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Abstract

Conserved motifs in biological sequences are closely related to their structure and functions. Recently, discriminative motif
discovery methods have attracted more and more attention. However, little attention has been devoted to the data
imbalance problem, which is one of the main reasons affecting the performance of the discriminative models. In this article,
a simulated evolution method is applied to solve the multi-class imbalance problem at the stage of data preprocessing, and
at the stage of Hidden Markov Models (HMMs) training, a random under-sampling method is introduced for the imbalance
between the positive and negative datasets. It is shown that, in the task of discovering targeting motifs of nine subcellular
compartments, the motifs found by our method are more conserved than the methods without considering data imbalance
problem and recover the most known targeting motifs from Minimotif Miner and InterPro. Meanwhile, we use the found
motifs to predict protein subcellular localization and achieve higher prediction precision and recall for the minority classes.
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Introduction

Biological sequence motif is the over-represented pattern in

biopolymer (nucleotide or protein) sequences relative to a

background model [1]. It is, or is conjectured to be related to

the structure and functions of the molecules which the sequences

represent. For example, sequence motifs can represent transcrip-

tion factor binding sites (TFBSs), ribosome binding sites and

restriction sites in DNA molecules, splice junctions in RNA

molecules, and DNA binding domains (DBDs), post-translational

modification sites, protein-protein interaction sites and signal

peptide in protein molecules, respectively. So sequence motif

discovery algorithm plays an important role in understanding how

the cell functions.

Representation of biological sequence motifs can usually be

classified into two categories: fixed-length motif representation and

variable-length motif representation [1]. The fixed-length motif

representation includes: REs (Regular Expressions), PWMs

(Position Weight Matrices) and PSSMs (Position-Specific Scoring

Matrices), while the variable-length motif representation includes:

Profiles, HMMs and profile HMMs [2]. Traditionally, motif

finding problem has been dominated by generative models using

only the positive class of sequences to produce descriptive motifs of

the class, such as MEME [3] using PWMs, and HMMER [2]

using profile HMMs. Recently, many studies are focused on

discovering of discriminative motifs that occur more frequently in

the positive set of sequences and scarcely in the negative set of

sequences. When constructing the models, these discriminative

methods not only use the information within the positive set of

sequences as the traditional generative ones do, but also employ

the important information of the negative set. Consequently, the

information of the negative set may further refine the models to

make the differences between similar classes more obvious.

Up to now, most of the discriminative methods have been used

in discovering the DNA motifs. DIPS [4] proposes a probabilistic

score to quantify the total number of occurrences of a PWM

(motif) in a sequence, defines the objective function to discriminate

positive and negative sets of sequences based on this score and uses

heuristic hill climbing to search the sequences for motifs that

maximizes this function. Seeder [5] is an integrated algorithm that

combines the advantages of a pattern-driven method (used in seed

PWM searching) and sequence-based method (used in PWM

building) and identifies discriminative motifs that are statistically

significant (enriched) in the positive set as compared to the

background set (negative set). DREME [6] performs a heuristic

search of seed motifs represented by REs in the first place, employs

a beam search to find motifs represented by PSSMs in the space of

seed motifs in the next place and uses the Fisher’s Exact Test to

compute the significance of the relative enrichment of each motif

in both positive and negative set to make the found motifs more

statistically significant and discriminative. DECOD [7] represents

motifs by PWMs and searches for PWMs that match many k-mers

on the positive set while only matching a few on the negative set.

Meanwhile, it uses a deconvolution method to accelerate the

algorithm, but it does not work well on motifs with large gaps in

the middle.

Few investigations have been done on the discriminative motif

discovery methods in protein sequences. DEME [8] applies

substring retrieval followed by branching discovery to find seed

motifs in the global search, refines the data model based on the

seed motifs in the local search and combines these to find DNA

and protein motifs (represented by PWMs) that optimally

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e87670

http://creativecommons.org/licenses/by/4.0/


discriminate between the positive and negative set of sequences.

DiscHMM [9] represents protein sequence motifs by profile

HMMs with ’Plan 7’ architecture [2] which are considered to be

more expressive for protein sequences with insertion and deletion

than PWMs, and optimizes the maximal mutual information

estimate (MMIE) criterion with extended Baum-Welch algorithm

[10], a technique that was primitively applied to speech

recognition, to obtain discriminative HMMs. MERCI [11]

identifies degenerate motifs based on the candidate generation

principle and a given classification of amino acids according to

their physico-chemical properties. It introduces two parameters,

the minimal frequency threshold for the positive sequences and the

maximal frequency threshold for the negative sequences, to find

the top K motifs that are most frequent in a positive set of

sequences involved in a biological process of interest, and absent

from a negative set. DLocalMotif [12] combines three discrimi-

native scoring features: MSC (motif spatial confinement), MOR

(motif over-representation), and MRE (motif relative entropy) to

determine whether a motif is positioned in a sequence interval in a

positive set and is generally absent in a negative set. It first uses

a greedy enumeration to generate candidate motifs represented by

a triple, and then refines the candidate motifs into a consensus

string and subsequently a PWM.

To the author’s knowledge, there is little information available

in literature about the data imbalance problem in discriminative

motif discovery, although it is an important issue in the field of

machine learning [13,14]. The results may be due to (i) most of the

benchmark datasets used to discovery motifs, no matter synthetic

or real biological, are initially built to be balanced, especially the

synthetic ones, although it’s actually not the case [9,15–17], (ii) the

imbalance problem of sequence data (DNA and protein sequences

in motif discovery) are more complex than usual data, conse-

quently, traditional methods for data imbalance problem are no

longer applicable. However, some discriminative motif discovery

methods, especially those for multi-class classification problem

[18], may suffer from the data imbalance problem. For example,

DiscHMM tries to find multiple non-redundant targeting motifs

for each one of the nine subcellular locations and uses them to

convert a new protein into a feature vector for classification, but

the precisions and recall rates of relative minority classes, such as

secreted, peroxisome and Golgi apparatus, are very low, even

zeros. These results indicate that the DiscHMM method is not

able to find discriminative motifs for minority classes due to the

adverse impact of the data imbalance problem.

In this article, we focus on the data imbalance problem in

discriminative motif discovery inspired by DiscHMM which

employs MMIE, a discriminative HMM training method, to

discover targeting motifs and uses the found motifs for predicting

protein subcellular localization. There are two types of data

imbalance problems to be solved. The first data imbalance

problem is the multi-class imbalance problem that has more than

two classes with uneven distributions. The second one relates to

the imbalance between the positive and negative datasets at the

stage of HMMs training. A lot of methods have been proposed to

solve the data imbalance problem such as sampling methods, cost-

sensitive methods, kernel-based methods and active learning

methods [14]. Among these methods, a sampling method based

on over-sampling or under-sampling may be a simple and effective

method. Furthermore, it has been empirically evaluated that

neither the over-sampling nor the under-sampling alone is always

the best one to use, and a combining strategy could be useful and

effective [19]. Consequently, we introduce a way to combine the

two resampling methods. Firstly, an over-sampling method

based on the simulated evolution is applied [15] at the data

preprocessing stage. Secondly, a random under-sampling method

is employed in the discriminative HMMs training.

A biological benchmark dataset has been used to characterize

the efficiency of our method compared with other methods. The

results indicate that our method has superior precision and recall

for minority classes because of its ability to use phylogenetic

knowledge imported by simulated evolution and information in

the negative training set. In addition, our method recovers the

most known targeting motifs from Minimotif Miner [20] and

InterPro [21] and discovers more novel conserved motifs than the

methods without considering the data imbalance problem.

Furthermore, we believe that the strategy of solving the data

imbalance problem proposed in this article is useful for further

studies on discriminative motif discovery of multi-class protein

sequences.

Methods

Our method is described below in the following aspects:

problem formulation, combining strategy of sampling, protein

subcellular localization prediction, datasets and implementation.

Problem Formulation
We represent the motifs by HMMs and use the following

notations: V~fv1,v2, � � � ,v20g denotes the 20 kinds of amino acids.

The training sequences are given as fO(1),O(2), . . . ,O(N)g, where N

is the number of training sequences. O(n)~O
(n)
1 O

(n)
2 � � �O

(n)
Tn

, where

Tn is the length of O(n) and O
(n)
t [V , t~1,2, . . . ,Tn, 1ƒnƒN . Let

the class labels of the sequences be cn[f1,2, . . . ,Mg, 1ƒnƒN. The

HMM for the mth class is denoted as l(m)~(a
(m)
ij ,b

(m)
j (k)), where

a
(m)
ij and b

(m)
j (k) represent the transition and emission probability of

l(m) respectively.

Generative training of HMMs is to optimize the maximum

likelihood estimation (MLE) criterion with the Baum-Welch

algorithm [22]. The MLE objective function is given by the

following formula:

FMLE~
X

n

log½p(O(n)jl(cn))p(l(cn))� ð1Þ

While discriminative training of HMMs is to optimize the

MMIE criterion with the extended Baum-Welch algorithm [10].

The MMIE objective function can be defined as follows:

FMMIE~
X

n

log
p(O(n)jl(cn))p(l(cn))

P
m0 p(O(n)jl(m0))p(l(m0))

ð2Þ

The assumption of one occurrence per sequence (OOPS) model

[23–25] for motif occurrences per sequence is used and motifs are

found on flat and hierarchical structure of compartments (see

Figure S1 in File S1) similar to the approach taken by DiscHMM,

where the hierarchical structure is a tree structure that mimics

cellular sorting pathways [26] and it can provide some prior

knowledge for motif discovery and prediction of protein subcel-

lular localization which the flat structure cannot. When training

HMMs by MMIE, the positive and negative training sets need to

be used at the same time, so the one-vs.-all strategy [27] is

adopted. For the flat structure, the negative training set is picked as

the union of all the class sets except the positive one. While for the

hierarchical structure, the negative training set is selected as the

Discriminative Motif Finding by Combined Resample
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union of all the class sets except the positive one under the root

node or the same intermediate node. Additional details of motif

finding on flat and hierarchical structure of compartments are

provided in [9].

After a motif (represented by HMM) is found, top motif

instances will be retrieved from protein sequences by posterior

decoding: for each candidate motif, we scan all protein sequences,

identify all possible positions (motif instances) of the begin state

and the end state of the motif and compute the product of the

posterior probabilities of the begin state and the nearest end state

for ranking. Then, all positions in all sequences are ranked by this

product. Finally, when the number of the top positions is given,

they are selected according to the ranking.

Combining Over-sampling with Under-sampling to Deal
with Data Imbalance

The targeting motifs discovered by DiscHMM are more

discriminative according to their effect in the overall accuracy of

predicting protein subcellular localization than the generative

motifs. However, the precision and recall of the relative minority

classes are very low, even zeros. Therefore, a combining strategy of

resample is adopted to solve the data imbalance problem. This

strategy applies the over-sampling method via simulated mutation

to generate new sequences for the minority classes and random

under-sampling method in MMIE for HMM training.

Over-sampling via Simulated Evolution
The first kind of data imbalance problem is the multi-class

imbalance, which is the main reason for the low precision and

recall of minority classes. To solve this problem, we try to use over-

sampling method to add new sequences into the minority classes.

In order to avoid over-fitting, we do not use the random over-

sampling method that randomly selects sequences from the

minority class sets, replicates them and adds the replicated ones

into the original sets [28]. Besides the random over-sampling

method, there are no suitable over-sampling methods for protein

sequences, since most of the over-sampling methods in the field of

machine learning such as SMOTE [29] are not designed for

sequence data. So in this paper, we intend to employ simulated

evolution [15-17], an over-sampling method that incorporates

phylogenetic knowledge and has been successfully applied to

classify protein families and recognize beta-structural motifs.

We use the BLOSUM (BLOcks SUbstitution Matrix) matrix as

the model of evolutionary mutations. The BLOSUM matrix is a

substitution matrix used to measure the similarity between protein

sequences for alignment of them. BLOSUM matrices are derived

from about 2000 blocks of aligned sequence segments character-

izing more than 500 groups of related proteins [30]. We conduct

an experiment to test BLOSUM45, BLOSUM62 [31] and

BLOSUM80 for simulated mutation. The results (see Figure S2

in File S1, Figure S3 in File S1 and Figure S4 in File S1)

empirically demonstrate that substituting amino acid residues in

the simulated mutation through BLOSUM62 may ensure both the

conservation and diversity of the generated sequences, so that we

can not only make the found motifs evolutionary conserved, but

also get multiple non-redundant motifs that are useful for

predicting protein locations. Detailed discussions are provided in

Supporting Information. Consequently, we choose the BLO-

SUM62 matrix as the model of simulated mutations. Our purpose

is to make the severely skewed class distribution to be uniform. To

achieve this goal, the simulated evolutionary approach is used to

make the number of training sequences in every class the same as

the one of the largest class set. The pseudo-code for simulated

evolution is shown as follows.

Simulated Evolution algorithm
Input: Training sequences fO(1),O(2), . . . ,O(N)g

Sizes of classes fN1,N2, . . . ,NMg
Mutation rate r, 0vrv1

Calculate the largest size of classes Nmax~ maxfN1,N2,
. . . ,NMg

For m~1,2, . . . ,M

For k~1,2, . . . ,Nmax{Nm, do

1. Randomly select a sequence O from class cm

2. Obtain the length L of O and the number Nmut

of amino acids need to be mutated in O, where

Nmut~L|r

3. Randomly pick Nmut positions in O

4. Replace the amino acid in every one of the Nmut

positions with another one that has the highest

probability value in the BLOSUM62 matrix

5. Add the new sequence into the set of class

Output: The new training datasets

Random Under-sampling for MMIE
After building the new training datasets by simulated evolution,

we can use it and the extended Baum-Welch algorithm to optimize

the MMIE criterion to get discriminative motifs represented by

HMMs. Although the found motifs by the above methods are

discriminative and useful for classification, both the percentage

and significance of the conserved motif instances retrieved by those

HMMs are low, which will be described in details later. The results

may be attributed to the one-vs.-all strategy adopted for MMIE,

since we have used the simulated evolution method to generate so

many new sequences and the negative training set becomes so

large that the extended Baum-Welch algorithm is affected.

Therefore, the random under-sampling method is applied to

make the size of negative training set as large as the positive one.

Moreover, we don’t intend to randomly select a set of the original

negative set before the training of HMMs as usual machine

learning methods do, which may cause the extended Baum-Welch

algorithm to miss important sequences of the negative set resulting

in less discriminative HMMs [14]. In order to fully exploit the

useful information in the negative training set and prevent the loss

of important negative samples, a set of the original negative set is

randomly selected at each iteration of the extended Baum-Welch

algorithm. The number of the negative sequences selected at each

iteration is the same as that of the positive ones. However, this

simple trick has achieved very good results which will be shown

and discussed later.

Protein Localization Prediction and Motif Ranking
The main evaluation of the discovered motifs is based on their

classification performance, so the log-likelihood ratio [32] is used

as the feature and the support vector machine classifier (SVM) as

the base classifier for classification. The log-likelihood ratio is

shown as the formula (3), where O is a new sequence needed to be

classified, l represents one of the multiple non-redundant motifs

(HMMs) of a certain class and w denotes the background model or

known as null model which is selected as the default one in

HMMER. The SVM is used with the flat and hierarchical

structure and a 10-fold cross-validation procedure is carried out

that the proposed method are trained on part of the sequence set

and tested on proteins not used to learn the motifs.

Discriminative Motif Finding by Combined Resample
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score(O)~ log2

P(O=l)

P(O=w)
ð3Þ

The found motifs are ranked by using one-step backward

feature selection to further evaluate their contributions for

predicting subcellular localization. For the SVM and the feature

vector consisting of log-likelihood ratios, the accuracy after

removing each feature (corresponding to a motif) is recorded

and the motifs are ranked according to the ascending sort of the

accuracies.

Datasets
We apply our discriminative motif discovery method via

simulated evolution and random under-sampling to the PSLT2

dataset [33]. This dataset consists of 1,521 Saccharomyces cerevisiae

proteins with curated localization annotation in UniProt [34] and

several proteins are localized to more than one compartment.

Localization annotations described as ‘‘possible,’’ ‘‘potential,’’

‘‘probable,’’ or ‘‘by similarity’’ are excluded, so the rest of the

localization annotations are kept that clearly indicated which

compartment(s) the protein is localized to. Excluding the proteins

with multiple localizations, the number of proteins with single

localization is 1,208 denoted by dataset I. Assigning the proteins

with multiple localizations to their corresponding compartments,

the total number of sequences is 1,889 denoted by dataset II.

Proteins are annotated with nine labels: nucleus, cytosol,

peroxisome, mitochondria, endoplasmic reticulum (ER), Golgi

apparatus, vacuole, plasma membrane, and secreted. The sizes of

these nine classes in the dataset I and dataset II are presented in

Table 1.

Implementation
Five sets of experiments are implemented: (i) generative training

of HMMs, (ii) discriminative training of HMMs, (iii) generative

training of HMMs with simulated evolutionary mutation, (iv)

discriminative training of HMMs with simulated evolutionary

mutation, (v) discriminative training of HMMs with simulated

evolutionary mutation and under-sampling. In addition, all the

algorithms above are executed on the flat and hierarchical

structure respectively. For the sake of clarity, the above algorithms

are marked as Gen, Disc, GenM, DiscM and DiscMU respec-

tively. The evolutionary mutation rate for GenM, DiscM and

DiscMU is selected as 20% as it has been shown in [15] that a

mutation rate around 20% performs better for building profile

HMMs to recognize G-protein coupled receptor proteins in

different classes and SCOP super-family proteins from different

families.

To make a fair comparison, we set similar options for all five

algorithms: motif length is set to 4 that the number of match states

is 4 for HMM. For generative HMM (Gen and GenM), we run the

Baum-Welch algorithm with 10 random initialization and at most

50 iterations. For discriminative HMM (Disc, DiscM and

DiscMU), the generative HMM algorithm is executed firstly with

the same options described above, then the extended Baum-Welch

algorithm is implemented on the HMM with highest likelihood

with 50 iterations at most. In order to obtain multiple non-

redundant motifs for each compartment, after a motif is found we

mask the amino acids assigned to match states by Viterbi

algorithm [35,36] with random amino acids, and the process is

repeated 10 times.

The reasons for setting the motif length to be 4 are: firstly, the

average length of functional eukaryotic linear motifs validated

experimentally, including ligand sites, post-translational modifica-

tion sites, proteolytic cleavage and processing sites and subcellular

targeting sites, is approximately 6 (6.3) residues. Simultaneously,

the 6.3 residues contain 3.7 defined positions (positions that cannot

tolerate an amino acid substitution or can tolerate a limited

number of amino acid substitutions that usually share some

physicochemical or structural property) on average [37], and the

concept of defined position is consistent with the match state of

HMM. Secondly, it has been experimentally validated that when

comparing setting the length of HMM to 4 versus setting the

length to range from 3 to 7, the performance of predicting protein

locations doesn’t fluctuate much [38].

The SVM is trained and tested by the software SVMlight [39]

with the linear kernel. The default options are used and the value

for the trade-off between error and margin is set to 0.01 as in the

DiscHMM. The simulated evolution is implemented in MATLAB

and the new datasets are stored before HMM training. Execution

of the discriminative HMMs training with random under-

sampling method is based on the DiscHMM source code.

Results

We compare the results of the five sets of experiments with the

same evaluation criteria as the DiscHMM and focus on the impact

of the data imbalance on the motif discovery and classification. In

order to prevent the impact brought by excessively high sequence

similarity, all the results are obtained on the original PSLT2

dataset not the augmented dataset after simulated mutation.

Combining Resampling Improves Prediction Precision
and Recall for Minority Classes

The primary goal of our work is to identify novel discriminative

targeting motifs which are occurring frequently in the positive set

while scarcely or not occurring in the negative set. Since there is

still a little current knowledge about targeting signals, finding a

discriminative targeting motif based on its effect of classifying

positive and negative sequences may be a useful and effective way.

As a result, we use the found motifs to predict localization and

further apply the prediction results to evaluate motif finding

methods. The evaluation criteria used here are recall, precision

and accuracy, and they are given by the following formulas:

Table 1. Compartment distribution.

Compartment Num.I Percent.I Num.II Percent.II

Cytosol 190 15.73 453 23.98

ER 84 6.95 156 8.26

Golgi 25 2.07 77 4.08

Vacuole 30 2.48 43 2.28

Mitochondria 312 25.83 345 18.26

Nuclear 454 37.58 647 34.25

Peroxisome 17 1.41 24 1.27

Membrane 86 7.12 126 6.67

Secreted 10 0.83 18 0.95

Total 1208 100 1889 100

This table shows that the compartment distribution is severely skewed. The first
column is the cellular compartment; the second and third columns are the
number and percentage of sequences in each cellular compartment of the
dataset I, while the fourth and fifth columns are those of the dataset II.
doi:10.1371/journal.pone.0087670.t001
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recall~
#(sequences correctly assigned to category m)

#(sequences belonging to category m)
ð4Þ

precision~
#(sequences correctly assigned to category m)

#(sequences assigned to category m)
ð5Þ

accuracy~
#(sequences correctly categorized)

#(sequences)
ð6Þ

The overall accuracies of this prediction comparison are shown

in Figure 1. From this figure we can get following conclusions:

1. The total accuracy of GenM, DiscM and DiscMU are higher

than Gen and Disc, this is probably due to the application of

over-sampling via simulated evolution, as a result, the multi-

class imbalance problem has been solved, so that the precision

and recall of minority classes increase substantially which will

be described in detail later.

2. The hierarchical structure, that mimics the cellular sorting

pathways and may provide another layer of biological

information, leads to great improvement in classification results

for Gen and Disc which has been shown in DiscHMM, but it

has a little effect on DiscMU and even worse than flat structure

for GenM and DiscM. The reasons for the above situations

may be that we use over-sampling method based on a simple

simulated evolutionary model to generate new sequences and

don’t consider embodying the information of the cellular

sorting pathways in that model, therefore, some of the new

sequences may contain more targeting information of the

negative class than their own class, so that it is affected when

using the hierarchical structure of compartments for training

and classification. These have greater impact on GenM and

DiscM than DiscMU since in DiscMU we use under-sample to

reduce this impact to some extent.

3. The method Disc doesn’t outperform Gen as it is presented in

[9], although only a few differences between our experiments

and DiscHMM in the experimental parameter settings such as

the number of random initializations reduces from 100 to 10

and the maximum iterations for both generative and

discriminative training reduce from 100 to 50. The reason

may be that no matter the Baum-Welch algorithm for MLE or

the extended Baum-Welch algorithm for MMIE, both of them

are based on the EM (expectation-maximization) algorithm

which is easy to fall into local optimum when choosing an

inappropriate initial estimates of the HMM parameters [22].

So this result may be caused by the reduction of initializations.

4. GenM and DiscM, versions of Gen and Disc respectively

combining over-sampling, receive high prediction accuracies.

Specifically the DiscM with flat structure which reaches the

highest accuracy (62.5%). However, both the percentage and

significance of the conserved motif instances discovered by

these two methods are lower than Gen and Disc which will be

shown in detail later. This indicates that the motifs found by

these two methods are very helpful in classifying, but them may

be not potential sorting signals or involved in other functions

that proteins in a given compartment need to carry out.

Further, we will discuss later that the motifs found by DiscMU

method, versions of Disc combining over-sampling and under-

sampling, are not only beneficial to classification, but also can

find more conserved motifs.

The above discussions on overall accuracy don’t adequately

reflect the negative impact of data imbalance problem and the

superiority of our algorithm. Therefore, we do a further test on

dataset I to illustrate the performance of Disc and DiscMU on

each compartment. The results are displayed in Table 2 and

Table 3, where parenthesis after the rows are percentage of labels.

As we can see, the precision and recall of almost all com-

partments are improved by our method, except the precision of

Membrane (7.1) reduces from 67.13% by Disc on flat structure to

66.26% by DiscMU on tree structure, the recall of Membrane

(7.1) reduces from 43.30% by Disc on tree structure to 34.32% by

DiscMU on tree structure and the recall of Nuclear (37.6) reduces

from 73.62% by Disc on flat structure to 73.36% by DiscMU on

flat structure. However, the precision and recall of the relatively

minority classes, such as Secreted (0.8), Peroxisome (1.4) and Golgi

(2.1), improve greatly. The results imply that the discriminative

HMMs training with the strategy of combining over-sampling with

under-sampling is an effective method for protein subcellular

localization prediction.

The three most discriminative motifs found by Disc and

DiscMU using hierarchical compartment structure are shown in

Figure 2. The discriminative motifs are ranked by one-step

backward feature selection as described before. Motifs are

visualized using HMM logos [40]. A stack of letters represents a

match state, the total stack height is the relative entropy between

the match state’s emission distribution and the background

distribution of letters, the relative height of each letter in the

stack is proportional to its emission probability. A red-shaded stack

visualizes an inserted state, where widths of dark and light part

correspond to the hitting probability and the expected length

respectively.

Over-sampling via Simulated Evolution Helps to Recover
Known Targeting Motifs

After evaluating the found motif by precision and recall of

localization prediction, we would like to identify how many of

motifs discovered by different methods were previously known.

A list of known targeting motifs collected by Lin [9] is used in

this paper. This list includes 56 known targeting motifs, 23 of them

from Minimotif Miner and 33 from InterPro, where the InterPro

motif may be associated with two or three distinct localizations (see

Table S2 in File S1). A comparison of found motif instances with

known motif instances is executed to determine whether a known

targeting motif is recovered. For instances of a known motif,

retrieving top instances of the found motifs by posterior decoding

as described above where the number of found motifs’ instances is

four times the number of the known motif’s instances, the

evaluation criterion of whether the known motif is recovered is

that one-third of its instances are overlapped by the instances of

the found motifs at least half the motif length.

Figure 3 shows the number of known motifs recovered by

different methods and their corresponding p-value used to

estimate statistical significance which is calculated by generating

random motifs (for how to calculate the p-value, please see the

Supporting Information for details). As we can see, those motif

discovery methods in which we employ simulated evolution

(GenM, DiscM and DiscMU) were able to identify the most motifs

followed by Disc. The reasons to explain this result are the sample
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diversity and phylogenetic knowledge brought by simulated

mutation. The simulated evolution generates a lot of new training

sequences integrated with phylogenetic knowledge by using the

information in the BLOSUM62 matrix, this may make our

method conducive to identify the known targeting motifs.

Moreover, DiscMU, in which we incorporate simulated evolution

and under-sampling into the discriminative HMM training

method, finds the same number of motifs in known targeting

motif database Minimotif Miner and InterPro while other

methods recover few motifs in InterPro than Minimotif Miner.

This may imply that DiscMU is not susceptible to the influence of

the difference between databases when recovering known target-

ing motifs. A comparison of the HMM logos of the motifs found by

DiscMU and the regular expressions of known motifs recovered is

provided in Table S1 in File S1 and Table S3 in File S1.

Combining Resampling Improves Percentage and
Significance of Conserved Motifs

The previous discussion shows that methods with over-sampling

by simulated evolution were able to recover the most known

motifs. However, they recover only a few known targeting motifs,

Figure 1. Total accuracy of predictions. Motifs are discovered by the five methods on flat and hierarchical (tree) structure respectively.
doi:10.1371/journal.pone.0087670.g001

Table 2. Precision of each compartment.

Compartment Disc Disc DiscMU DiscMU

flat (%) tree (%) flat (%) tree (%)

Secreted (0.8) 3.33 0.00 36.00 41.67

Peroxisome (1.4) 0.00 0.00 66.67 50.00

Golgi (2.1) 28.33 10.00 51.50 59.17

Vacuole (2.5) 15.00 25.00 40.00 57.50

ER (7.0) 49.98 62.35 55.52 64.94

Membrane (7.1) 67.13 59.30 58.69 66.26

Cytosol (15.7) 54.56 50.26 71.99 59.44

Mitochondria (25.8) 50.66 48.93 56.52 51.28

Nuclear (37.6) 63.24 70.42 65.96 71.39

This table shows that our method significantly improves the precision of the
minority classes.
doi:10.1371/journal.pone.0087670.t002

Table 3. Recall of each compartment.

Compartment Disc Disc DiscMU DiscMU

flat (%) tree (%) flat (%) tree (%)

Secreted (0.8) 10.00 0.00 34.33 35.67

Peroxisome (1.4) 0.00 0.00 55.00 34.17

Golgi (2.1) 4.68 1.00 20.55 13.47

Vacuole (2.5) 5.33 8.67 25.69 32.43

ER (7.0) 29.90 28.27 36.42 35.38

Membrane (7.1) 35.14 43.30 27.05 34.32

Cytosol (15.7) 14.97 29.45 18.16 32.88

Mitochondria
(25.8)

64.04 67.41 70.61 72.99

Nuclear (37.6) 73.62 64.78 73.36 62.43

This table shows that our method significantly improves the recall of the
minority classes.
doi:10.1371/journal.pone.0087670.t003
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even the most effective method recovers only 4 from 56. This is

probably due to that there have been many real targeting motifs

that are unknown up to now. Moreover, since the found motifs are

very useful for protein subcellular localization predicting, some of

them may play an as yet unidentified role in localization or other

different biological interpretations of sequence signatures that

differentiate between proteins that reside in different compart-

ments. The key problem is how to validate them as potential

sorting signals or involved in other functions that proteins in a

given compartment need to carry out. One way is using the

analysis of motif conservation: the found motifs that are expected

to be potential sorting signals are more conserved among

evolutionarily close species [41].

First, according to Saccharomyces Genome Database (SGD) fungal

alignments [42] for seven yeast species [43,44], each amino acid in

the 1,521 Saccharomyces cerevisae protein sequences is defined as four

conservation states: no conservation versus weak, strong, and

identical conservation (across seven species). Second, for each of

the five methods, 20 most discriminative motif candidates defined

by backward feature selection as described previously are chosen.

Third, for each of the 20 motifs, the top 30 positions based on

likelihood or posterior probability are retrieved. Finally, for each

motif instance, it is considered conserved if all sites in that instance

are labeled as having strong or identical conservation by ClustalW

[45].

The percentage of conserved motif instances for different

methods and the corresponding statistical significance are

presented in Figure 4 (for how to calculate the p-value, please

see the Supporting Information for details). The percentage of

conserved 4-mers is only 41 [9]. In contrast, for motifs identified

by DiscMU using flat or hierarchical structure, 52 percent and 53

percent of motif instances are conserved, respectively. For Disc

using flat or hierarchical structure, 50 percent and 51 percent of

motif instances are conserved, respectively, and for Gen, 50

percent instances are conserved. For DiscM using flat or

hierarchical structure, 50 percent and 45 percent of motif

instances are conserved, respectively, and for GenM, 43 percent

instances are conserved. The conservation achieved by DiscMU

using hierarchical structure is the highest among the methods.

These results clearly indicate that motif instances discovered by

all methods are significantly conserved when compared to

conserved 4-mers. Moreover, For GenM and DiscM, versions of

Gen and Disc respectively combining over-sampling, both the

percentage and significance of the conserved motif instances are

lower than Gen and Disc, although they are very useful in

predicting locations. As we mentioned before, since we have used

the simulated evolution method to generate a large number of new

sequences, when we adopt the one-vs.-all strategy for MMIE, the

negative training set becomes so large that the extended Baum-

Welch algorithm is affected for training HMM. Consequently,

HMM trained by GenM and DiscM cannot reflect the common

characteristics of the positive training sequences. However,

DiscMU, incorporating simulated mutation and random under-

sampling into discriminative HMM training, achieves relatively

high percentage, significance of the conserved motif instances and

prediction accuracy. This suggests that the proposed method is not

only contributing to classify proteins, but also more useful for

discovering conserved motifs.

Discussion

We have developed and used a new method that applies a

simple strategy of combining over-sampling with under-sampling

method in discriminative HMM training to discover protein

targeting motifs. The combining strategy contains over-sampling

method via the simulated evolution for multi-class imbalance

problem at the data preprocessing stage and random under-

sampling method for the imbalance between the positive and

negative datasets at discriminative HMM training stage. It

successfully deals with these data imbalanced problems and assists

Figure 2. Top 3 motif candidates. These motifs are most predictive of localization, which are discovered on hierarchical compartment structure
by (A) Disc and (B) DiscMU. The x-axis title of each HMM logo is the rank and compartment of the motif.
doi:10.1371/journal.pone.0087670.g002
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in identifying more discriminative motifs in terms of prediction

precision and recall for all compartments especially the minority

classes. According to the conservation analysis, most of the novel

motifs discovered are considered to be potential sorting signals or

involved in other functions that proteins in a given compartment

need to carry out. The advantage of our method is probably due to

Figure 3. Number of known motifs recovered by different methods. The p-values are calculated by generating random motifs.
doi:10.1371/journal.pone.0087670.g003

Figure 4. Percentage of conserved instances of the top 20 candidate motifs. The p-values are calculated by hypergeometric test.
doi:10.1371/journal.pone.0087670.g004
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two aspects: first, the over-sampling method via simulated

evolution contains phylogenetic knowledge obtained from the

information in the BLOSUM62 matrix [15], while avoiding over-

fitting as a result of the diversity of new generated sequences.

Second, while guaranteeing the full use of useful information in

negative training set, the random under-sampling method reduces

the influence of the excessive negative training sequences.

Our method provides a way to solve the data imbalance

problem in discriminative motif discovery with multiple-class.

Although we take the discovery of protein targeting motifs as an

example to show the power of our method, our method can be

easily applied to other problems of motif discovery and can

contribute significantly to finding efficient, discriminative and

conserved motifs, e.g., DBDs, post-translational modification sites

and protein-protein interaction sites.

Although the results presented in our paper show that the

proposed method is relatively efficient in solving the data

imbalance problem in discriminative motif finding, there are still

same inadequacies in our work. For example, we select the 20%

mutations in our experiment since it performs better for building

profile HMMs to recognize G-protein coupled receptor proteins

and SCOP super-family proteins, however, it is very important to

research on how different mutation rates affect the establishment

of profile HMMs for targeting motifs and how to build different

mutation models for different subcellular compartments, such as

the b-Strand mutation model for beta-structural motifs [16], to

avoid destroying the invariant amino acids of targeting motif

instances. In addition, the motif length is set to 4 for HMM

training in our experment, but when we compare the known

motifs and found motifs, it indicates that when the length of the

known motifs is around 4, the regular expressions of the known

motifs recovered match the found HMMs relatively better,

otherwise they are not good and especially when the length of

the known motif is particularly long (see Table S1 in File S1 and

Table S3 in File S1). Therefore, finding the optimal motif length is

very important in motif discovery and we will consider this

problem in future research.

In addition to the cases mentioned above, it is helpful to take

advantage of the attributes of short linear motifs [37] to limit the

motif discovery intervals in protein sequences and reduce the

computational complexity of the Baum-Welch algorithm [46], so

that the proposed approach can be applied on large datasets more

effectively. Meanwhile, for future work, we would like to

incorporate some known information of subcellular localization

into the HMM as the prior knowledge to make the targeting motifs

more precise and introduce self-adaptive sampling method

according to the weights of sequences instead of treating all

sequences equally to make the found motifs more discriminative in

HMM training.
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