 15.8

AAGAT 582 (0.4, 3.8) 3–6 9 130 (0.3) 15.7

AATAG 546 (0.4, 3.5) 3–10 8 630 (0.3) 15.8

others 6 467 (4.2, 42.0) 3–8 102 300 (3.8) 15.8

Hexa 6 040 (3.9, 100) 3–20 115 266 (4.2) 19.1

AAAAAT 829 (0.5, 13.7) 3–16 15 516 (0.6) 18.7

AAAAAG 527 (0.3, 8.7) 3–7 9 906 (0.4) 18.8

AAAATT 387 (0.2, 6.4) 3–6 7 200 (0.3) 18.6

Table 3 The distribution of different types of single-locus SSRs
identified (Continued)

AAATAT 184 (0.1, 3.0) 3–5 3 456 (0.1) 18.8

AATCCT 182 (0.1, 3.0) 3–6 3 396 (0.1) 18.7

others 3 931 (2.5, 65.1) 3–20 75 792 (2.8) 19.3

Total 155 665 (100, −) 3–146 2 719 280 (100) 17.5

%1, the number of each nucleotide repeat accounted for the percentage of all
motif number
%2, the number of each nucleotide repeat accounted for the percentage of all
number of corresponding motif type
bp3, the total motif length of each nucleotide repeat type
%4, the total motif length of each nucleotide repeat type relative to the total
motif length of all nucleotide repeat types
bp5, the total motif length of each nucleotide repeat type/the total number of
nucleotide repeat types

Fig. 1 Motif frequency distributions of mono- to hexanucleotide
motif types with different repeat numbers (from 3 to >20) in the
de novo assembled genomic sequences of A. hypogaea
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diversity in the 96 inbred lines was investigated. The 100
SSR markers generated 428 alleles (Table 5). The numbers
of alleles varied from two to eighteen with a mean value of
4.28 per locus (Table 5). The PIC values of the 100 single-
locus SSR markers varied from 0 to 0.86, with a mean of
0.33 (Table 5). The phylogenetic relationships of the 96 ac-
cessions were assessed using the 100 SSR markers by con-
structing a neighbor-joining tree (Additional file 4: Figure
S1). At a similarity coefficient ≥ 0.81, the largest subgroup
consisted of 39 accessions, 69.2 % of the accessions were
ssp. hypogaea (including 23 var. hypogaea and 4 var.
hirsute accessions), 15.4 % accessions were spp. fastigiata
(including 5 var. vulgaris and 1 var. fastigiata accessions),
and 15.4 % accessions were intermediate type (Additional
file 4: Figure S1; Additional file 3: Table S3). The second-
largest group included 31 accessions, 96.8 % of the acces-
sions were spp. fastigiata (including 27 var. vulgaris and 3

var. fastigiata), and 3.2 % accessions were spp. hypogaea
(including 1 var. hypogaea accession) (Additional file 4:
Figure S1; Additional file 3: Table S3). At a similarity value
of 0.76, a little subgroup includes 8 accessions and the
number of spp. hypogaea and spp. fastigiata were each
half (Additional file 4: Figure S1; Additional file 3: Table
S3). In spite of a small amount of discrepancies, our
results indicate that the botanical varieties of the acces-
sions in this study obviously correspond with the genetic
distances between accessions and as a result the genetic
relationships among them.

Discussion
SSRs are tandem repeats of short nucleotide motifs with a
polymorphism of a certain length that are spread through-
out the genome. SSRs are highly versatile, PCR-based
markers that are usually associated with a high frequency
of length polymorphism; thus they have a wide range of
applications in genetic research and molecular breeding.
However, many studies have revealed that the developed
SSR markers usually amplify multiple fragments from
homologous DNA sequences, because of the polyploid
natures of many species [27, 54]. The multi-locus nature
of SSR markers can complicate or cause errors in geno-
type scoring due to the reciprocal overlapping and uncer-
tain allelism of these fragments [22]. Single-locus SSR
markers can avoid this type of problem and are considered
ideal markers for topics such as diversity analysis, variety
identification and association analysis. Sets of high-quality
single-locus SSR markers have previously been developed
in plants such as potato, barley, rape, maize and grape
[22, 55–58]. In our study, we developed 134,652 single-
locus SSR markers for peanut. To our knowledge, this is
the first report of the specific development of single-locus
SSR markers in a genome-wide survey of A. hypogaea.
The combination of library sequencing and de novo

assembly represents a fast and reliable approach for the
generation of large datasets for peanut and also allows
for the identification and development of single-locus
SSRs through data mining. For assembly, the combin-
ation of libraries with different insert sizes could im-
prove contig scaffolding much more effectively than the
increasing of the physical coverage for a single insert
library [59]. We generated four libraries with different
insert sizes, including two libraries produced with mate
pair sequencing and two short fragment insert libraries
that were prepared in a separate experiment. Both ends
of 150 bp reads from the four libraries could produce
overlapping of the sequenced fragments and generate
elongated reads. Insert sizes of 2 Kbp and 5 Kbp were
more efficient than short-insert libraries (270 bp and
500 bp) because of their abilities to bridge the longer
and more abundant long interspersed nuclear elements
(LINE) and long terminal repeat (LTR) elements [37, 59].

Table 4 Amplification patterns of the 1,790 developed SSR
markers in the 12 inbred lines

Primer
synthesized

Amplified
primers

Single
amplicon

Polymorphic
primers of
single
amplicon

Two
amplicons

Three or
more
amplicons

1,790 1,687 1,637 290 32 18

Fig. 2 Relationship of the polymorphism rates of putative single-
locus markers to the motif type (a) and repeat number (b)
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Fig. 3 Distribution of single-locus SSR markers on the genetic linkage map. The map was constructed using 154 F2 plants derived from Zhonghua
10 and ICG12625. The single-locus markers developed in this study are shown in boldface and are underlined. The markers are shown on the
right side of the LGs, and the map distances are shown on the left side
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The final assembly had a contig N50 value of 1,782 bp
and a scaffold N50 value of 3,920 bp. The longest scaffold
in the assembly was ~576.6 Kbp, and 360,557 scaffolds
were longer than 2 Kbp (Table 2). The current assembly
of the draft genome is 2.0 Gbp, covering 73.6 % of the esti-
mated 2.7 Gbp total genome size. This is the first report
of de novo genomic assembly of A. hypogaea and it can be
improved by the additional sequencing of larger insert li-
braries to increase the contig and scaffold sizes. In

addition, the data source here will contribute to genomic
research of peanut.
In our study, 134,652 single-locus SSR markers were

identified from 375,180 SSRs. The ratio of single-locus
SSRs from genic to those from intergenic regions (11.2 %)
was lower than the ratio of non-selected SSRs from genic
to those from intergenic regions (14.6 %). This is probably
because peanut is an allotetraploid and the genic regions
are usually conserved, leading to high similarity of

Table 5 The genetic diversity of 100 SSR markers revealed by 96 A. hypogaea accessions

Marker A Ho PIC Marker A Ho PIC Marker A Ho PIC

AHGA46532 8 0.00 0.70 AHGA65330 4 0.00 0.51 AHGA179378 3 0.01 0.28

AHGA164448 3 0.00 0.18 AHGA65333 6 0.01 0.65 AHGA300244 8 0.00 0.68

AHGA362464 2 0.01 0.07 AHGA65348 3 0.00 0.08 AHGA11201 5 0.01 0.51

AHGA362480 3 0.00 0.10 AHGA65349 3 0.00 0.37 AHGA11209 2 0.00 0.11

AHGA362488 2 0.00 0.02 AHGA160420 4 0.01 0.14 AHGA17736 5 0.00 0.12

AHGA362499 5 0.00 0.44 AHGA363105 7 0.01 0.60 AHGA75014 2 0.00 0.22

AHGA40095 2 0.00 0.06 AHGA373365 5 0.00 0.38 AHGA161485 2 0.00 0.06

AHGA40106 2 0.00 0.04 AHGA373382 7 0.01 0.53 AHGA161495 9 0.01 0.79

AHGA40135 8 0.04 0.54 AHGA7413 6 0.00 0.59 AHGA161510 3 0.00 0.39

AHGA54444 2 0.00 0.30 AHGA7429 8 0.01 0.68 AHGA152194 3 0.00 0.40

AHGA79898 3 0.00 0.06 AHGA164129 3 0.00 0.44 AHGA363491 3 0.00 0.54

AHGA36568 2 0.00 0.09 AHGA361225 3 0.00 0.29 AHGA363492 2 0.00 0.37

AHGA38598 4 0.00 0.20 AHGA7048 5 0.00 0.60 AHGA363495 2 0.00 0.37

AHGA38612 2 0.00 0.37 AHGA7051 4 0.00 0.35 AHGA226115 3 0.02 0.38

AHGA170476 6 0.00 0.52 AHGA22885 2 0.00 0.04 AHGA226118 2 0.00 0.09

AHGA176207 2 0.00 0.32 AHGA57727 6 0.00 0.50 AHGA59791 2 0.00 0.11

AHGA176210 2 0.08 0.21 AHGA98567 4 0.00 0.40 AHGA59797 4 0.10 0.12

AHGA220404 17 0.03 0.85 AHGA155736 3 0.00 0.12 AHGA59809 3 0.02 0.36

AHGA220933 2 0.00 0.37 AHGA75538 7 0.01 0.64 AHGA148181 2 0.00 0.11

AHGA331177 7 0.01 0.73 AHGA364906 4 0.00 0.57 AHGA244586 2 0.01 0.30

AHGA354330 12 0.01 0.77 AHGA5481 3 0.00 0.18 AHGA358460 2 0.00 0.37

AHGA354339 3 0.01 0.33 AHGA24894 10 0.00 0.75 AHGA360266 4 0.00 0.41

AHGA9097 4 0.00 0.08 AHGA25786 5 0.00 0.51 AHGA84019 11 0.00 0.86

AHGA9103 5 0.01 0.51 AHGA364915 2 0.00 0.37 AHGA352202 3 0.00 0.40

AHGA9104 5 0.00 0.57 AHGA364920 2 0.00 0.04 AHGA352262 5 0.00 0.36

AHGA44695 4 0.01 0.42 AHGA364936 6 0.00 0.52 AHGA352280 2 0.00 0.13

AHGA68628 4 0.01 0.37 AHGA14239 6 0.00 0.59 AHGA372606 18 0.00 0.81

AHGA68647 4 0.00 0.41 AHGA128473 2 0.00 0.08 AHGA61572 3 0.00 0.36

AHGA265121 4 0.00 0.48 AHGA47958 5 0.01 0.58 AHGA195525 2 0.00 0.36

AHGA362520 2 0.00 0.35 AHGA96458 4 0.00 0.54 AHGA195527 2 0.00 0.02

AHGA193642 7 0.00 0.57 AHGA96466 3 0.00 0.44 AHGA195528 2 0.00 0.04

AHGA193650 7 0.00 0.57 AHGA96491 4 0.01 0.49 AHGA214492 2 0.00 0.09

AHGA65328 2 0.00 0.35 AHGA96496 8 0.00 0.72 Mean 3.85 0.01 0.33

AHGA65329 2 0.00 0.35 AHGA159068 3 0.01 0.47 Total 428 - -

Ho represents observed heterozygosity, A represents number of alleles, PIC represents polymorphism information content
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homoeologous genes or SSR flanking sequences in genic
regions between A and B subgenomes. We developed
single-locus SSR markers using only one copy numbers of
primer pairs to the assembly genome scaffolds as an iden-
tification criterion. The same primer pairs in genic regions
causing by homoeologous between A and B subgenomes
were filtered out in our analysis.
For the developed 134,652 single-locus SSR markers, we

analyzed many important characteristics. Among all of the
motif types, trinucleotide repeats were the most abundant,
accounting for 27.1 % of the total markers. This result
may have occurred because trinucleotide repeats are just
an integration of multiple codons, which do not cause
frameshift mutations [60], and the prevalence of trinucleo-
tide motifs [61] may suppress the other motif types, thus
reducing the incidence of frameshift mutations caused by
nontriplet repeats [62]. Interestingly, the dominant/major
motifs (A, AT, AAT, AAAT, AAAAT and AAAAAT) were
all A/T rich mono- to hexanucleotide motifs in peanut,
which is similar to previous reports on species such as
Brassica napus, rice, and Arabidopsis [54, 63, 64]. From
Fig. 1, we observed that the motifs which have 3 and 4
repeats number displayed higher frequencies, 39.3 and
24.98 %, respectively. The frequency of the motifs which
have 5–10 repeats number was 25.6 and > 20 repeats
number had the frequency of 5.69 %. Moretzsohn et al.
[14] mined 271 SSR markers in the AA genome of Arachis
and performed a similar analysis using a two-dimensional
diagram. In that study, the criteria for SSRs were different;
mono- and hexanucleotide SSRs were not included; 3-
and 4-repeat motifs of di- to pentanucleotide SSRs were
also not included; and the product size extended to
400 bp. Therefore, markers which have 5–10-repeat mo-
tifs were most frequent, followed by > 20-repeat motifs, in
contrast with the results of our survey.
Among the 1,637 selected markers that displayed a sin-

gle amplicon in the twelve inbred lines, 290 (17.7 %)
exhibited polymorphisms. In this study, dinucleotides mo-
tifs had higher rates of polymorphism than those with
other repeat motifs, and the polymorphism rate for the
single-locus SSR markers decreased as the motif length
increased. In an investigation performing genome-wide
SSR characterization of cucumber (Cucumis sativus L.),
similar results were observed: dinucleotides (47 %) were
the most common polymorphic motif, followed by tri-
(29.3 %), tetra- (12.4 %), penta- (4.5 %), hexa- (6.9 %) [65].
This result also corresponded to the SSR mutation rates
of di-, tri-, and tetranucleotide repeats in the genome of
D. melanogaster, which found that tri- and tetranucleotide
repeats mutate at rates 6.4 and 8.4 times slower than that
of dinucleotide repeats, respectively [66]. In addition, we
found that the polymorphism rate of the single-locus SSRs
increases with increasing repeat number. Similar results
have been described for several plant species [54, 67–69].

In Brassica, genome-wide SSR characterization showed
that the polymorphism rate of the tested SSR markers was
highly positively correlated with the motif repeat number
(r = 0.74) [54]. In carrot, SSR analysis revealed a similar
trend between the polymorphism rate and the repeat
number; and markers containing 11–15 repeat units dis-
played the highest polymorphism rates [67]. This relation-
ship is also understandable because larger motif repeat
number give more opportunity for replication slippage
events.
A single-locus SSR marker is revealed by a pair of oligo-

nucleotide primers with tandem repeats of short nucleo-
tide motifs between them and can be used in a PCR assay
to detect unique site in the genome [22]. It is possible to
identify these single-locus markers in DNA sequences
using electronic PCR (e-PCR) by searching for subse-
quences of a query sequence that match the PCR primers
and are in the correct order, orientation, and spacing to be
consistent with the PCR product size [70, 71]. Here, using
e-PCR, we identified a large number of single-locus SSRs
based on the de novo assembled genomic sequences.
Among 1,790 randomly selected in silico single-locus
SSRs, 1,637 were able to be successfully amplified with
only one band. The results demonstrate the high efficacy
of e-PCR for identifying unique SSR loci in peanut.
Single-locus markers are considered to have wide utility

in linkage map construction and genetic analysis of crop
species due to their uniqueness. In our study, 101 high-
quality SSR markers showing polymorphisms between the
parental lines of Zhonghua10 and ICG12625 were experi-
mentally confirmed as single-locus SSRs, and 89 were
finally anchored in a peanut genetic map. Because these
markers were located on specific chromosomes, and
exhibited the characteristics of co-dominance, polymorph-
ism and stable amplification, they can serve as anchor
markers in the construction of genetic maps, thereby
helping with the integration of different linkage groups.
Also, polymorphism screening performed using these
newly developed SSRs will greatly increase the density of
SSR markers in the peanut genetic map in the future. In
addition, a panel of 96 accessions was used to verify that a
subset of 100 SSRs showing polymorphism and one
amplicon in each of the twelve lines were genuinely single
locus. These markers were further investigated for their
potential use in genetic studies by ascertaining their
genetic diversity in the natural population. The 100 single-
locus markers generated 428 alleles with PIC values ran-
ging from 0 to 0.86, with an average of 0.33. A set of 30 0f
the 100 single-locus SSRs markers were highly informative
with PIC > 0.50 (Table 5). The informative markers will be
very useful to accelerate molecular genetics and breeding
studies in cultivated peanut. Peanut consists of two subspe-
cies (ssp. hypogaea and spp. fastigiata) and six botanical
varieties (var. hypogaea, var. hirsuta, var. aequatoriana, var.
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peruviana, var. vulgaris, and var. fastigiata) that are classi-
fied based on the morphological traits of plants collected
from the field [72]. Some accessions that did not belong to
any of these six varieties according morphological assess-
ment were called as intermediate varieties, because these
accessions were probably generated from hybridization
between different varieties. In the phylogenetic analysis of
the 96 peanut accessions, the vast majority of accessions
(89 %) in the two largest groups were from China, and most
of exotic accessions (56.7 %) were not clustered in the two
groups, suggesting the genetic basis of Chinese and exotic
accessions were different. There were only one accession of
var. aequatoriana and no accession of var. peruviana
among the material collected. To enlarge the genetic basis,
more exotic accessions should be used in future peanut
breeding programs.
In many crops, genome-wide patterns of genetic variation

consistently exist among different accessions [73, 74]. Stud-
ies of the seven wild relatives of soybean have revealed that
approximately 80 % of the pan-genome is present in all
accessions (core), whereas the rest show greater variation
than the core genome, perhaps reflecting a role in adapta-
tion to diverse environments [37]. Analysis of resequencing
data of six elite maize inbred lines has revealed more than
1,000,000 SNPs, 30,000 indel polymorphisms and 101 low-
sequence-diversity chromosomal intervals in the maize
genome [75]. In our study, we used de novo assembled gen-
omic sequences of Zhonghua 16 to design single-locus SSR
markers, but a single genome does not adequately represent
the diversity contained within a species. Although we used
unique matching as the criterion for developing SSR
markers, some markers were amplified at more than one
locus in some accessions in the PCR-based experiment.
Among our 1,790 validated markers, 1637 were amplified
at one locus in each of the 12 lines, and 50 were amplified
at more than one locus in at least one line (Table 4). In the
natural population, many SSR markers displayed more than
a single allele in a small number of accessions. The cause of
this phenomenon may be that these loci show homeolo-
gous or heterozygous characteristics in the genomes of
these accessions.

Conclusions
In this study, we developed single-locus SSR markers by
sequencing a combination of libraries and generated a de
novo assembly of the genomic sequences of A. hypogaea
accession Zhonghua 16. Using an e-PCR approach,
134,652 single-locus SSRs were identified by aligning pri-
mer pairs against the assembled 2.0 Gbp sequences. The
validation of a set of developed markers in the twelve
inbred lines, in a more diverse set of 96 accessions and in
an F2 mapping population of 154 individuals shows the
high accuracy of the developed single-locus markers. The
genome wide single-locus SSR markers developed in this

study will provide a useful resource for molecular markers
analyses, linkage map construction, QTL mapping, and
molecular breeding.

Methods
Library preparation and Illumina sequencing
The inbred line Zhonghua 16 was selected on the basis of
its agronomic importance and the self-owned brand. The
cultivar is widely grown in China and is early maturing,
produces a high-yield and is resistant to drought, lodging,
late leaf spot disease and rust. Short-insert (270 bp and
500 bp) and mate-pair (2 Kbp and 5Kbp) genomic DNA
libraries of Zhonghua 16 were constructed. The libraries
were sequenced on a llumina HiSeq 4000 platform. Using
Trimmomatic 0.3 [76], low-quality, contaminant sequences
were trimmed. The following types of reads were filtered:
those 1) with ≥10 % unidentified nucleotides (N); 2)
with >10 nt aligned to the adaptor, allowing for ≤10 %
mismatches; 3) with >50 % bases having a phred
quality of <5; 4) putative PCR duplicates generated by
PCR amplification in the library construction process.

De novo assembly
ErrorCorrection from SOAPdenovo [77] was used to
connect 270-bp library paired-end reads and to generate
longer sequences for assembly. Reads from all libraries
were used for contig building, and 2 Kbp and 5 Kbp li-
braries were used to provide links for scaffold construc-
tion. GapCloser from SOAPdenovo [77] was used for
gap filling within assembled scaffolds using all paired-
end reads. Finally, scaffold sequences, which can be
aligned to bacterial genomes with identity ≥95 % and e-
value ≤1e-5, were filtered out. For identification of po-
tential protein-coding regions in the assembly sequence
we have used the gene prediction programs Fgensh [78].

In silico single-locus SSR development
In silico single-locus SSRs that are developed should not
only accord with the characteristics of SSR markers but
also meet the unique characteristics of the reference gen-
ome. For the identification of SSRs, the PERL5 script
MIcroSAtellite (http://pgrc.ipk-gatersleben.de/misa/) [47]
was used. The motif length was defined as the default
mono- to hexanucleotide, and the minimum repeat num-
bers of the motifs were defined as 12, 6, 4, 3, 3 and 3,
respectively. For designing the primer pairs from the flank-
ing sequences of identified SSRs, the primer3_core program
(http://bioinfo.ut.ee/primer3/) was used [48, 49]. The pri-
mer design parameters were set as follows: primer length of
18–27 nucleotides, melting temperatures of 55–65 °C, GC
content of 30–70 %, and predicted PCR products of 100–
300 bp in length. For identification of the copy numbers,
the primer pairs were aligned to the de novo assembly
genome scaffolds of Zhonghua 16. This alignment was
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conducted using e-PCR [70] with the following default pa-
rameters: 2 bp mismatch, 1 bp gap, 50 bp margin and 50–
1000 bp product size. The SSR markers that hit only one
locus in the de novo assembled genome were considered
single-locus SSR markers. The developed SSR markers were
designated as AHGA (Arachis hypogaea de novo genome
assembly) markers.

DNA isolation, PCR amplification and electrophoresis
Genomic DNA was extracted from tender leaves using
the modified cetyltrimethylammonium bromide (CTAB)
method, essentially as described by Grattapaglia and
Sederoff (1994) [79]. PCR amplification was performed
in a 10 μl PCR reaction volume, containing 15 ng DNA
template, 2.5 μl 2× EcoTaq PCR SuperMix and 4 pM
each of the primers. PCR amplification was performed
with a T100 Thermo Cycler (BIO-RAD) using the fol-
lowing touchdown program profile: 95 °C for 5 min;
95 °C for 30 s, 65 °C for 30 s, and 72 °C for 45 s for 9 cy-
cles, with a reduction in the annealing temperature 1 °C
per cycle; 95 °C for 30 s, 55 °C for 30 s, 72 °C for 45 s, 30 -
cycles; 72 °C for 5 min. The amplification products were
separated by electrophoresis on 6 % denaturing polyacryl-
amide gels and visualized using silver-staining according
to Bassam [80].

Amplification pattern testing in 12 inbred lines, genetic
localization and map construction of an F2 population
The randomly selected 1,790 SSR primers developed in this
study were used to amplify the genomic DNA of the twelve
peanut inbred lines. These lines were used as the parents of
six different mapping populations (Fuchuan, ICG6375,
Zhonghua10, ICG12625, Yuanza9102, Xuzhou68–4,
Zhonghua6, Xuhua13, Zhonghua5, ICGV86699, Chico,
Jihua9331).
The parents ‘Zhonghua10’ and ‘ICG12625’ and 154 of

their F2 progenies were used for genetic localization. The
putative single-locus SSR markers showing high quality
and polymorphism between Zhonghua10 and ICG12625
were selected. Genotyping of the chosen polymorphic
markers was performed on F2 individuals, and the allele
patterns were investigated. Marker segregation was
assessed with the χ2 test to examine whether they segre-
gated as expected (1:2:1).
For the linkage map construction, input datasets were

constructed from the genotypes of 101 AHGA markers in
154 F2 lines and integrated with the genotypes of 497 SSR
markers from our previous studies [53]. The program
JoinMap 4.0 [81] was used to calculate the marker order
and genetic distance and the Kosambi mapping function
was employed for map length estimations. The recombin-
ation frequency was set at ≤ 0.45 and LOD scores at ≥ 2.0.

Validation of single-locus markers in a natural population
A subset of 100 developed polymorphic SSRs with one
amplicon in each of the 12 inbred lines was randomly
selected and a panel of 96 accessions (provided by the-
National Medium-term Peanut Genebank of China)
from China (66), India (24), America (5) and Zambia (1)
was used for stability and diversity analyses. The genetic
statistics based on the population, including the number
of alleles, HO and PIC, were calculated using the Power-
Marker version 3.51 [82]. At a single-locus, Ho was deter-
mined using the following equation:

Ho ¼ 1−
Xn
u¼1

puu

in which puu is the individual frequency with homozy-
gous allele u, and n is the number of alleles. The PIC
value of individual SSR markers was calculated based on
the following formula:

PIC ¼ 1− Σ
n

i¼1
pi

2−2
Xn−1
i¼1

Σ
n

j¼i¼1
pi

2pj
2

" #

in which pi is the ith allele frequency and n is the num-
ber of alleles.
Coefficients of genetic similarity for the 96 cultivated

accessions used in this study were calculated using the
SIMQUAL program of NTSYS-pc Version 2.10 [83]. A
neighbor-joining tree was constructed based on the genetic
similarity matrix with the SHAN clustering program
[84, 85] of NTSYS-pc using the UPGMA algorithm.

Additional files

Additional file 1: Table S1. Details of the identified in silico 134,652
single-locus SSR markers, which were determined based on the de novo
genome assembly sequences of A. hypogaea. The table includes the SSR
loci in the assembly sequences, the expected SSR size, the SSR type,
primer and motif information. (XLSX 17082 kb)

Additional file 2: Table S2. The synthesized 1,790 developed single-
locus SSR markers and their amplified situation. (XLSX 121 kb)

Additional file 3: Table S3. List of 96 A. hypogaea accessions used in
this study. The table includes information about locality, accession code,
subspecies and varieties. The ICRISAT codes, which can correspond to the
accession code in the National Medium-term Peanut Genebank of China,
are presented in parentheses. (XLSX 12 kb)

Additional file 4: Figure S1. Neighbor-joining tree of the genetic
relationships among 96 accessions of A hypogaea. The dendrogram was
generated using the Jaccard similarity coefficient based on 100
polymorphic primer pairs. (JPG 539 kb)
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