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The in-depth characterization of cross-talk between tumor cells and T cells in solid and
hematological malignancies will have to be considered to develop new therapeutical
strategies concerning the reactivation and maintenance of patient-specific antitumor
responses within the patient tumor microenvironment. Activation of immune cells
depends on a delicate balance between activating and inhibitory signals mediated by
different receptors. T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) is
an inhibitory receptor expressed by regulatory T cells (Tregs), activated T cells, and natural
killer (NK) cells. TIGIT pathway regulates T cell-mediated tumor recognition in vivo and in
vitro and represents an exciting target for checkpoint blockade immunotherapy. TIGIT
blockade as monotherapy or in combination with other inhibitor receptors or drugs is
emerging in clinical trials in patients with cancer. The purpose of this review is to update
the role of TIGIT in cancer progression, looking at TIGIT pathways that are often
upregulated in immune cells and at possible therapeutic strategies to avoid tumor
aggressiveness, drug resistance, and treatment side effects. However, in the first part,
we overviewed the role of immune checkpoints in immunoediting, the TIGIT structure and
ligands, and summarized the key immune cells that express TIGIT.
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INTRODUCTION

Solid and hematological malignancies are complex ecosystems that arise from malfunctioning
complex cellular mechanisms controlled by genetic and epigenetic factors that coordinate the cross-
talk between tumor cells and the tumor microenvironment (TME) components. Among the cellular
components of the TME, T cells are the second most abundant cell type after tumor-associated
macrophages (TAMs) (1).

Following the development phase in the thymus, the diverse naïve T cells migrate to the
secondary lymphoid organs, where they remain dormant until they are activated by recognition of
the antigen-human leukocyte antigen (HLA) complex presented by the APC to their TCR
(Figure 1). In addition to antigen recognition by TCR, naïve T cell activation is regulated by
second signals known as co-stimulatory pathways, such as the well-noted CD28–CD80/CD86 and
CTLA4–CD80/CD86 (3, 4). These co-stimulatory pathways have a lot of receptor/ligand pairs, also
called immune checkpoints, which lead to positive signaling events, while other pathways send out
negative signals (5).
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CD28 is constitutively expressed on naïve CD4+ and CD8+ T
cells, while CD80 and CD86 are inducible on APCs. CD28–CD80/
CD86 pathway activates T cell responses. Other stimulatory
immune checkpoints are members of the tumor necrosis factor
(TNF) receptor superfamily (CD27, CD40, OX40, GITR, and
CD137) or the B7–CD28 superfamily (ICOS) (6).

On the contrary, cytotoxic T-lymphocyte-associated protein 4
(CTLA4) is a negative regulatory inducible receptor for CD80/
CD86 and has inhibitory effects on T cell responses, leading to T
cell attenuation and tumor cell immune evasion (7). A
considerable number of inhibitory immunoreceptors have been
identified and studied in tumors, including but not limited to
adenosine A2A receptor (A2AR), B7-H3, B7-H4, programmed
death (PD-1), CTLA4, T cell immunoglobulin domain and
mucin domain 3 (TIM3), T-cell immunoreceptor with
immunoglobulin and ITIM domain (TIGIT), and B and T
lymphocyte attenuator (BTLA) (6, 8).
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Interestingly, the immune system can constrain and promote
tumor development and progression (5, 9, 10). Alterations in
immune checkpoint pathways result in an imbalance of positive
and negative co-stimulatory signals, which increases the risk of
tumorigenesis and its progression. These signals are also
involved in patients’ resistance to immunotherapies (9, 11).

Immune checkpoint inhibitors were developed to block
checkpoints by making T cells free to attack cancer cells. These
therapies are also referred to as checkpoint blockade therapies
and are an emerging and attractive field to treat many cancers,
but they do not work for all patients and can cause serious side
effects (12). The failure of classical antitumor therapies could be
attributed to the fact that most drugs currently in use primarily
target tumor cells and not also TME cells. These cells are different
cell types, including endothelial cells, stromal cells, and immune
cells. Understanding the in situ cross-talk of heterogeneous
tumor cells with various tumor-associated immune cells, such
FIGURE 1 | Representative brightfield images of double IHC for TIGIT and CD8 in a lymph node. Micrographs show TIGIT staining in red, CD8 staining in green,
and the colocalized TIGIT+CD8+ signals in purple. As demonstrated by other authors, the TIGIT+ T cells are preferentially at the periphery of the germinal center (2).
Scale bar: (A) 500 mm; (B) 165 mm.
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as T cells, will provide critical information for improving
anticancer therapies.

The immune checkpoint inhibitors are most efficacious in
patients with a TME enriched in tumor-infiltrating lymphocytes
(TILs) (13). TILs are deputed to tumor immunoediting [“a dynamic
process wherein immunity functions not only as an extrinsic tumor
suppressor but also to shape tumor immunogenicity” (14)].
Immunoediting shapes tumor fate in three steps: elimination,
equilibrium, and escape. The elimination step is the
immunosurveillance step, in which a competent immune system
(innate and adaptive immunity) recognizes and destroys
transformed cells expressing highly immunogenic antigens long
before they become clinically relevant (15).

If some cancer cells evade the elimination step, they will enter
the equilibrium step, in which survived tumor cells and immune
cells mutually edit each other. During this adaptation time, tumor
cells undergo a complex process of natural selection [similar to
that described by Darwin (16)] that presses on tumor cells with
traits that are better suited to the environment than others.

These natural evolution-selected tumor cell variants develop
resistance to elimination and put them in the escape step (17). A
progressive establishment of an immunosuppressive TME
characterizes the escape step (11, 18). This is the final step
when aggressive-selected tumor clones develop diverse ways to
escape the immune system that mimic peripheral tolerance (8,
19, 20): prevent the response of effector T cells, TAMs, natural
killer (NK) cells, and tumor-associated neutrophils (TANs) (21);
down-regulate their HLA (22); induce antigen presentation
defects; el iminate neoantigens; inhibit immune cell
chemoattraction to the tumor site; secrete or promote the
secretion of immunosuppressive cytokines (23); modulate the
recruitment and expansion of immunosuppressive cells, such as
regulatory T cells (Tregs); orchestrate immune cell metabolism
(24); and activate immune checkpoint pathways to inhibit the
emerging antitumor immune response (25).

T cells immunoediting also occurs during tumorigenesis
(26, 27). At first, in order to attack and eliminate tumor cells,
APCs, via CD28-CD80/CD86 pathway, activate T cells, but at the
same time regulate pro-inflammatory mechanisms, activating
inhibitory pathways by immune checkpoints (28). Among
immune checkpoint inhibitors, immediately after TCR
engagement, CTLA4 is upregulated and competes with CD28
to bind to CD80/CD86 on APCs, limiting autoreactive T cells,
decreasing T cell priming and proliferation, inducing immune
tolerance, and preventing autoimmunity (29, 30).

In the immune response, PD-1 is also expressed on activated T
cells, but it acts later and interferes with T cells that have already
been activated (31). When the stimulating antigen is removed,
PD-1 expression on responding T cells decreases, whereas it
remains increased in the opposite scenario. Like CTLA4, the
PD-1–PD-L1/PD-L2 pathway recruits phosphatases to block the
stimulatory signals sent by TCR and CD28–CD80/CD86, resulting
in decreased T cell activation, survival, cytokine generation, and
metabolism (31). Overexpression of PD-1 on tumor cells or by the
cellular component of the TME with its downstream pathway is a
systematic strategy used by malignancies to increase exhausted
Frontiers in Oncology | www.frontiersin.org 3
T cells and to evade immunosurveillance. The fact that PD-1
overexpression happens later means that it will only be
overexpressed and activated once an inflammatory process has
begun (32).

Immune checkpoint activation and an immune infiltrate
enriched in Tregs were identified as the primary tumor escape
mechanisms in a mouse model of hypermutated and
microsatellite-instable colorectal cancer (33). According to the
same study, the expansion of the TCR following PD-1 blockade
potentiates immunoediting (33).

In a subtype of advanced untreated primary colorectal cancer,
immune checkpoints expression has been related to immune
evasion via neo-antigen-related mechanisms (34). This subtype
was called the “stealth subtype,” and immune evasion and poor
prognosis have been associated with less clonal highly expressed
neoantigens (HiNeo), high chromosomal instability, high
immune checkpoint expression (PD-1, PD-L1, PD-L2), low
neoantigen presentation (reduced HLAII), downregulation of
functional CD8+ T cells, and a microenvironment poor in TAMs
and B cells (34, 35).

After T cell activation, also TIGIT expression increases on T
cells, where it competes with CD226 (DNAM-1) for binding to
their shared ligands CD112 and CD155 (36). TIGIT expression is
late in the cancer-immunity cycle. It is highly expressed on
specialized CD4+ subsets, such as Treg and TFH, and lowly
expressed on CD4+ and CD8+ exhausted T cells (37). Moreover,
TIGIT+CD4+ T cells and TIGIT+CD8+ T cells displayed a memory
phenotype (37).

The timing of immune checkpoint activation is currently
under investigation because there is a debate about the
reactivation of primed T cells and/or novel T cells. The former
depends on memory T cells and presumes the existence of pre-
existing cancer-specific T cells that recognize tumor-specific
antigens. The second depends on novel T cells against neo-
antigens and therefore assumes that T cells are primed and
recruited to tumors after the initiation of therapy (38–40). This
topic is interesting in patient stratification for immune
checkpoint blockades therapy since the success of these
therapies relies on antigen processing and presentation (41–43).

In this context, the TIGIT immune checkpoint is emerging as
a promising target for anticancer therapy alone or combined
with other immune blockade therapies (44). The purpose of this
review is to update the role of TIGIT in cancer progression,
looking at last year’s studies about its pathways that are often
upregulated in immune cells and possible therapeutic strategies
to avoid tumor aggressiveness, drug resistance, and treatment
side effects. However, in the first part, we overviewed the TIGIT
structure and ligands, and summarized the key immune cells that
express TIGIT.
OVERVIEW OF TIGIT STRUCTURE
AND LIGANDS

TIGIT is also known as V-set and immunoglobulin domain-
containing protein 9 (VSIG9) or V-set and transmembrane
May 2022 | Volume 12 | Article 871085
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domain-containing protein 3 (VSTM3). Based on UniProt data
resources, two alternatively spliced isoforms have been reported
in humans.

It has an extracellular Ig-like V-type domain, a type I
transmembrane domain, and a cytoplasmic domain with the
immunoreceptor tyrosine-based inhibitor motif (ITIM) (45, 46)
and the immunoglobulin tyrosine tail (ITT)-like motif (45, 47).
ITIM modulates cellular responses by binding the SH2 domain
of several SH2-containing tyrosine phosphatases, SHP1 (48) and
SHP2, when phosphorylated (49).

After the extracellular ligand binding, the ITT-like domain is
phosphorylated at Tyr225, binds the two cytosolic adaptor
proteins Grb2 and b-arrestin2, and recruits the SH2-containing
inositol phosphatase-1 (SHIP-1) that inhibits PI3K/MAPK
signaling (via Grb2) (50) to reduce the NK cell effector
functions (50), and TRAF6/NF-kB signaling (via b-arrestin2)
to inhibit IFN-g production (48).

Different studies show that phosphorylation of the tyrosine
residue in either ITIM- (Y231) or ITT-like (Y225) motif is
essential for signal transduction and the inhibitory function of
TIGIT in humans (48, 50). When both tyrosine residues are
mutated, the inhibitory activity of human TIGIT is completely
lost (51).

TIGIT binds to nectin and nectin-like (NECL) adhesion
molecules, including NECTIN-2 (CD112) (52, 53), NECTIN-3
(CD113) (45, 51), and NECL-5 (CD155) (54) to mediate cell
adhesion and signaling.

TIGIT binds NECL in cis-trans, forming a receptor clustering.
For instance, two TIGIT–CD155 dimers assemble into a
heterotetramer with a core TIGIT–TIGIT cis-homodimer in
which each TIGIT molecule binds one CD155 molecule (47).

CD112 is a cell adhesion protein involved in the modulation
of T cell signaling. Two isoforms, delta and alpha, are annotated
by alternative splicing. Depending on the receptor it binds to,
CD112 can be either a co-stimulator or a co-inhibitor of T cell
function: CD226 binding stimulates T cell proliferation and
cytokine production (IL2, IL5, IL10, IL13, and IFN-g) (55);
PVRIG (also called CD112R) binding inhibits T cell
proliferation (56). These interactions are competitive (57).
CD112 binds with low affinity to TIGIT (46, 52). The TIGIT
binds to CD112 destroys CD112–CD112 homodimer (52) and,
as for TIGIT–CD155, homo- and heterodimers in the
heterotetramer interact by a conserved “lock and key” binding
(52). CD112 is highly expressed in bone marrow, kidney,
pancreas, lung cells, and breast and ovarian cancer (58, 59).

CD113 is another cell adhesion protein that interacts with
nectin and NECL molecules via heterophilic trans-interactions,
such as CD112 at Sertoli-spermatid junctions (60). Through
common signaling molecules such as SRC and RAP1, CD113
trans-interaction with CD155 activates CDC42 and RAC small G
proteins (61). CD113 also establishes cell-cell junctions, such as
adherens junctions and synapses (62, 63). It inhibits cell
movement and proliferation by inducing endocytosis-mediated
downregulation of CD155 on the cell surface (64). CD113
contributes to the morphology of the ciliary body (65). CD113
is highly expressed in the testis, placenta, kidney, liver, and
Frontiers in Oncology | www.frontiersin.org 4
lung (66). CD113, like CD112, has a low affinity for TIGIT, and
their interaction prevents the self-destruction of normal cells by
NK cells (46, 53).

CD155, the primary ligand for TIGIT, is also known as the
Poliovirus receptor (PVR). CD155 has a “lock-and-key” motif
that is essential for TIGIT binding and is highly conserved across
PVR family members (47). CD155 is a glycoprotein with three
extracellular immunoglobulin domains, transmembrane, and
intracellular domains (67). Two splice forms, lacking the
transmembrane region, have also been described as soluble or
secreted isoforms that seem to compete with the membrane-
anchored ones (68, 69). CD155 is highly expressed on CD11c+

human dendritic cells (DCs) (70, 71), macrophages (72, 73), T
(74) and B cells (75), epithelial cells (74, 76), kidneys (76),
nervous system (77), intestine (78, 79), and tumor cells
(80, 81). In vivo, the CD155–TIGIT pathway suppresses
immunological responses increasing IL-10 anti-inflammatory
cytokine (82, 83) and decreasing IL-12 pro-inflammatory
cytokine released by DCs (46, 84). This induces a tolerogenic
phenotype in T cells (85). A more detailed description of the
CD155–TIGIT pathway in cancer is present in the next section.

A new NECL that exclusively binds TIGIT was recently
identified, NECTIN-4 (86). TIGIT binds NECTIN-4 with high
affinity, comparable to CD155 (86). NECTIN-4 is involved in cell
adhesion through trans-homophilic and -heterophilic
interactions, including specific interactions with NECTIN-1
(CD111) (87), does not interact with CD226, CD96, or CD112
(86), and is overexpressed in several tumors of the breast (88, 89),
bladder (90), lung (91, 92), and pancreas (93, 94).
TIGIT PATHWAYS AND IMMUNE
CELLS INVOLVED

TIGIT is expressed by a variety of immune cells. Its expression
and related pathways have been discussed in this section.

In simple terms, TIGIT activation creates a tolerogenic
microenvironment in both cell-intrinsic and cell-extrinsic ways
(resumed in Figure 2 and discussed in the following). This
means that TIGIT competes directly with CD226 for binding
to CD155, CD112, or CD113 ligands in the former way, or that it
is involved in events that indirectly induce immunosuppressive
effects, such as TIGIT’s action on innate immunity cells in the
second way.

CD226 is a member of the immunoglobulin superfamily and
consists of an extracellular region with two IgV-like domains, a
transmembrane region, a cytoplasmic region with ITT, and four
putative tyrosine residues and one serine residue that are
phosphorylated (95). It is mainly expressed on myeloid and
lymphoid cells (96), through which promotes intercellular
adhesion, lymphocyte communication, and lymphokine
production, as well as enhances cellular cytotoxicity
mechanisms (96).

TIGIT–CD155 in CD4+ T cells induces immunosuppression
inhibiting T cell proliferation directly by inducing the down-
expression of T-bet, GATA3, IFN regulatory factor 4 (IRF4), and
May 2022 | Volume 12 | Article 871085
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retinoic acid-related orphan receptor c (RORc), which reduce the
level of pro-inflammatory IFN-g while increasing the level of
anti-inflammatory IL-10 (97).

TIGIT–CD155 in NK cells reduces their cytotoxicity (51, 53),
resulting in impaired granule polarization and IFN-g production
(50, 98). On the contrary, TIGIT blockade restored potent
effector NK cells through CD226–LFA-1 signaling that
increases adhesion to target cells, induces IFN-g production by
naïve CD4+ T cells, and enhances the cytotoxic function of NK
cells (99, 100).

TIGIT–CD155 signaling was also observed in cytokine-induced
killer (CIK) cells expressing CD3 and CD56 molecules (101, 102).
As observed indirectly by Zhang et al., who analyzed the literature
concerning the clinical trial ongoing on renal cell carcinoma
patients enrolled in integrated CIK cell immunotherapy, the
TIGIT blocked enhanced CIK proliferation and the release of
pro-inflammatory cytokines, such as IFN-g, IL-6, and TNF-a (102).

TIGIT–CD155 in CD8+ T cells induces immunosuppression
via the NF-kB signaling pathway, promoting a tolerant state that
is passed down across T cell generation. In this process, CD155+

naïve T cells trans-interact with TIGIT+ preceding tolerant T
cells resulting in increased TIGIT expression and IL-2
suppression via Blimp1 increment (54, 103).

TIGIT–CD155 signaling was also observed in activated
Foxp3+ Tregs, which suppress pro-inflammatory Th1 and
Th17 but not Th2 cells via Akt repression and FoxO1
phosphorylation, IL-10 and fibrinogen-like protein 2
overexpression (104, 105). According to this shift in immunity
Frontiers in Oncology | www.frontiersin.org 5
from Th1 and Th17 to Th2 immunity and IL-10 release, CD226
is expressed on Th1 and Th17, but not on Th2 cells, and in the
former, CD226–CD155 promotes IFN-g and IL-17 production
(106, 107).

Concerning TIGIT-mediated tolerogenic microenvironment
by cell-extrinsic ways, it was observed that TIGIT suppresses T
cell function by enhancing the immunosuppressive function of
DCs and macrophages that express TIGIT ligands such as
CD155 (46, 97, 108, 109).

TIGIT+CD4+ T cells exerted immunosuppressive effects
indirectly by modulating the monocyte‐derived DCs cytokine
production (97). TIGIT of CD4+ T cells interacts with CD155+ of
DCs, modulating the Erk signaling pathway and increasing IL-10
production while decreasing IL-12p40 production and
promoting tolerogenic DCs that suppress T cell responses
(46, 97).

TIGIT was found to play a role in macrophages in an in vitro
pig-to-human xenograft model (84). In this model, TIGIT is
expressed by M2 macrophages but not by M1 macrophages or
endothelial cells. At the same time, CD155 is expressed by both
M1 and M2 macrophages. Here, the immunosuppressive effects
of TIGIT are explained by reduced expression of pro-
inflammatory cytokines, such as TNFa, IL-1b, and IL-12 in
M1 via SHP-1 phosphorylation. In BALB/c mice, TIGIT
immunomodulates CD155+ pro-inflammatory M1 into IL-10-
secreting anti-inflammatory M2 (85).

All of this demonstrates the intricacy of the several targets and
pathways that ani-TIGIT immunotherapies must consider.
FIGURE 2 | Role of TIGIT in the regulation of immune response. TIGIT transmits inhibitory signals via ITIM and immunoglobulin tyrosine tail (ITT)-like motifs in its
cytoplasmic domain when it is engaged. TIGIT has multiple ligands, but it binds with greater affinity to CD155, which is widely expressed by immune cells and tumor
cells. CD155 expressing tumor cells bind to TIGIT expressed by immune cells inducing an immunosuppressive and tolerogenic microenvironment: CD4+ T cells
induce a tolerogenic phenotype in DCs, release the anti-inflammatory cytokine IL-10, and down-regulate INF-g; CD8+ T cells up-express TIGIT and down-regulate
the release of pro-inflammatory cytokine IL-2, which in turn promotes a T cell immunosuppressive phenotype characterized by increase in Foxp3+ Tregs and Th2
compared to pro-inflammatory Th1 and Th17; NKs cytotoxicity is suppressed; and macrophages switch to an M2 anti-inflammatory phenotype. This simplistic view
does not integrate signals from the CD226/CD155 pathway.
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TIGIT IN CANCER PROGRESSION

Immune dysregulation may play a role in cancer progression
(110). TIGIT overexpression has been found in the cellular
microenvironment of several tumors, including lung (111),
kidney (112), liver (113), glioma (114, 115), melanoma (116),
colorectal carcinomas (117), gastric cancer (118), and
neuroblastomas (119). TIGIT expression was found to be
strongly associated with poor prognosis in colorectal cancer
and positively correlated with pathological stages in renal clear
cell carcinoma (120), kidney renal papillary cell carcinoma, and
uveal melanoma (121, 122).

As explained in the introduction paragraph, immune cells
interact with other microenvironment cells and the tumor cells
in a cross-talk that determines the cancer features and
heterogenicity (123, 124). Chronic antigen exposure, which
characterizes the first part of tumorigenesis when tumor cells
become detectable, stresses T cells, causing them to lose their
effector function, become exhausted, and upregulate several
immune inhibitor receptors (IRs) such as TIGIT (125, 126)
(Figure 3). In various cancers, according to computational
analyses, the TIGIT expression profile was related to the
immune infiltration level, coupled with the expression of other
IRs, including LAG3, CTLA4, PD-1, PD-L1, PD-L2, and it is
related to tumor mutation burden (TMB), microsatellite
instability (MSI), mismatch repair (MMR), and DNA
methyltransferases (DNMTs) gene alterations in different
tumors (122). Gene set enrichment analysis (GSEA)
demonstrated a negative association among high TIGIT
expression and cytokine-cytokine receptor interaction,
chemokine signaling pathway, NK-mediated cytotoxicity,
Frontiers in Oncology | www.frontiersin.org 6
allograft rejection, INF-g response, and IL6/JAK/STAT3
signaling (122). On the contrary, a low TIGIT expression was
associated with oxidative phosphorylation and propanoate
metabolism (122).

Blocking the co-expression of IRs appears to be an excellent
arm of immunotherapy. TIGIT co-expression with other IRs has
been widely examined on CD8+ TILs and circulating T cells (116,
127). Li et al. demonstrated that distinct IRs are co-expressed on
CD8+ TILs in T cell exhaustion of primary cancer treatment-
naïve patients comprising breast, kidney, lung, liver, cervical,
esophageal, gastric, and colorectal cancer (128). Almost 50% of
CD8+ TILs were found PD-1+TIGIT+, indicating that TIGIT is
preferentially co-expressed with PD-1 (128). Furthermore, in the
same study for cervical cancer was observed that the advanced T
cell differentiation (CD27–CCR7–CD45RA–) of PD-
1+TIGIT+2B4+TIM3+KLRG-1–CTLA4– CD8+ TILs was
associated with 60% of poorly differentiated cervical cancer
(128). TIGIT mono-expression was also highly present in both
TILs and circulating T cells, and this is probably the cause of the
side effects after systemic treatment with TIGIT blockade (128).

TIGIT and PD-1 high co-expression was observed in PBLs
(peripheral blood lymphocytes), MALs (malignant ascites
lymphocytes), and TILs with increased frequency in tumor
proximity in matched samples of patients at first diagnosis of
ovarian cancer not treated (129). Moreover, the authors also
observed TIGIT and TIM3 co-expression in PBLs, MALs, and
TILs but with a decreased frequency in tumor proximity (129).

Multiple IRs expression, such as PD-1, PD-L1, TIGIT, and
CTLA4, was reported in detail in TILs and circulating T cells in
primary breast cancer and colorectal cancer in which immune
checkpoint expression was correlated with promoter
A B

FIGURE 3 | The complexity of the tumor microenvironment and focus on TIGIT+ cells. Panel (A) shows the major cellular components of the microenvironment that
cross-talk with tumor cells. Panel (B) shows the competition among CD226 and TIGIT to bind their ligands CD112 or CD113 or CD155 expressed by tumor cells or
antigen-presenting cells (APCs) from innate or adaptive immunity. Especially for CD155, the affinity for TIGIT is higher than its affinity for CD226. Thus, the signaling of
the CD155-TIGIT synapse (red arrow) induces immunosuppression rather than effector cell activation and/or cytotoxicity.
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demethylation and post-translational histone modifications
(130–134). For instance, TIGIT in colorectal cancer and TIGIT
plus PD-L1 in colorectal cancer and breast cancer were found
hypomethylated at the gene promoter level (134).

In esophageal squamous cell carcinoma, the analysis of the
RNA-seq dataset from The Cancer Genome Atlas (TCGA)
database and by multiplex-immunohistochemistry reactions on
patient’s biopsies revealed a high expression of PD-L1 with TIM3
or TIGIT (135). This high IRs co-expression was positively
correlated to a greater extent with CD8+ TILs and to a lesser
extent with CD4+ TILs and was associated with poor overall
survival (OS), TNM III/IV stage, and short restricted mean
survival time (RMST) (135).

A TIGIT role in T cell exhaustion was also reported in chronic
lymphocytic leukemia (CLL) (136). By flow cytometric and
transcript expression analysis, Hajiasghar-Sharbaf et al. have
observed a significantly high number of TIGIT+PD-1+CD8+ T
cells (136), PD-1+TIM3+CD8 T cells (137), and PD-
1+TIM3+CD4 T cells (138) in CLL patients compared with
control, particularly in patients with advanced TNM stage.

In both myeloid leukemia and multiple myeloma, using flow
cytometry, the bone marrow resident gd T cells, a T cell
subpopulation of non-MHC-restricted, have shown TIGIT, PD-1,
TIM3, and the ectonucleoside triphosphate diphosphohydrolase-1
(CD39) co-expression at a high level compared to ab T cell but
similar to that expressed on CD8+ effector T cells (139). These
markers were linked to signs of exhaustion, such as transcriptional
reprogramming, decreased release of proinflammatory cytokines,
decreased T cell proliferation, and lesser tumoricidal activity, and
were associated with a lower OS for myeloid leukemia (139, 140).

In relapsed/refractory classic Hodgkin’s lymphoma, a TIGIT-
mediated alternative system of immune escape was demonstrated
to the classic PD-1/PD-L1 (141). TIGIT and PD-L1 were found to
be mutually exclusively expressed and TIGIT+PD-1+CD3+CD4+T
cells surrounding Hodgkin Reed-Sternberg (HRS) cells were
associated with advanced TNM stages (141).

IRs blockades are mainly used for T cells, but also NK cells
could be a valid target for immunotherapy (142, 143). The
expression pattern of immune checkpoints on NK cells isolated
from peripheral blood of patients affected by hepatitis B virus-
related hepatocellular carcinoma (HBV-HCC) revealed a
positive correlation among the co-expression of TIGIT and
TIM3 in exhausted T cells, high rate of tumor progression, and
poor clinical prognosis (144).

In melanoma patients, tumor-infiltrating NK cells were
present at low frequencies in metastatic melanoma, had
downregulated expression of both TIGIT and CD226, and in
vitro experiments had shown their dysfunctional phenotype with
higher lytic potential but lower lytic activity compared with
TIGIT− NK cells against CD155+ MHC class I–deficient
melanoma cells (145). Interestingly, in the same study, TIGIT
blockade as a single treatment failed to reverse NK cells
dysfunction, while together with IL-15 had reversed CD155-
mediated NKs exhaustion and had inhibited experimental
melanoma metastasis in vivo (145).
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Despite their inhibitory effects on T cells, PD-1 and TIGIT co-
expression were described in activated T cells with a cytotoxic
effector phenotype and the CXCR5 overexpression (146–148). In
Merkel cell carcinoma patients, the PD-1+TIGIT+ CD8+ T cells
circulating population was significantly associated with clinical
benefit (146). Moreover, a positive trend, but not significant, was
observed in melanoma patients (146). In both diseases, the
monitoring of PD-1+TIGIT+ CD8+ T cells was proposed as a
predictive biomarker of clinical efficacy for PD-1 blockade (146).

Though under-investigated, TIGIT is also expressed in CD4+

Tregs in association with an increased hypomethylation state
(149, 150). In melanoma patients, increased TIGIT/CD226 ratio
was observed in CD4+ Tregs compared with CD4+ effector T cells
and was associated with highly suppressive TME and poor clinical
outcomes (149). TIGIT hypomethylation was found dependent
by Foxp3. It is a marker of CD4+ Tregs and works as a
transcriptional activator by binding to demethylated sequences
containing a Forkhead-binding motif, as observed in TIGIT,
MIR21, FOXP3, CTLA4, and CD25 (128, 150). Altogether,
these data demonstrated that epigenetic regulators, such as
demethylation inhibitors, together with immune checkpoint
inhibitors, should be considered in new combined therapeutical
approaches, and that the promoter methylation pattern of
immune checkpoints could be a valid prognostic biomarker.

Here, we discern last year’s update concerning TIGIT’s role in
cancer based on PubMed search [for an update concerning
hematological malignances, see the review (144)]. We have also
looked at studies investigating the correlation of TIGIT
expression with the clinicopathological characteristics of such a
tumor (such as grade, stage, and metastasis) to improve clinical
diagnosis, the amount of surgical resection, prognosis
determination, and target therapy. Indeed, a 2021 meta-
analysis of TIGIT expression in the tumor microenvironment
of various solid tumors revealed that it has prognostic value
because it is associated with risk factors for OS and progression-
free survival (PFS) (142). In Table 1, all the clinical trials
evaluating anti-TIGIT immunotherapeutics started in 2021 are
collected, while an in-depth discussion on TIGIT in clinical
development is elegantly presented by Rotte et al. (143). (Note
that there are now “new” cancers as glioblastoma and melanoma
in the clinical trials and not only the “usual” lung cancers. This
will give important clinical data on TIGIT blockade on
different tumors).

Epigenetic modifications more and more play a role in the
upregulation of immune checkpoints in cancer. Through qRT-
PCR, CpG methylation, and repressive histone abundance
experiments, TIGIT was found poorly expressed in primary
breast cancer and adjacent non-cancerous tissues because its
CpG islands at the promoter level were mostly hypermethylated
(80-70%), while CpG islands of PD-L1 and LAG3 promoter were
demethylated at 100% and 80-90%, respectively (130). In another
study, using large-scale transcriptome data analysis of aggressive
breast cancers, TIGIT was found to be highly and specifically
expressed in aggressive breast cancer, and its pro-tumor activities
were linked to immune-related genes (151). An in-depth analysis
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TABLE 1 | Clinical trials evaluating anti-TIGIT immunotherapeutics started in 2021 (accessed on March 14, 2022).

NCT Number Interventstions/Drug Conditions Status Phases Start Date

NCT05251948 Atezolizumab
Capecitabine
Oxaliplatin
Tiragolumab

Gastric and gastroesophageal junction carcinoma Recruiting Phase 1
Phase 2

March 1, 2022

NCT05253105 TAB006
Toripalimab

Previously treated, advanced
malignancies

Not yet recruiting Phase 1 March 15, 2022

NCT05130177 Zimberelimab Domvanalimab Melanoma Not yet recruiting Phase 2 March 2022
NCT05120375 BAT6021 Solid tumor Not yet recruiting Phase 1 Not avilable
NCT05102214 HLX301 Locally advanced or metastatic solid tumors

Non-small cell lung cancer
Recruiting Phase 2 January 2022

NCT05073484 BAT6021
BAT1308

Advanced solid tumor Recruiting Phase 1 October 29, 2021

NCT05060432 EOS-448
Anti-PD1

inupadenant

Advanced cancer
Lung cancer

Head and neck cancer
Melanoma

Recruiting Phase 1
Phase 2

September 6,
2021

NCT05061628 JS006 as Monotherapy
JS006 in combination with

Toripalimab

Advanced tumors Recruiting Phase 1 April 21, 2021

NCT05026606 Etigilimab
Nivolumab

Recurrent fallopian tube clear cell adenocarcinoma
Recurrent ovarian clear cell adenocarcinoma
Recurrent platinum-resistant fallopian tube

carcinoma
Recurrent platinum-resistant ovarian carcinoma
Recurrent platinum-resistant primary peritoneal

carcinoma
Recurrent primary peritoneal clear cell

adenocarcinoma

Recruiting Phase 2 October 1, 2021

NCT05023109 GP+PD-1+Tight Biliary tract carcinoma Not yet recruiting Phase 2 September 1,
2021

NCT05019677 GP+PD-1+Tight Intrahepatic cholangiocarcinoma Not yet recruiting Phase 2 September 1,
2021

NCT05014815 Ociperlimab
Tislelizumab

histology-based chemotherapy
Placebo

Non-small cell lung cancer Recruiting Phase 2 November 16,
2021

NCT05009069 Radiotherapy
Capecitabine
Fluorouracil
Atezolizumab
Tiragolumab

Rectal neoplasms
Rectal Cancer

Not yet recruiting Phase 2 April 30, 2022

NCT04995523 AZD2936 Non-small cell lung carcinoma Recruiting Phase 1
Phase 2

September 14,
2021

NCT04952597 Ociperlimab
Tislelizumab

Concurrent Chemoradiotherapy

Limited stage small cell lung cancer Recruiting Phase 2 July 15, 2021

NCT04933227 Atezolizumab
Tiragolumab
Oxaliplatin

Capecitabine

Stomach neoplasms
Gastric cancer

Gastroesophageal junction adenocarcinoma

Recruiting Phase 2 August 6, 2021

NCT04866017 Tislelizumab
Durvalumab

Chemotherapy
Ociperlimab

Non-small cell lung cancer Recruiting Phase 3 June 17, 2021

NCT04791839 Zimberelimab
Domvanalimab
Etrumadenant

Non-small cell lung cancer
Non-small cell carcinoma
Non-small cell lung cancer

Recruiting Phase 2 August 4, 2021

NCT04761198 Etigilimab dosing
Nivolumab

Solid tumor, adult
Advanced solid tumor
Metastatic solid tumor

Recruiting Phase 1
Phase 2

March 23, 2021

NCT04746924 Tislelizumab
Ociperlimab

Non-small cell lung cancer Recruiting Phase 3 June 8, 2021

(Continued)
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by the same authors revealed that TIGIT expression was
positively correlated with T cells, CD8+ T cells, cytotoxic T
cells, NK cells, B cells, DCs, and macrophages, but negatively
correlated with neutrophils, endothelial cells, and fibroblasts
(151). Furthermore, TIGIT expression was positively correlated
with inflammation and immune response-related genes (LCK,
HCK, MHC-I, MHC-II, STAT1, and interferon) (151).
Accordingly, TIGIT expression seems closely related to higher
malignant pathological types of breast cancer and might be a
potential biomarker of breast cancer progression.

The role of epigenetics in TIGIT expression and
immunotherapeutic sensitivity was also uncovered in gastric
cancer. Increased TIGIT expression in gastric cancer appears
to be a favorable event (152). TIGIT expression correlates with
an active immune landscape, survival and immunotherapeutic
sensitivity, and favorable prognosis, according to a
bioinformatics-guided analysis. Patients with high TIGIT
expression respond better to immunotherapy than those with
low TIGIT expression (152).

The role of TIGIT in cancer progression was updated in
bladder cancer. The failure of the antitumor immune response in
bladder cancer was attributed to a subset of TIGIT+ Treg cells
overexpressing interleukin IL-32 using single-cell sequencing
technology on tissue and experiments in a mouse model (153).
In support of this, the same study found that anti-TIGIT
monoclonal antibodies, when used alone, have a dual effect:
they boost the antitumor activities of T cells while decreasing
IL-32, which in turn inhibits bladder cancer metastasis (153).
Furthermore, in muscle-invasive bladder cancer, the worst
clinical outcomes were attributed to a suppressive TME
characterized by Th2 cells, Tregs, mast cells, neutrophils, and
exhausted TIGIT+CD8+ T cells with low tumoricidal capacity
that benefited from anti-PD-L1 and anti-TIGIT immunotherapy
(154, 155). However, in patients with stage II of muscle-invasive
bladder cancer with low TIGIT+ CD8+ T cell infiltrate, adjuvant
chemotherapy prolongs their OS and recurrence-free survival
(RFS) (155). Therefore, TIGIT+ T cells have a prognostic role in
Frontiers in Oncology | www.frontiersin.org 9
clinical outcomes in bladder cancer and seem to be a predictive
biomarker for inferior adjuvant chemotherapy responsiveness.

The CD155–TIGIT pathway suppresses the immune system at
different levels in colorectal cancer. In colorectal cancer patients
and mouse models, the TME is populated by exhausted
TIGIT+CD8+ T cells with co-expression of other IRs and low
levels of pro-inflammatory cytokines (IFN-g, IL-2, TNF-a) (103,
156). Furthermore, high TIGIT expression was linked to advanced
disease, early recurrence, and lower survival rates (156), and with
advanced TNM stage and better disease-free survival (DFS) in
colorectal cancer patients with mismatch repair deficiency (157).
Another study discovered a higher TIGIT+CD3+ T cell
subpopulation in the peripheral blood and cancer tissue of
colorectal cancer patients than in healthy donors (121).
TIGIT+CD3+T cells were exhausted cells with decreased
proliferation, cytokine production, and glucose metabolism (121).
TIGIT blockade, combined with PD-1 blockade, reversed these
pro-tumorigenic features in the human MC38 colorectal xenograft
mouse model. According to this data, GSEA computational
analysis revealed that TIGIT expression in colorectal cancer
drives the negative regulation of cytokine-cytokine receptor
interaction pathway, chemokine signaling, and cytotoxic function
of NK cells (122). In vitro studies have revealed that CD155–TIGIT
pathway suppresses the downstream effector NF-kB, which is
usually involved in the production of IFN-g by NK cells, which
in turn would activate cytotoxic CD8+ T cells (103). On the
contrary, the same authors demonstrated that knocking out
CD155 in colorectal cancer cells promotes the effector function
of tumor-infiltrating CD8+ T cells, and inhibition of the CD155–
TIGIT pathway suppresses the tumor growth in an in vivo mouse
model. Overall, TIGIT+ cells in colorectal cancer were linked to
advanced disease, early recurrence, and lower survival rates (103).

In pancreatic cancer, the CD155–TIGIT pathway suppresses
immunity and promotes immune evasion (158, 159). The cancer
progression of a subset of patients with pancreatic
adenocarcinoma in metastatic/advanced stages was related to
high-affinity MHC-I-restricted neoepitopes expression and
TABLE 1 | Continued

NCT Number Interventstions/Drug Conditions Status Phases Start Date

Pembrolizumab
Placebo

NCT04736173 Zimberelimab
Domvanalimab
Carboplatin
Pemetrexed
Paclitaxel

Non-small cell lung cancer
Nonsquamous non-small cell lung cancer
Squamous non-small cell lung cancer

Lung cancer

Recruiting Phase 3 February 1, 2021

NCT04732494 Tislelizumab
Ociperlimab
Placebo

Esophageal squamous cell carcinoma Recruiting Phase 2 March 31, 2021

NCT04693234 Tislelizumab
Ociperlimab

Cervical cancer Active, not
recruiting

Phase 2 March 3, 2021

NCT04672356 IBI939
Sintilimab

Advanced lung cancer Recruiting Phase 1 January 25, 2021

NCT04656535 AB122
AB154
Placebo

Glioblastoma Recruiting Early
Phase 1

April 21, 2021
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exhausted TILs in the intratumoral compartment. Functional
studies using orthogonal preclinical models revealed a
synergistically antitumor response when TIGIT/PD-1 co-
blockade was combined with CD40 agonism because they had
been reinvigorated tumor-reactive T cells (158).

TIGIT+ immune cells were also shown to play a role in cancer
invasion and metastasis in esophageal carcinoma. A transcriptomic
profile investigation followed by immunohistochemistry validation
has identified the allograft inflammatory factor 1 (AIF1) gene as an
unfavorable prognostic factor in this carcinoma and demonstrated
that it is associated with immune infiltrates (160). In the tumor
infiltrate, T cells and NK cells are affected by AIF1, which promotes
TIGIT expression, and hence induces or strengthens
immunotherapy resistance sustained by an immune infiltrate
enriched in Th1 cells and exhausted T cells.

According to mRNA profiling of CD8+ T cells in a murine
model of autochthonous liver cancer, TIGIT is a hallmark of T cell
exhaustion in liver cancer at various stages of their differentiation
(161). TILs from patients with primary hepatocellular carcinoma
and intrahepatic cholangiocarcinoma had an increased
TIGIT+CD8+ T cell subpopulation. However, two subsets of these
patients were identified: one had significantly higher TIGIT and
PD-1 expression levels in the tumor area than the surrounding
peritumoral area; whereas the other had a similar level of expression
for both IRs in the tumoral and peritumoral areas (161).

In renal cell carcinoma (RCC), immunohistochemistry and flow
cytometry experiments to evaluate TIGIT and PD-1 expression in
circulating immune cells and TILs revealed an increased TIGIT and
PD-1 expression in the tumoral area compared with adjacent
normal tissue, but TIGIT+ T cells and NK cells amount did not
correlate with clinicopathological characteristics (age, sex, tumor
diameter, Fuhrman grade, or TNM stage) (162). In contrast, a
positive correlation with RCC clinicopathological characteristics
was observed only for PD-1 (162).

CD155 and TIGIT were correlated with clinicopathological
features in lung adenocarcinoma, in which CD155 expression
was strongly associated with tumor staging and poor OS (111).
TIGIT expression was associated with advanced TNM staging,
which correlated with lymphatic metastasis and distant
metastasis, with low antitumor immunity-related gene
expression activation and poor PFS (111).

In oral squamous cell carcinoma, circulating T cells and TILs
overexpressed TIGIT on CD4+ and CD8+ T cells, characterized
by dysfunctional phenotype, including reduced proliferative
capacity and low proinflammatory cytokine release (163).
Higher TIGIT expression was also associated with higher T
stage and nodal invasion but not with other clinicopathological
variables such as age, gender, smoke/alcohol use, tumor site, and
tumor differentiation (163).

Singer et al. proposed TIGIT expression as a predictive rather
than prognostic biomarker for reactive tumor-infiltrating immune
cells in soft sarcoma tissue in an elegant investigation on IL-15 and
TIGIT blockade therapy to reactive tumor-infiltrating immune cells
(164). The authors observed both activated and exhausted tumor-
infiltrating NK cells and TILs and TIGIT upregulation in the TME,
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especially on NK cells, associated with superior distant disease
recurrence-free and OS (165). Interestingly, activator and
inhibitor pathways are not mutually exclusive and are a recent
field of interest in targeted therapy (164, 165).

Under hypoxic conditions, HIF-1a transcript factor
activation stimulates the expression of various IRs, including
TIGIT. TIGIT and HIF-1a activity suppression experiments,
using a siRNA carrier system, have revealed a critical role of these
molecules in tumor growth, apoptosis, and metastasis in
colorectal and breast cancer (166). In colorectal cancer cell line
CT26 and breast cancer cell line 4T1 and in their in vivo mouse
models, TIGIT and HIF-1a down-regulation diminished the
colony formation ability and afflicted cancer cells’ angiogenesis
and proliferation activities, suggesting simultaneous blocking of
TIGIT and HIF-1a as a potential new treatment strategy (166).

Considering all these results, it is possible to speculate that
later than tumorigenesis, when the tumor already presents an
immune infiltrate, immune cells, particularly T cells, upregulate
TIGIT, promoting an immunosuppressive microenvironment
that leads to metastasis and unfavorable prognosis. The studies
with an in-depth microenvironment characterization and
association with clinicopathological features point out several
diverse IRs expression combined analysis that might represent an
effective outcome prediction panel in cancer. However, there is
much work to be done to understand in more detail TIGIT’s role
in the different tumor stages (e.g., initial diagnosis, progression,
recurrence, metastases) in various cancers.
THERAPEUTIC STRATEGIES
TARGETING TIGIT IMMUNE
CHECKPOINT EXPRESSION

Cancer treatments are traditionally based on surgery, targeted
therapies, chemotherapy, or radiation therapy (167). Immune
inflammatory modulation-based therapy, or more simply
immunotherapy, has lately emerged as a novel therapeutic arm
with enormous potential, particularly in the treatment of cancer
chemo-radiotherapy resistance (168, 169). Immunotherapy is a
type of treatment that aids the immune system in fighting cancer
and other diseases.

Immunotherapies have been shown to be effective against
tumor-associated T cells that are dysfunctional. The rationale
behind these therapies is that the cancer cells overexpress ligands
for IRs, such as CD115, CD112, and others, to elude the immune
system. Different immunotherapy strategies aim to boost the
patient’s antitumor immune response against malignancies
minimizing T cell exhaustion and providing protective effects
against recurrence and metastasis with less toxicity when
compared to traditional cancer therapy (170).

Here is an update on therapeutic strategies targeting TIGIT
immune checkpoint expression.

Cancer immunotherapy strategies that boost innate and
adaptive immunity are being developed to achieve long-lasting
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antitumor effects. Azelnidipine is a long-acting third-generation
dihydropyridine calcium channel blocker that has been approved
for the treatment of hypertension. However, using the molecular
operating environment (MOE) by blocking and MST binding
assays, molecular docking and structural analysis of CD172a and
CD112 have indicated azelnidipine’s potential relevance in
cancer immunotherapy (171). Azelnidipine inhibits the innate
checkpoint CD47/CD172a and the adaptive checkpoint TIGIT–
CD112 pathways and has anti-cancer effects by increasing the
infiltration and function of CD8+ T cell and macrophage tumor
cell phagocytosis in vivo and in vitro. This study extensively
looked at the effect of TIGIT blockade on macrophages in the
tumor. Tumor cells, like normal cells, can express CD47, a “do
not eat me” signal that prevents CD172a+ macrophages from
phagocytosing them. Zhou et al. demonstrated that azelnidipine
blocks CD47–CD172a signaling, reactivates macrophage
phagocytosis, and improves antitumor immunity even in
combination with radiotherapy, as shown in the MC38 murine
colon adenocarcinoma cell line (171). A cancer immunotherapy
antibody targeting both CD47 and TIGIT has been
patented (WO2020259535).

Alternative anticancer treatments with a systemic approach
are being developed. In a mouse model of lung adenocarcinoma,
triple therapy with the RadScopal approach (high-dose radiation
to primary tumors plus low-dose radiation to secondary tumors)
plus anti-TIGIT and plus anti-PD-1 prolong survival and block
tumor growth while decreasing TIGIT+ exhausted T cells and
TIGIT+ Tregs (104). This approach promotes a systemic
antitumor response because low-dose radiation also reduces
CD155 expression on TAMs and DCs (104). Combined
therapies based on immunotherapy and radiation therapy
promise to reset the TME.

TIGIT+ macrophages were also looked at in leukemia, in which
the leukemia-associated macrophages (LAM) co-expressing TIGIT,
TIM3, and LAG3 were identified as immunosuppressive M2
responsive to in vitro TIGIT blockade therapy that polarizes the
M2 toward the M1 phenotype and improves phagocytosis of the
CD47 expressing tumor cells (172, 173).

An in-depth characterization of TILs in bladder cancer using
PBMC isolation and tumor single-cell isolation from fresh tumor
tissue demonstrates that PD-1highTOX+ T cells play a key role in
tumor evasion, which might be reversed by combining PD-1 and
TIGIT inhibition (174).

pt?>Autophagy, a cell-intrinsic system that uses the lysosome to
remove damaged organelles and proteins, plays a critical role in
cellular immunity. Indeed, autophagic abnormalities linked with
oncogenesis promote tumor escape by influencing cell
immunogenicity, APC activity, and T cell activity (175).
Artesunate, an anti-malaria drug, exerts anticancer activity by
inhibiting proliferation, migration, and angiogenesis and inducing
apoptosis and autophagy. Artesunate-induced autophagy was well
demonstrated in human bladder cancer cells, upregulating ROS and
activating the AMPK-mTOR-ULK1 axis and in uterine corpus
endometrial carcinoma, enhancing NK cell cytotoxicity via
interactions with tumor cells overexpressing CD155, and
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upregulating co-stimulator CD226 and downregulating co-inhibitor
TIGIT (176–178).

Anti-TIGIT antibodies are used instead in more consolidated
therapies. TIGIT blocked reduced tumor growth while
promoting an immune infiltration enriched in effector
cytokine-secreting CD8+ T cells (44, 116, 127, 179).

Vibostolimab is a humanized antibody that targets TIGIT
preventing its binding with CD112 and CD155. Patients with
advanced solid tumors who received vibostolimab alone or
combined with the anti-PD-1 pembrolizumab in a phase I
clinical trial (NCT02964013) showed controllable tolerance
across escalating doses and all types of advanced solid tumors
assessed. Increased NK cell activation of CD8+ T cells was found
to have an anticancer effect in the study (180).

Etigilimab is another anti-TIGIT monoclonal antibody that is
now being investigated in an open-label, multicenter, phase I/II
clinical trial (NCT04761198) in patients with advanced or
metastatic solid tumors for tolerance and pharmacokinetics
with the anti-PD-1 nivolumab (181).

Combining anti-TIGIT and anti-PD-1 immunotherapy in
metastatic melanoma has shown encouraging outcomes, with
increased proliferation, cytokine generation, and degranulation
of effector CD8+ T cells (116).

Mono- or dual TIGIT and PD-1–PD-L1 blockade aims to take
advantage of the curative potential of pre-existing tumor-primed T
cells in cancer treatment by promoting CD8+ T cell proliferation
and function, resulting in protective memory T cells that ensure
tumor rejection and avoid recurrence (182–184). Although several
of these antibodies have received clinical approval, their effectiveness
remains modest because immunological checkpoints and their
signaling are regulated at multiple levels.

In addition to monoclonal antibodies, the most recent
approach is to design T cells for TIGIT.

Hoogi et al. created a TIGIT : CD28 chimeric co-stimulatory
switch receptor with the TIGIT exodomain fused to the CD28
signaling domain, which improved the activities of chimeric
antigen receptor T cells by stimulating cytokine production
and activating other T cell effector functions (185).
EFFICACY AND TOXICITY OF ANTI-TIGIT
IMMUNE CHECKPOINT THERAPY

Even though therapeutic strategies targeting immunological
checkpoints have been approved for a variety of cancer types,
patients continue to have poor prognoses and suffer from
immune-related adverse events (irAEs) that affect numerous
organs. irAEs are secondary to the infiltration of activated T
cells and can affect any organ (186, 187). Skin, gastrointestinal
tract, endocrine, lungs, thyroid, pituitary and adrenal glands, and
the musculoskeletal system are the most usually impacted, while
nervous, renal, hematologic, ophthalmic, and cardiovascular
systems are less commonly affected (188–190). Four degrees of
irAEs can be distinguished based on the organs involved and the
severity: patients with grade 1 irAEs show skin toxicity (<10%
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body surface area) and no sign of toxicity for the gastrointestinal
tract, liver, endocrine system, and lungs; patients with grade 4 of
irAEs show elevated skin toxicity (> 30% body surface),
hepatotoxicity, and severe symptoms of involvement of the
cardiovascular, endocrine, and digestive apparatus (191). Grade
2 and 3 show intermediate signs. The management of irAEs is
based on well-established clinical practice guidelines well
reviewed by Barber in 2019 (192). Some irAEs are more
common in immune therapy than chemotherapy, and their
frequencies are positively associated with clinical efficacy,
making them useful for clinical decisions (193).

To understand the efficacy and toxicity of immune checkpoint
therapy, it should be noted that the types of antibodies used in
anti-TIGIT therapies are very different and more or less tolerated.
A murine, chimeric, humanized, or completely human IgG
antibody could be used to suppress immunological checkpoints
(194). The majority of anti-TIGIT antibodies in clinical trials are
either humanized (such as ociperlimab, pembrolizumab,
atezolizumab) or fully human (such as tiragolumab, etiligimab,
ipilimumab, nivolumab, vibostolimab, domvanalimab) (195).
Compared to other forms of IgG origin, humanized and
completely human antibodies have increased in vivo tolerability
but much-reduced immunogenicity (194).

Furthermore, blockade therapy efficacy depends on the
antibody-dependent cellular cytotoxicity (ADCC) desired to
destroy unfunctional T cells and tumor cells. ADCC is a non-
phagocytic mechanism in which antibody-bound target cells are
killed by innate immune cells such as NK cells, DCs, and
macrophages (196). To activate ADCC, the targeted cell must
express target antigens, the antibody must be preferentially IgG1
or IgG3 monoclonal because these two antibodies link any type of
FcR, and the effector cell must have the Fc-gamma receptors
(FcgR) (196). Concerning TIGIT, its FcgR is active in tiragolumab,
ociperlimab, vibostolimab, EOS-448, etigilimab, and AGEN-1307,
whereas it is inactive in domvanalimab, BMS-986207, and CASC-
674 (195). However, FcgR presence or absence has not been tested
for anti-TIGIT antibody clinical efficacy (197, 198).

Recently, TIGIT molecular was also used as Fc-fused protein
in some reports demonstrating that TIGIT-Fc may act both as an
immunosuppressor and as an immunostimulator in a
microenvironment-dependent way (83, 85, 199–201). TIGIT-
Fc is a dimer in which an Fc domain of an antibody is linked to
the extracellular domain of TIGIT by covalent bonds. TIGIT-Fc
has antibody-like features, such as a long serum half-life and
efficient expression and purification in vitro, making it an ideal
drug (46). Its action as an immunosuppressor was demonstrated
in vitro and in a mouse model of acute allogeneic GVHD in
which it decreased CD8+IFN-g+ and CD8+ granzyme B+ T cells
activation in a dendritic cell-dependent manner and reduced the
release of IL-10 (83).

Moreover, TIGIT-Fc acts as a negative regulator of
inflammation, inhibiting macrophage activation and imbalanced
M1/M2 ratio in favor of M2 anti-inflammatory profile via c-Maf
up-regulation, which promotes IL-10 transcription as demonstrated
by in vivo and in vitro experiments using fibroblasts stably secreting
TIGIT-Fc in the LPS shock model (85). In CLL, a tumor-supportive
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role of TIGIT+CD4+ T cells was observed in the presence of
TIGIT-Fc via down-regulation of IFNg and IL-10 production
(201). Interestingly, this protumor activity of CD4+ T cells was
dependent on CLL cell’s presence because in vitro experiments with
CD4+ T cells alone did not show any effects (201).

On the contrary, TIGIT/ligand interactions using
recombinant TIGIT-Fc molecule immunostimulatory functions
were shown in xenograft mouse models containing different
human tumor cells (A375, A431, SK-BR-3, SK-OV-3, and
H2126) co-implanted with human T cells (200). The TIGIT-Fc
treatment enhanced effector NK cell functions and activated an
anti-tumor T cell immune response via CD4+ T cells preventing
their exhaustion (200). Additionally, synergistic effects were
observed in TIGIT-Fc plus anti-PD-L1 combined therapy (200).

Efficacy and toxicity of anti-TIGIT therapy were evaluated in the
CITYSCAPE trial (NCT03563716), in which anti-TIGIT
(tiragolumab) with anti-PD-L1 (atezolizumab) combined therapy
were applied. The findings showed that this combined therapy in
non-small cell lung cancer (NSCLC) is well tolerated when
compared to CTLA4 with PD-L1 combined therapy, and that it
improves responses and PFS in PD-L1–immune sensitive patients
(202–205). Furthermore, despite the similar safety profiles of
atezolizumab with placebo (AP) vs. atelozomab with tiragolumab
(AT), 80.6% of patients in the AT group and 72% of patients in the
AP group suffered irAEs. The irAEs included rash and thyroid
issues, infusion reactions at the first dose, soft stool, diarrhea, and
very few cases of more severe toxicities, like hepatitis (204, 205).

The anti-TIGIT vibostolimab was tested in patients with solid
tumors as monotherapy or in combination with the anti-PD-L1
pembrolizumab in the phase I multicohort MK-7684-001 trial
(NCT02964013). The ORR for vibostolimab monotherapy was
more significant than for combination therapy in the sub-cohort
of NSCLC patients with anti–PD-1–PD-L1–refractory disease
(7% (95% CI, 2%-20%) vs. 5% (95% CI, <1%-18%)) (206). IrAEs
were reported by 65% of patients in the same NSCLC sub-cohort,
including pruritus, fatigue, rash, arthralgia, decreased appetite,
and 13% also had lipase elevation and hypertension (206).

TIGIT blockade therapy may be more beneficial if it is evaluated
as a first-line treatment. In February 2020, a multicenter, open-label,
phase I/II study using the novel anti-TIGIT EOS884448 as
monotherapy was launched in patients with previously treated
advanced cancer (ovarian, head and neck, cervical, and colorectal)
(NCT04335253) (207). Multiple mechanisms of action for
EOS884448 were demonstrated: inhibition of TIGIT triggering
activation of TIGITlow T cells and NK cells; depletion of
immunosuppressive Treg and exhausted TIGIThigh T cells; and
reverse activation via FcgR engagement (207). The pharmacokinetic
and pharmacodynamic analysis demonstrated that exhausted Tregs
and TIGIT+ T cells were depleted in a dose-dependent manner.
Moreover, in this interventional study with multiple ascending-dose
treatments, EOS884448 was generally well tolerated at all tested
doses in patients with advanced cancer and had a promising
antitumor activity as a single agent also in PD1-resistant patients.
IrAEs were reported by 82% of patients, including pruritus,
infusion-related reaction, fatigue pyrexia, rash macuolo-papular,
eczema, and hypothyroidism (207).
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Cancer patients’ stratification based on tumor response to
immune checkpoint inhibitors is vital even if challenging to
evaluate (208, 209). In fact, patients might experience clinical
pseudoprogression that can be misinterpreted as disease
progression because it cannot be evaluated with the existing
response-evaluat ion cr i ter ia (210 , 211) . In tumor
pseudoprogression, an increase in tumor size depends on
infiltrating T cells, while in proper tumor progression, the
increased tumor mass is due to proliferating tumor cells (210). In
2017, the Response Evaluation Criteria in Solid Tumors (RECIST)
working group published a modified set of response criteria, the
immune-related response criteria (iRECIST), adapted for
immunotherapy because of the importance of a standardized
strategy to evaluate its effects (212, 213).

Identifying prognostic biomarkers of response to TIGIT
blockade alone or in combination with other IRs is needed to
improve efficacy and reduce toxicity.
CHALLENGES AND CONCLUSIONS

To summarize, in cancer, the genetic and epigenetic alterations
could initiate tumorigenesis, which activates T cells and NK cells,
and TME gets infiltrated by immune cells. Following T cells and
NK cells upregulate TIGIT expression, which leads to an
immunosuppressive TME, promoting tumor progression,
immune escape, and metastases that result in poor prognosis.

Immune inflammatory modulation-based therapy is a
promising therapeutic strategy against solid and hematological
malignancies, but the outcomes are not largely encouraging
because some tumor types remain refractory primarily to these
therapies (214). CD8+ T cells are extremely heterogeneous, while
CD4+ T cells in immunosuppression and immunotherapy are
under-investigated (44). Targeting only a part of the complicated
tumor system is insufficient for most cancer therapies or only in
the arm of immunotherapies, so patients cannot benefit for a long
time. New combined multiple targets (other co-inhibitory receptors)
for immunotherapy must be explored to improve treatment.

Guidelines should be set for immunotherapy research. The
results of different studies are difficult to compare due to the
Frontiers in Oncology | www.frontiersin.org 13
different designs for types of cancer, sample size, and statistical
analysis. Consequently, when the results of individual studies are
analyzed, they are insufficient to adopt particular and successful
therapeutic interventions.

Side effects of traditional and immune checkpoint blockade
therapies should be evaluated in-depth. High cytokine release
and effector cell infiltration into TME cause irAEs that
sometimes lead to the death of patients (215–217). Skin,
gastrointestinal tract, lung, or liver are all affected by irAEs.
However, the TIGIT blockade seems to have fewer side effects
compared with other IRs blockades, as demonstrated in TIGIT-/-

mouse model (218–220). In this pre-clinical model, TIGIT
blockade triggers fewer irAEs than anti-PD1 or anti -CTLA4
therapies (218–220).

Anti-TIGIT therapy is now being tested in 25 clinical trials,
considering only those starting from 2021 (Table 1), but there is
still considerable work to be done to discover new and safely
targetable immune checkpoints that could be effective against
various malignancies.

The immunological and stromal characterization of the TME
cells and their amount and spatial distribution in relation to
pathology and prognosis will help patient stratification, enhance
personalized cancer therapy efficiency, and overcome tumor
immune evasion mechanisms.
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ADCC antibody-dependent cellular cytotoxicity
AIF1 allograft inflammatory factor 1
CIK cytokine-induced killer
CLL chronic lymphocytic leukemia
CTLA4 cytotoxic T-Lymphocyte Antigen 4
DFS disease-free survival
DCs dendritic cells
DNMTs DNA methyltransferases
FcgR Fc-gamma receptors
GSEA Gene set enrichment analysis
HiNeo highly expressed neoantigens
IRs inhibitor receptors
irAEs immune-related adverse events
IRF4 IFN regulatory factor 4
ITIM immunoreceptor tyrosine-based inhibitor motif
ITT immunoglobulin tyrosine tail
LAM leukemia-associated macrophages
MALs malignant ascites lymphocytes
MHC-I major histocompatibility complex class I
MMR mismatch repair
MSI microsatellite instability
NECL nectin and nectin-like
NK natural killer
NSCLC non-small cell lung cancer
OS overall survival
PBLs peripheral blood lymphocytes
PD-1 programmed cell death protein 1
PD-L1 programmed cell death protein 1 ligand
PFS progression-free survival
PVR Poliovirus receptor
RCC renal cell carcinoma
RFS recurrence-free survival
RMST restricted mean survival time
RORc retinoic acid-related orphan receptor c
SHIP-1 SH2-containing inositol phosphatase-1
TAMs tumor-associated macrophages
TANs tumor-associated neutrophils
TCGA The Cancer Genome Atlas
TIGIT T-cell immunoreceptor with immunoglobulin and ITIM domain
TILs tumor-infiltrating lymphocytes
TMB tumor mutation burden
TME tumor microenvironment
TNF tumor necrosis factor
Tregs regulatory T-cells
UCEC uterine corpus endometrial carcinoma
VSIG9 V-set and immunoglobulin domain-containing protein 9
VSTM3 V-set and transmembrane domain-containing protein 3
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