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ABSTRACT

After diverging, each chimpanzee subspecies has
been the target of unique selective pressures. Here,
we employ a machine learning approach to clas-
sify regions as under positive selection or neutral-
ity genome-wide. The regions determined to be un-
der selection reflect the unique demographic and
adaptive history of each subspecies. The results
indicate that effective population size is important
for determining the proportion of the genome un-
der positive selection. The chimpanzee subspecies
share signals of selection in genes associated with
immunity and gene regulation. With these results,
we have created a selection map for each popu-
lation that can be displayed in a genome browser
(www.hsb.upf.edu/chimp browser). This study is the
first to use a detailed demographic history and ma-
chine learning to map selection genome-wide in
chimpanzee. The chimpanzee selection map will im-
prove our understanding of the impact of selection
on closely related subspecies and will empower fu-
ture studies of chimpanzee.

INTRODUCTION

Although chimpanzees are the closest genetic relative to hu-
mans, sharing much of our genetic information, we still un-
derstand little about their evolutionary history. In recent
years, a more comprehensive picture of their demographic
history has been elucidated (1–3). Chimpanzees and bono-
bos diverged around a million years ago. The two major
branches of the chimpanzee lineage began to split from each
other some 500 thousand years ago (kya). Today, we iden-
tify four subspecies of chimpanzee, and understand that Pan
troglodytes verus and P.t. ellioti are more closely related and
diverged from each other first (∼250 kya), followed by P.t.
troglodytes and P.t. schweinfurthii (diverging <150 kya). Al-

though the four subspecies are genetically and geographi-
cally distinct, it is clear that there has been an extensive gene
flow among chimpanzee subspecies and introgression with
bonobo (4).

The demographic history of a species is an important
key in understanding their evolution. The size of a popu-
lation’s breeding pool can indicate how many positive selec-
tive events are likely to have taken place (5) and how strong
the effects of genetic drift may in fact be (6). Furthermore,
introgression between species and gene flow from a close
subspecies may be a source for beneficial genetic material, as
reviewed by Arnold and Martin (7).

Beyond demography, unique selective events are likely
to have impacted the genomes of chimpanzee based on
their habitats. The four subspecies live in two distinct
regions of Africa. Pan troglodytes verus (western chim-
panzee) lives in Ivory Coast and Guinea, while the other
three subspecies live in central Africa. Specifically, P.t. el-
lioti (Nigeria–Cameroon) lives in its namesake countries,
P.t. schweinfurthii (eastern) inhabits seven countries but
primarily in the Democratic Republic of Congo and P.t.
troglodytes (central) inhabits five countries but primarily
Gabon. The selective pressures that these populations face
are likely due to their unique habitats. In different re-
gions, these populations will experience exposure to diver-
gent pathogens, differing quantity and quality of resources,
and, most importantly, for a social animal, separate cul-
tures. All these factors together are likely to be responsi-
ble for some of the genetic differences we observe between
chimpanzees.

Here, we present the first comprehensive scan of the chim-
panzee genome that integrates varied selective simulations
that encompass complete and ongoing selection occurring
between present time and some 60 kya. These simulations
are interrogated by 15 statistical tests, and with a random
forest machine learning approach we map positive selection
to better understand the unique evolutionary history of our
genetic cousins, unveiling their adaptive history through the
unique or shared signals of positive selection.

*To whom correspondence should be addressed. Tel: +1 34 93 316 0845; Email: hafid.laayouni@upf.edu
Correspondence may also be addressed to Jaume Bertranpetit. Email: jaume.bertranpetit@upf.edu
Present address: Mayukh Mondal, Institute of Genomics, University of Tartu, Riia 23b Tartu, 51010 Tartu, Estonia.

C© The Author(s) 2020. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0003-1297-5078
http://www.hsb.upf.edu/chimp_browser


2 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 3

Figure 1. Demographic model indicating population divergence times, ef-
fective population sizes and migration within the Pan clade. Migration
(black arrows) indicates bidirectional migrational pulses over time. Pop-
ulation size is indicated in the upper right-hand corner.

MATERIALS AND METHODS

Genome sequences

Full genome sequences of chimpanzee and bonobo were
obtained from the Great Ape Genome Project (3,4) as vcf
files aligned to chimpanzee genome release Pantro4. The
sample sizes are 18 P.t. troglodytes, 19 P.t. schweinfurthii,
10 P.t. ellioti, 12 P.t. verus and 10 P. paniscus. The ances-
tral states for each single-nucleotide variant (SNV) were ex-
tracted from the 1000 Genomes data (8) using the human–
gorilla–chimpanzee alignment from Ensemble release 54.
The data were pruned to exclude missing sites, missing an-
cestral information, introgressed regions (4), and insertions
or deletions for a total of 1 022 493 SNVs. The data were
phased using Shapeit (9) (for additional information, see
Section 1.1 in the Supplementary Data).

Demographic model

We used a demographic model adapted from (4) (the for-
mulation of the demographic model is explained in detail
in Section 1.2 in the Supplementary Data, Supplementary
Figure S1 and Supplementary Table S1). Briefly, the demo-
graphic model (Figure 1) was adapted to include all four
subspecies of chimpanzee and bonobo with all meaning-
ful admixture events, including migration and introgres-
sion. The model was additionally adapted to account for the
long-term effective population sizes for each subspecies be-
fore the bottleneck at current time, as in (10), resulting in the
current estimates for effective population sizes as 39 925 for
P.t. troglodytes, 12 829 for P.t. schweinfurthii, 12 364 for P.t.
ellioti and 10 742 for P.t. verus. Pan troglodytes troglodytes
and P.t. schweinfurthii diverged from each other 136 350 ya,
P.t. ellioti and P.t. verus diverged 498 462 ya and the ances-
tors of the two major branches of chimpanzee split 512 050
ya.

The selection of the demographic model is important for
a study of this type. Luckily, our demographic model has

been estimated from the full genome sequences included in
this study. This results in the fact that the used demogra-
phy is the most accurate depiction of the complex relation-
ships between analyzed subspecies as estimated from the an-
alyzed samples.

Simulations

We used the coalescent simulator msms (11). For the neu-
tral simulations, we simulated 2000 replicates of 600 000 bp
sections. We matched the sample sizes of each subspecies re-
sulting in sample sizes of n = 18 for P.t. troglodytes, n = 19
for P.t. schweinfurthii, n = 10 for P.t. ellioti and n = 12 for P.t.
verus. Each subspecies was modeled independently because
each subspecies is an independent lineage where selection
and divergence have been impacting each group uniquely
for >5000 generations.

For the selective scenarios, we used the demographic
model introduced above. We chose to simulate selection at
the following generation time points: 600, 900, 1200, 1500,
1800, 2100 and 2400 (generation time is 25 years), in order
to take advantage of the predicted power of positive selec-
tion statistics, discussed below. To do this, we used the tag
-e. We allowed for hard selection (where selection begins on
a singleton in the populations) using the tag -SAA.

We allowed for the selection coefficient to vary between
0.05 and 0.55. These coefficients were chosen to combat the
power of drift. As genetic drift is a more powerful evolu-
tionary force than selection in small populations, the short
timescale of the most recent selection events required the
use of high coefficients. We independently selected 1000 sim-
ulations where the final allele frequency (FAF) was fixed
(complete sweep) and 1000 simulations where the FAF was
between 0.6 and <1 (incomplete) for each subspecies using
the tag -oTrace. We set the selected allele in the center of
the 600 000 bp region, resulting in a total of 7000 hard in-
complete and 7000 hard complete, or 14 000 simulations per
subspecies of length 600 000 bp. The full msms code is pre-
sented in Section 1.2 in the Supplementary Data.

Statistical tests

In order to differentiate regions under selection, we cal-
culated a suite of statistical tests based on site frequency
spectrum, linkage disequilibrium, descriptive statistics and
population differentiation (Table 1). We chose 15 statistics
based on the results from (25), which employed a machine
learning approach to search and classify selection in the
human genome using a combination of signals from vari-
ous statistics. All statistics were calculated genome-wide for
both real and simulated datasets. The window-based statis-
tics were calculated in windows of 30 kb with a 3 kb slid-
ing window. Windows were dropped if there were <5 SNVs
in the window, to avoid the possibility of poor statistical
power in that area. The window- and SNV-based statistics
were combined by selecting the median value of each SNV-
based statistic per window. All statistics were calculated us-
ing scripts provided by Pybus et al. (25). Only windows in
the center of the simulated 600 000 bp regions that con-
tained the selected allele were used for the final model. The
genome-wide real data and the neutral simulations for each
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Table 1. Tests calculated in the chimpanzee genomes and used to train
the random forest algorithm in order to calculate a composite score of
selection

Principle Method

Site frequency spectrum Tajima’s D (12)
Fu and Li’s D (13)
Fu and Li’s F (13)

R2 (14)
Linkage disequilibrium iHS (15)

EHHAverage (16)
Wall’s B (17)
Wall’s Q (18)
Fu’s F (19)

Za (20)
ZnS (21)
ZZ (20)

Population differentiation �DAF (22)
XP-EHH (23

Descriptive statistics π (nucleotide diversity) (24)

statistic are presented in Supplementary Figures S2–S22,
and for simulated neutral and selective scenarios in Supple-
mentary Figures S23–S43.

Random forest algorithm

We employed a machine learning approach in order to dif-
ferentiate between regions of the genome, split into 30 kb
windows with a 3 kb sliding window, that are neutral and
regions that have evidence of a selective sweep. Random
forest uses decision trees as a base classifier. This learning
method is used for classification and regression of data. We
chose a random forest method because it is an improvement
on previous machine learning approaches such as decision
trees (which run the risk of overparameterization when us-
ing correlated input statistics) (26,27) or bagging (i.e. boot-
strap aggregating, which runs the risk of basing the regres-
sion model on too many similar trees) (28). Our input data
consist of many correlated statistics (Figure 2), all of which
have benefits and disadvantages. The random forest algo-
rithm is an extension of bagging, in that it constructs an
entire forest with trees of random structure at each node
by randomly selecting training instances for each tree (i.e.
each tree is trained with a different set of simulations and a
unique random subset of the calculated statistics). This en-
sures that the ultimate regression model is based on a suffi-
cient mixture of the underlying data that avoids both over-
parameterization and bias being built into the underlying
model (29). New statistical advances are using new methods
to extract information from complex dataset; for example,
approximate Bayesian computation is used to infer past de-
mographic events from genome-wide sequencing data (30)
and deep learning methods are applied to identify the best
demographical models (31) or to jointly infer natural selec-
tion and demography (32). The random forest model has
been observed to be particularly apt for use in computa-
tionally difficult problems like selection in genomes (32,33)
or models where single predictors have little power (34).
For more information, see Section 1.3 in the Supplemen-
tary Data.

We used the R package randomForest version 4.6-14 (35)
in R version 3.5.2 (36). The model was trained with the 15

calculated statistics for both the neutral simulations and the
selective simulations. We modeled extensive selection sce-
narios occurring between present time and 60 kya, when
the test statistics are robust (8–9,11–21). We grew forests
of 5000 random trees; all other parameters were set to de-
fault. The measures of accuracy for random forest algo-
rithms are out-of-bag (OOB) error rates. These values are
calculated by randomly selecting a subset of the statistics for
random simulated regions to train and test the accuracy of
the model based on the non-sampled instances. OOB error
rates are similar to the more common cross-validation pro-
cedures, as they are both bootstrapping methods. An OOB
rate indicates the probability that the instance belongs to
any class. The random forest was modeled independently
for each subspecies.

According to our OOB error estimates, ∼500 trees are ad-
equate (Supplementary Figures S45–S48). The output of a
random forest is the majority voting score. Each randomly
generated tree categorizes the input region; that is, an out-
put score of 0.60 selection and 0.40 neutral indicates that
60% of the 5000 trees categorized the input region as un-
der selection while 40% of the trees categorized the input
region as neutral. In order to be as conservative as possi-
ble, we accepted only signals of putative positive selection
where at least 95% of trees categorized the region as under
selection. This cutoff is not the same as other cutoffs like
a false discovery rate (FDR) in which the study accepts an
error rate of 5%. In the case of random forests, each tree
is trained with a unique combination of the underlying pa-
rameters, which means that not all trees have been trained
with the correct scenarios to detect selection in every place
in the genome; in other words, this 95% cutoff allows for
‘badly’ designed trees to be ignored. Error rates are calcu-
lated separately using OOB (Supplementary Table S6). Our
final model is a function of the 15 selection tests that give,
for each window, a value that tells what portion of the trees
in the forest predicts that positive selection has acted in that
given window.

Negative selection

To remove false positives due to background selection, we
perform the McDonald–Kreitman (MK) test (37) using the
program PopGenome version 2.7.1 (38) in R version 3.5.2
(36). We split the genome into gene regions using Ensembl
release 90 annotations. The outgroup was set as bonobo and
all sample sizes were matched (N = 10).

Gene ontology

Gene ontology (GO) analysis was performed using PAN-
THER classification system version 14.1 (39) with Ensem-
ble 95 annotations. In all cases, gene lists were uploaded and
analyzed using the P. troglodytes organism annotations and
statistical overrepresentation test using a Fischer’s exact test
and correction by FDR.

Genes under selection

To extract the genes within windows under selection, we
used intersectBed from BEDTools version 2.28.0 (40) using
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Figure 2. Correlation between calculated statistics for each subspecies: (A) P.t. troglodytes, (B) P.t. schweinfurthii, (C) P.t. ellioti and (D) P.t. verus.

the .gtf file from Ensembl release 90. The gene overlap was
plotted using jvenn (41). We then used the desktop version
of the Ensembl variant effect predictor [release 93 (42)] to
extract possible functional variants under selection. We ex-
tract all sites with predicted impact high, moderate and low.
We extract allele frequencies for each variant site for all four
subspecies in order to assess differences among them.

RESULTS

Regions identified using the random forest machine learning
approach

We trained a machine learning algorithm to discern be-
tween regions of the genome that have been evolving neu-
trally or experienced a positive selective sweep at some point
in the recent past (up to 60 kya). We calculated 15 statis-
tics (Table 1 and Supplementary Figures S2–S43) based on
site frequency spectrum, linkage disequilibrium and pop-
ulation differentiation. These statistics were calculated in
30 kb regions genome-wide and within neutral and selec-
tion simulations based on the demographic history of chim-

panzees (see Section 1.2 in the Supplementary Data and
Supplementary Figure S1 for further information). We used
the simulations to train a random forest algorithm; see the
‘Materials and Methods’ section for additional informa-
tion. We observe a low OOB error rate for each subspecies
(P.t. verus = 2.94%, P.t. ellioti = 2.62%, P.t. schweinfurthii
= 1.26% and P.t. troglodytes = 1.09%), indicating that we
are able to discern between selective and neutral regions,
based on selective simulations (see Supplementary Figures
S44–S51 and Supplementary Tables S2–S5 for subspecies-
specific and test-specific performances). For all four sub-
species, the model has higher false negative (i.e. incorrectly
categorizing as neutral) rates than false positive (i.e. incor-
rectly categorizing as selection) in all cases; the false positive
rate is <1% (Supplementary Table S6). The false negatives
indicate the power to detect selection (calculated as 1 − false
negative error rate) is dependent on our study sample sizes
(P.t. verus = 86.75%, P.t. ellioti = 88.00%, P.t. schweinfurthii
= 93.17% and P.t. troglodytes = 93.95%).

After applying the regression model based on the train-
ing set, we compute a prediction for each window in the
genome for each subspecies of chimpanzee. In order to re-
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Table 2. Regions of the genome for each subspecies of chimpanzee identified as under selection (P.t.v. is P.t. verus, P.t.e. is P.t. ellioti, P.t.s. is P.t. schwein-
furthii and P.t.t. is P.t. troglodytes)

Subspecies
Regions under

selection
Relative genome

proportion
Total number of

genes
Number of unique

genes
Proportion of regions

without genes

P.t.v. 373 0.48% 302 257 54.4%
P.t.e. 322 0.42% 381 322 28.6%
P.t.s. 328 0.58% 356 269 33.2%
P.t.t. 743 1.11% 823 694 29.1%

main confident that we are extracting true signatures of pos-
itive selection, we test whether these regions are the target of
background selection. Negative selection is a demography-
free process (43) that can cause similar reductions in genetic
diversity, which may be falsely picked up in our positive se-
lection scan. While previous research indicates that positive
selection is needed to explain the reduced genetic diversity
around gene regions in the great apes (5), we performed the
MK test (6) in all gene regions as compared with bonobo in
order to confirm that our identified regions have not been
confounded by negative selection. We found that none of
the regions determined as under positive selection in our
random forest model reached genome-wide significance for
the MK test. However, a small fraction of regions (<5%;
Supplementary Table S7) for each subspecies reported a
neutrality index >1, indicating a decrease in non-silent di-
vergence. We removed these regions from the remainder of
our analysis. These results indicate that our input statistics
effectively removed regions under strong negative selection
but were confounded by regions under weak negative selec-
tion. This is likely since none of our 15 statistics is using
divergence to look for a deviation from neutrality, and tests
for background selection rely on divergence data.

We identify the greatest number of regions under selec-
tion in the subspecies P.t. troglodytes, and similar numbers
for the other three subspecies (Table 2 and Supplementary
Tables S8–S11). This is due in part to the underlying de-
mography of these lineages, where P.t. troglodytes has a cur-
rent effective population size around three times larger than
the others (see Section 1.2 in the Supplementary Data for
further demography details). Our study confirms previous
research finding that the number of selective sweeps scales
with effective population sizes (5).

Signals of selection in chimpanzee

As expected, most signals of selection intersect with coding
gene regions. However, 54.4% of observed signals of selec-
tion in P.t. verus fall outside coding regions. For the remain-
ing three of the four subspecies, ∼30% of regions predicted
as under putative positive selection contain no genes (Table
2). Overall, the proportion of regions that contain genes is
much higher than has been found in studies of selection in
the human genome (25,44). Similar results were previously
found in apes (45). With current knowledge and tools, it is
difficult to interpret signals that fall outside coding regions.
The annotation of the genome does not allow for a precise
interpretation of selection signals in non-coding or regula-
tory regions. We expect that some of these signals are re-
sponsible for affecting protein coding genes through regu-
lation.

Table 3. The number of regions and genes identified as under selection in
more than one subspecies (P.t.v. is P.t. verus, P.t.e. is P.t. ellioti, P.t.s. is P.t.
schweinfurthii and P.t.t. is P.t. troglodytes)

Subspecies Overlapping regions Overlapping genes

P.t.e.–P.t.s. 10 5
P.t.e.–P.t.t. 29 39
P.t.e.–P.t.v. 10 11
P.t.s.–P.t.t. 63 64
P.t.s.–P.t.v. 11 10
P.t.t.–P.t.v. 22 16
P.t.e.–P.t.s.–P.t.t. 4 2
P.t.e.–P.t.t.–P.t.v. 1 2
P.t.s.–P.t.t.–P.t.v. 5 6

After extracting the genes located within each region (Ta-
ble 2 and Supplementary Table S12), we find 823 genes as
being targets of selection for P.t. troglodytes, while the re-
maining three subspecies have around 300 genes each. For
all four subspecies, the signals of selection are enriched for
genes, based on randomly sampling the same number of
regions 100 000 times for each subspecies P-value <0.01
(P.t. ellioti 305 versus 15, P.t. schweinfurthii 406 versus 20,
P.t. troglodytes 824 versus 40, P.t. verus 228 versus 17 re-
gions with genes). We first compared our results with a pre-
vious scan of selection in chimpanzee (43) and both the
studies identify signatures of selection in 46 subspecies-
specific genes (6 P.t. ellioti, 11 P.t. schweinfurthii, 22 P.t.
troglodytes and 7 P.t. verus, Supplementary Table S12) of
our total genes.

When comparing significant regions across subspecies
(Table 3 and Figure 3), we observe that the target of selec-
tion in the subspecies is not common. In fact, we find no
overlap for all four subspecies. We detect 10 genes that over-
lap with three subspecies and 145 genes appear in scans for
two subspecies (Table 3). This leaves the majority of genes
as unique to the individual subspecies (Supplementary Ta-
ble S12). Indeed, these results may be an artifact that our
simulations did not include selection on multiple subspecies
concurrently; however, we were still able to detect common
signals of selection based on deviations of the site frequency
spectrum and linkage map. Altogether, this observation in-
dicates that the selective pressures exerted on each of the
four subspecies have been unique to each group in the last
60 kya. We found similar results for selection of the intro-
gressed regions between chimpanzee and bonobos (46).

Interestingly, we find that 6 of the 10 shared genes
overlapping with three subspecies are shared between P.t.
troglodytes, P.t. schweinfurthii and P.t. verus. This is a sur-
prising result as these populations do not live in a contigu-
ous region in Africa. It should be noted here that P.t. el-
lioti has the smallest sample size, and our inability to de-
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Figure 3. Venn diagram depicting the number of genes, predicted to be
under putative positive selection, which overlap between subspecies. P.t.e.
represents P.t. ellioti, P.t.s. represents P.t. schweinfurthii, P.t.t. represents
P.t. troglodytes and P.t.v. represents P.t. verus.

tect selection in common targets of selection may be due
to power more than biology; specifically, our power for this
subspecies is 88%. In general, the dearth of common signals
may be due to power in general, as our false negative rates
are relatively high (up to 16%). Furthermore, within these
regions, half of the common genes overlap; therefore, it is
unlikely that all genes are driving the signal of selection. For
more information about the specific genes and their func-
tions, see Section 2.1 in the Supplementary Data and Sup-
plementary Table S12.

For regions of selection common between two subspecies,
we observe a pattern that largely matches geography of
chimpanzee. The largest proportion of sharing can be ob-
served between P.t. troglodytes and P.t. schweinfurthii (64
genes; Figure 3 and Supplementary Table S12). This large
proportion of sharing would be expected because their habi-
tats are neighboring, split by the Congo River. The sec-
ond highest amount of sharing is between P.t. troglodytes
and P.t. ellioti. These subspecies live in central Africa west
of the Congo River, and were only recognized as separate
subspecies through genetics (47,48). Their close proximity
would suggest that they likely encounter similar selective
pressures, leading to the observed high proportion of shared
selective sweeps despite their long divergence time.

We observe seven significant (overall FDR < 0.05) GO
terms for genes that are shared between two subspecies,
specifically three terms for P.t. ellioti and P.t. schweinfurthii,
one for P.t. schweinfurthii and P.t. troglodytes, and three for
P.t. troglodytes and P.t. verus (Supplementary Table S14).
The one GO term shared between P.t. schweinfurthii and

P.t. troglodytes is ‘U12-type spliceosomal complex’ because
these two subspecies share a signal of selection in Splicing
Factor 3B subunits 2–4 (SF3B2, SF3B3 and SF3B4). These
genes encode for proteins that are part of a four-protein
complex that is essential for the splicing of pre-mRNA (49).
For a detailed description of genes and the unique divergent
variants shared between two subspecies of chimpanzee, see
Section 2.2 in the Supplementary Data.

By far, the majority of selective sweeps are observed to
be unique to each subspecies (Figure 3). These sweeps have
largely acted on gene regions (Supplementary Tables S8–
S12). We observe 4 significant (FDR < 0.05) GO terms for
P.t. verus, 7 for P.t. ellioti, 4 for P.t. schweinfurthii and 16
for P.t. troglodytes (Supplementary Table S14). The same
GO term from above, ‘U12-type spliceosomal complex’, is
again significant, and in addition to the three subunits of
SF3B, P.t. troglodytes additionally has a signal in the fourth
subunit SF3B1 as well as RNA-Binding Region-Containing
Protein 3 (RNPC3), which acts as bridge between the U11
and U12 spliceosomes (50). These signals in concert with
the large signals of selection outside coding regions indicate
the importance of regulation to the evolutionary history of
chimpanzee.

Despite indications that regulation is an important tar-
get of selection, the majority of signals are in coding re-
gions, and we have identified many possible functional tar-
gets of selection. Altogether, we identify 329 genes with mis-
sense substitutions, 6 genes with splice acceptors/donors,
95 genes with splice variants, 1 gene with a start loss, 1 gene
with a stop loss, 9 genes with a stop gain and 371 genes with
a synonymous substitution (Supplementary Table S15–S19)
that are unique to the subspecies with the signal of selection.
In addition, we detected 24 candidate derived alleles that are
shared between subspecies having overlapping signals of se-
lection, where the subspecies lacking the signal do not have
that candidate derived allele segregating in its population
(Supplementary Table S15). See Section 2.3 in the Supple-
mentary Data for specifics.

Chimpanzee selection map

We provide a comprehensive genome-wide map of selec-
tion signals. These data can be viewed and used in the
form of a USCS genome browser, available at http://hsb.upf.
edu/chimp browser/index.html, following the criteria and
configuration of a published human dataset (25,44). The
UCSC-style format facilitates the integration with the rich
UCSC browser tracks. A search allows easy access to re-
sults for specific genes or genomic regions, and all raw data
for each test and the composite random forest score can be
conveniently downloaded using the UCSC Table function.
We expect this to be a valuable resource for a wide range
of future analyses. As such, it provides a broad picture of
the action of positive selection in each genomic region in all
four chimpanzee subspecies.

DISCUSSION

We have produced a descriptive genomic map for chim-
panzee positive selection. With these results, we created
a community resource that allows researchers to further

http://hsb.upf.edu/chimp_browser/index.html


NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 3 7

investigate selection at the level of subspecies in chim-
panzee. These tracks can be viewed using the UCSC genome
browser website; each of the calculated statistics has its own
track that can be selectively viewed or downloaded using the
Table function. It will be of use to researchers investigat-
ing chimpanzee phenotypes, clinicians investigating disease
differences among human and great apes, and evolutionary
biologists interested in speciation, among others.

These results indicate that positive selection is an im-
portant driver for differentiation between populations and
eventual speciation. We find that out of all the genes with
signals of positive selection, the vast majority are unique to
a certain subspecies. While these signals may be decreased
due to power, this indicates that many interesting differ-
ences between the subspecies appear to be mainly driven by
environmental differences. Although three of the four sub-
species live in seemingly ecologically similar habitats, their
genomes indicate that exposures to subtle differences have
resulted in differential adaptations. Our results confirm a
previous study, which found that allopatric speciation was
not sufficient to explaining the divergence between P.t. el-
lioti and P.t. troglodytes (10,36). Coupled with our results,
we find evidence that selection has been a major driver for
differentiation.

We observe a clear impact by the demographic history on
the signals of selection. The population that has more than
twice the number of signals, P.t. troglodytes, as compared
with the other three subspecies has the highest effective size.
This is an expected result because genetic drift is weaker in
populations with large effective populations; as a result, se-
lection can more easily drive beneficial alleles to high fre-
quencies (5). We also observe a higher proportion of signals
outside coding regions for P.t. verus, although the biological
reason for this remains unclear. Moreover, GO results point
to genic controls on regulation (e.g. mRNA preprocessing
with significant enrichment of signals of selection indicat-
ing that regulatory regions are significant targets in driving
adaptation). Demographic models used here are based on
(10) and adapted to take into account meaningful admix-
ture events and long-term effective population size differ-
ences between subspecies; however, it is worth mentioning
that the robustness of our scan is sensitive to any misspec-
ified demography [see (51) for a discussion]. Our statistical
framework used neutral and positive selection to train the
random forest algorithm using different selection times and
coefficients. These two parameters were coupled to increase
the efficiency of simulation by increasing the selection coef-
ficient for short and recent selection times. However, this
design precludes selection coefficient and timescale to be
separated in the analysis and to evaluate the random for-
est power to detect different strengths of selection.

Our comprehensive scan of the chimpanzee genome cou-
pled with the extensive simulations of selection scenarios
occurring in the last 60 kya allows for robust categoriza-
tion of regions of the genome as under selection. This work
confirms and expands previous scans of selection in chim-
panzee (5,32,45,52). Our data are available for use by the
community in a convenient genome browser. A detailed
map of interesting genetic differences between these sub-
species is an important tool to use when building a bet-

ter understanding the genotype–phenotype map of chim-
panzees.
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41. Bardou,P., Mariette,J., Escudié,F., Djemiel,C. and Klopp,C. (2014)
jvenn: an interactive Venn diagram viewer. BMC Bioinformatics, 15,
293.

42. McLaren,W., Gil,L., Hunt,S.E., Singh Riat,H., Ritchie,G.R.S.,
Thormann,A., Flicek,P. and Cunningham,F. (2016) The Ensembl
variant effect predictor. Genome Biol., 17, 122.

43. Charlesworth,B., Morgan,M.T. and Charlesworth,D. (1993) The
effect of deleterious mutations on neutral molecular variation.
Genetics, 134, 1289–1303.

44. Pybus,M., Luisi,P., Dall’Olio,G.M., Uzkudun,M., Laayouni,H.,
Bertranpetit,J. and Engelken,J. (2015) Hierarchical boosting: a
machine-learning framework to detect and classify hard selective
sweeps in human populations. Bioinformatics, 31, 3946–3952.

45. Cagan,A., Theunert,C., Laayouni,H., Santpere,G., Pybus,M.,
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