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a b s t r a c t

A cross-ribosome binding site (cRBS) adjusts the dynamic range of transcription factor-based biosensors 
(TFBs) by controlling protein expression and folding. The rational design of a cRBS with desired TFB dynamic 
range remains an important issue in TFB forward and reverse engineering. Here, we report a novel artificial 
intelligence (AI)-based forward-reverse engineering platform for TFB dynamic range prediction and de novo 
cRBS design with selected TFB dynamic ranges. The platform demonstrated superior in processing un-
balanced minority-class datasets and was guided by sequence characteristics from trained cRBSs. The 
platform identified correlations between cRBSs and dynamic ranges to mimic bidirectional design between 
these factors based on Wasserstein generative adversarial network (GAN) with a gradient penalty (GP) 
(WGAN-GP) and balancing GAN with GP (BAGAN-GP). For forward and reverse engineering, the predictive 
accuracy was up to 98% and 82%, respectively. Collectively, we generated an AI-based method for the ra-
tional design of TFBs with desired dynamic ranges.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Transcription factor-based biosensors (TFBs) [1] have broad ap-
plications in metabolite detection [2,3], high-throughput screening 
[4,5], and dynamic metabolic control [6]. TFBs sense metabolite 
concentration signals and convert them to detectable signals, such as 
fluorescence and growth trends. One of the most important para-
meters used to characterize TFBs is dynamic range, which is defined 

as gene expression fold change with respect to the presence or ab-
sence of an inducer [7,8]. An appropriate dynamic range is critical for 
well-designed TFBs. A previous study reported that a ribosome 
binding site (RBS) regulated TFB dynamic range by adjusting gene 
expression and protein folding [7]. The TFB included two RBSs which 
controlled the translation of a transcription factor and reporter. The 
combination of both RBSs was defined as a cross-RBS (cRBS). Thus, 
cRBS sequences were essential for the rational design of TFBs. Two 
key challenges which must be considered in rationally designing 
TFBs are the construction of forward and reverse engineering plat-
forms; the former predicts TFB dynamic ranges with a given cRBS 
while the latter generates cRBS sequences with desired TFB dynamic 
ranges.

Using cRBSs with random sequences to construct TFBs often 
generates un-functional or low dynamic range TFBs. Hence, a large 
and functional cRBS library is required for forward engineering to 
exclude invalid constructs. Therefore, a random mutation is usually 
coupled with high-throughput screening to obtain cRBSs that 
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generate functional TFBs. For example, Siedler et al. constructed and 
screened functional cRBS variants from a random mutation library 
using a droplet microfluidics technique to optimize the dynamic 
range of the PadR-based biosensor, and finally achieved a 130-fold 
increase [9]. However, screened cRBSs constitute only a relatively 

small library when compared with all possible functional cRBSs. 
Furthermore, screening functional cRBSs is both laborious and time- 
consuming. Therefore, a computational approach must be estab-
lished to efficiently design novel functional cRBSs. Recent advances 
in deep learning approaches generated alternative methods for de 

Fig. 1. Forward engineering workflow. (A) The cRBS generation stage. Inactive CdaR (“OFF” state) is activated by glucarate and simultaneously increases its own and PgudP- 
controlled gene (“ON” state) expression [7]. Dashed arrows represent feedback activation. First, the discriminator was trained five times using 7053 functionally trained cRBSs to 
generate cRBSs datasets. Then, the generator was trained once using noise z consisting of standard normal distribution datasets to capture cRBS data distribution and generate 
cRBSs to fool the discriminator. Subsequently, the discriminator tried to distinguish generated cRBSs from trained ones. Finally, numerous functional cRBSs were generated by a 
zero-sum game (Supplementary Note S1) between the discriminator and generator networks in the WGAN-GP model. (B) Predicting TFB output and dynamic ranges with WGAN- 
GP-generated cRBSs. First, 7053 cRBSs and TFB output datasets were built based on random and normal distribution approaches. Then, the CNN model was continuously trained to 
obtain four predictive models: Rand-OFF-CNN, Rand-ON-CNN, Norm-OFF-CNN, and Norm-ON-CNN. Finally, the output and dynamic range of a TFB with WGAN-GP-generated 
cRBSs was predicted based on the four predictive models. (C) Validation of model prediction performance. Candidate cRBSs with differential TFB outputs in “ON” and “OFF” states 
were selected and experimentally validated in Escherichia coli BL21 (DE3). DR: dynamic range; PcdaR: a constitutive promoter controlling cdaR; PgudP: an inducible promoter 
controlling sfgfp.

N. Ding, G. Zhang, L. Zhang et al. Computational and Structural Biotechnology Journal 21 (2023) 2929–2939

2930



novo DNA sequence design [10,11]. In particular, generative adver-
sarial networks (GANs, a generative model that learns through the 
game between generator and discriminator neural networks) 
[12–14] generating biological sequences have yielded impressive 
results [15]. For example, Wang et al. constructed a Wasserstein GAN 
(WGAN, the improved GAN model that Wassertein measures the 
distance between generated and real data distributions, which 
solves the problems of unstable training and poor diversity of gen-
erated samples) system with a gradient penalty (WGAN-GP, the 
improved WGAN model that proposes an interpolation method for 
GP to make the model meet Lipschitz constraints, which solves the 
problems of slow training speed and low quality of generated sam-
ples) to generate novel promoters and predict their activity. The 
authors showed that 70.8% of artificial intelligence (AI)-designed 
promoters demonstrated good activity [15]. A detailed introduction 
to the GAN model and its development is shown (Supplementary 
Note S1).

TFB forward engineering helps predict the dynamic range of 
given functional cRBSs. However, biosensor engineering often re-
quires reverse engineering to design cRBSs from given dynamic 
ranges [16,17]. With respect to deep learning advances, a reverse 
engineering strategy based on deep learning is considered an alter-
native TFB design approach. Conditional-GAN networks [18,19], 
which are constrained distribution-based [16] generative models, 
are promising strategies which capture constrained sequence spaces 
and generate cRBSs with desired TFB dynamic ranges. In conditional- 
GAN development, Mariani et al. proposed the balancing GAN 
(BAGAN, an enhancement tool that restores the balance of un-
balanced datasets and improves the accuracy of classification) net-
work, which generates state-of-the-art minority-class images on 
highly unbalanced datasets [20]. However, BAGAN training is un-
stable when images in different classes are similar. Thus, Huang et al. 
optimized the loss function in the BAGAN network; the authors 
proposed a BAGAN network with a gradient penalty (BAGAN-GP), 
which overcame this issue and achieved good results in generating 
small sample cell images [21]. Moreover, we added a sequence au-
toencoder [22,23] (Supplementary Fig. S1) to BAGAN-GP model ar-
chitecture (Supplementary Fig. S2) to extract cRBS sequence 
information by learning the cRBS potential structure and similarity, 
and finally generate novel cRBS sequences through decoder. Because 
the BAGAN-GP model processes highly unbalanced cRBS datasets [7], 
this framework can be used to perform reverse engineering for de-
signing cRBSs based on TFB dynamic ranges.

To simultaneously achieve forward and reverse TFB rational en-
gineering, we established and trained a comprehensive platform 
based on our previously collected 7053 cRBSs. These cRBSs were 
designed and synthesized by a DNA microarray approach to tune TFB 
dynamic ranges [7]. Using fluorescence-activated cell sorting (FACS) 
and next-generation sequencing (NGS) analysis TFBs, we obtained a 
multi-to-one mapping dataset that included 3592, 980, 944, 596, 
and 941 cRBSs in sub-libraries I–V, respectively [7]. These libraries 
had gradient TFB dynamic ranges. In this study, using the collected 
datasets, we first established a forward engineering platform for de 
novo cRBS sequence design based on the WGAN-GP model. Subse-
quently, we engineered a reverse engineering platform for novel 
cRBS sequence generation with desired TFB dynamic ranges based 
on the BAGAN-GP model. Furthermore, high prediction accuracy 
facilitated cRBS generation with selected high TFB dynamic ranges. 
We then developed a filter model using the conventional neural 
network (CNN, a neural network designed to process data with a 
similar grid structure, includes convolution, pooling and fully con-
nected layers) to reduce prediction noise in the BAGAN-GP model in 
cRBS generation using selected low TFB dynamic ranges. Overall, our 
forward-reverse engineering platform can be effectively used to 
design novel functional cRBSs with desired TFB dynamic ranges.

2. Results

2.1. De novo design of cRBSs using the WGAN-GP model

Several studies have reported forward engineering [7,15]. In our 
previous glucarate biosensor study, the technical process from de-
signing cRBSs to obtaining TFB dynamic ranges exemplified a for-
ward engineering approach [7]. However, rapidly and precisely 
designing functional cRBSs to tune TFB dynamic ranges is costly for 
forward engineering. Thus, we introduced a forward engineering 
workflow to create functional cRBSs to avoid invalid constructs 
(Fig. 1). This included a WGAN-GP model [15,24] for de novo func-
tional cRBS generation (Fig. 1A) and four predictive models to predict 
outputs and TFB dynamic ranges controlled by WGAN-GP-generated 
cRBSs (Fig. 1B). Then, generated cRBSs were experimentally tested 
using a TFB in Escherichia coli (Fig. 1C).

The GAN comprised two competing neural networks, the gen-
erator and the discriminator [13,25]. The generator is equivalent to 
mapping from one functional distribution to another. Thus, the 
generator network generated the feature distribution of functional 
cRBS sequences and mapped these to generated cRBS sequences 
(Fig. 1A). The discriminator network evaluated differences between 
generated cRBSs and functionally trained cRBSs, and determined if 
cRBSs were generated or trained (Fig. 1A). Based on continuous game 
training between the generator and the discriminator 
(Supplementary Note S1), the GAN model generated novel cRBS 
sequences according to the feature distribution of functional cRBSs. 
However, the GAN model was often difficult to train and prone to 
instability, and the pattern contraction led to poor sample diversity 
[26]. When the GAN model identified a small number of generated 
cRBSs that fooled the discriminator, the generator was unable to 
generate other novel cRBSs. WGAN improved GAN training stability 
and diversity [27,28], which was enhanced by using the Wasserstein 
loss function. However, the ability of WGAN to learn complex fea-
tures remained insufficient [26]. Thus, WGAN-GP facilitated a more 
stable training process via the addition of a gradient penalty to the 
critic’s loss function [15,29] (Fig. 1A), thereby capturing more cRBS 
sequence features.

We used the WGAN-GP generative model to identify novel cRBS 
sequences, analyzed them using WebLogo, and observed that gen-
erated cRBS sequence distribution was the same as trained func-
tional cRBS sequence distribution (Supplementary Fig. S3). In 
addition, to evaluate the similarity between the generated cRBS and 
the trained cRBS sequences, we used the hamming distance, which is 
the number of different nucleotides at the corresponding position of 
two equal-length cRBS sequences, to measure the distance matrix 
between sequences for the trained cRBS and the generated cRBS 
datasets, and within each cRBS (Supplementary Fig. S4A–C). Box-
plots showed the distribution of the cRBS sequences distance 
(Supplementary Fig. S4D). Then, we performed the distance matrix 
summary statistics and found that the mean/standard deviation of 
the distance between sequences for trained cRBS and generated 
cRBS, trained cRBS internally, and generated cRBSs internally were 
6.57/1.56, 6.33/1.55, and 6.77/1.60, respectively (Supplementary Fig. 
S4D). It indicated that the sequence distribution of generated and 
trained cRBSs was similar. And the model independently generated 
cRBS sequences based on learning functional cRBS sequence char-
acteristics. To further evaluate WGAN-GP model ability toward 
learning cRBS sequence characteristics, we calculated the base fre-
quencies of k-mer (4-, 6-, and 8-mer) numbers [15,30,31] between 
WGAN-GP model-generated cRBSs and trained cRBSs (Fig. 2A). We 
observed that the correlation of all k-mer frequencies between 
trained cRBSs and WGAN-GP-generated cRBSs was >  0.99, sug-
gesting the model was highly reliable in generating cRBSs and 
learning the sequence characteristics of trained cRBSs.
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2.2. Predicting TFB outputs in “ON” and “OFF” states

We previously obtained 3592, 980, 944, 596, and 941 cRBSs and 
corresponding gradient TFB output ranges datasets in sub-libraries 
I–V, respectively [7]. Using this multi-to-one mapping dataset to 
accurately predict TFB outputs from generated cRBSs, we sought to 
construct training datasets for each cRBS mapped to a sole TFB 
output (one-to-one mapping dataset), rather than TFB output ranges. 
However, this approach was time-consuming, labor-intensive, and 

costly to formulate a one-to-one mapping dataset via experi-
mentation. To overcome this, we proposed random (Supplementary 
Figs. S5A and S5B) and normal (Supplementary Figs. S5C and S5D) 
distribution methods to construct 7053 cRBSs and related TFB 
output datasets in “OFF” and “ON” states [7] (Fig. 1B, Supplementary 
Tables S1 and S2). Then, 6000 datasets were randomly selected to 
train the CNN model (Method 4.5). Finally, four predictive models 
were constructed: Rand-OFF-CNN, Rand-ON-CNN, Norm-OFF-CNN, 
and Norm-ON-CNN (Fig. 1B). To evaluate model performance, we 

Fig. 2. K-mer distribution and prediction accuracy analysis of WGAN-GP-generated cRBSs. (A) Scatter plots showing 4-, 6-, and 8-mer numbers between WGAN-GP model- 
generated cRBSs and trained cRBSs. Each point represents a certain k-mer. The x- and y-axes represent k-mer frequencies. Verifying the output for 51 synthetic TFBs using Rand- 
ON-CNN (B), Rand-OFF-CNN (C), Norm-ON-CNN (E), and Norm-OFF-CNN (F) predictive models. Correlation analyses between experimentally-observed and predicted TFB dy-
namic ranges based on random (D) and normal (G) distribution methods. The coefficient R was used to evaluate linear correlations between predicted and experimentally 
observed TFB dynamic ranges. DR: dynamic range. Rand and Norm represent random and normal methods, respectively. The grey diagonal denotes y = x. Light green and blue 
areas represent predicted TFB outputs in “ON” and “OFF” states with a ±  30% error margin. Data represent the mean and standard deviation of two replicates.
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analyzed correlations between predicted and observed TFB outputs 
in the remaining 1053 cRBSs in “ON” and “OFF” states. All four 
prediction models had Pearson’s correlation coefficients (PCC, a 
linear correlation coefficient that reflect the linear correlation degree 
of the predicted and observed TFB output variables) of 0.57, 0.52, 
0.62, and 0.52 (Supplementary Figs. S6A–D), respectively. Thus, the 
four models had moderate prediction performance.

To verify the prediction accuracy of these models in predicting 
TFB outputs in “ON” and “OFF” states, 51 cRBSs (GSnCSn; GS, RBS of 
the reporter protein sfGFP; CS, RBS of the regulator CdaR; n = 1–51) 
(Supplementary Table S3) generated by WGAN-GP were randomly 
selected to replace the RBS of CdaR and sfGFP. The 51 cRBS sequences 
were used as inputs, and predicted TFB outputs worked as model 
outputs (Fig. 1B–C). When compared with experimentally-observed 
TFB outputs (Supplementary Table S4), the prediction accuracy of 
TFB outputs from Rand-OFF-CNN, Rand-ON-CNN, Norm-OFF-CNN, 
and Norm-ON-CNN models reached 82% (42/51) (Fig. 2B), 98% (50/ 
51) (Fig. 2C), 96% (49/51) (Fig. 2E), and 98% (50/51) (Fig. 2F), re-
spectively. This was significantly higher than our previous report 
(72.2%) [7]. In addition, Pearson’s correlation analysis was performed 
between predicted and experimentally-observed TFB dynamic 
ranges (“ON”TFB output/“OFF”TFB output) (Fig. 1A, Supplementary Fig. 
S7). The predicted dynamic range based on random (Fig. 2D) and 
normal (Fig. 2G) distributions displayed a strong correlation (PCC = 
0.69 and PCC = 0.85, respectively) with experimental dynamic 
ranges. The higher prediction accuracy and Pearson’s correlation of 
normal distribution predictive models suggested better TFB outputs 
and dynamic range prediction performance when compared with 
random distribution predictive models. Our previous classification 
model classified the dynamic range levels of multiple cRBS inputs, 
often resulting in several different cRBSs belonging to the same 
dynamic range level. In contrast, the models established in this study 
achieved accurate and sole TFB outputs and dynamic range predic-
tions with sole cRBS inputs. Overall, we efficiently designed func-
tional cRBSs using the WGAN-GP model and accurately predicted 
outputs and TFB dynamic ranges.

2.3. Reverse engineering TFBs based on the BAGAN-GP model

A forward engineering system that de novo generates functional 
cRBSs and predicts TFB outputs and dynamic ranges can accurately 
evaluate genotype to phenotype [15]. However, reverse engineering 
from phenotype to genotype [16,17] inverts this paradigm by starting 
with desired TFB dynamic ranges and seeking ideal cRBSs. Reverse 
engineering is also an important focus of this study to design cRBSs 
at an accelerated pace. Therefore, to develop a reverse engineering 
platform to de novo generate cRBSs with desired TFB dynamic 
ranges, we established a BAGAN-GP model which showed superior 
performance and considerable potential for processing unbalanced 
minority-class datasets [21].

To extract and transform cRBS sequence information, we in-
troduced a sequence autoencoder to encode and decode cRBS se-
quences (Supplementary Fig. S1). cRBS sequence information was 
transcoded into a 64 × 64 × 1 figure using sequence encoder, and 
figure information was decoded into cRBS sequences using sequence 
decoder. To generate cRBSs with expected dynamic ranges, we in-
troduced an AI-based reverse engineering workflow (Fig. 3) which 
included BAGAN-GP (Fig. 3A) and filter models (Fig. 3B) for de novo 
generated cRBSs with desired TFB dynamic ranges. Then, generated 
cRBSs were experimentally tested using a TFB in E. coli (Fig. 3C).

2.4. The BAGAN-GP model captures cRBS sequence features in five sub- 
libraries

To comprehensively evaluate de novo generated cRBSs based on 
the BAGAN-GP model in five dynamic range classes, we first 

analyzed generated cRBS sequence motifs (Fig. 4A). Generated cRBS 
sequences from the five sub-libraries exhibited obvious sequence 
differences (Fig. 4A) and indicated that the BAGAN-GP model cap-
tured cRBS sequence features from these sub-libraries.

Moreover, to further evaluate how the BAGAN-GP model could 
learn cRBS sequence characteristics of each sub-library, we calcu-
lated the base frequency of k-mer (4-, 6-, and 8-mer) numbers [15]
between BAGAN-GP-generated cRBSs and trained cRBSs in each sub- 
library (Fig. 4B, Supplementary Figure S8). We observed that the 
correlation of all k-mer frequencies between trained cRBSs and 
BAGAN-GP-generated cRBSs in each sub-library was >  0.98, sug-
gesting the model was highly reliable in designing cRBSs, and 
learning the sequence characteristics of each sub-library. Because 
the Shine-Dalgarno (SD) sequence contained eight bases in our 
study, we then analyzed the correlation of 8-mer frequencies of each 
sub-library between trained cRBSs and generated cRBSs of the 
training steps 1, 5, 10, 15, and 20 (300 epochs/step) in the BAGAN-GP 
model training process (Supplementary Figure S9). We observed that 
the BAGAN-GP model capture of cRBS sequence characteristics of 
each sub-library remained the same after step 5 (Fig. 4C), and cre-
ated a good performance BAGAN-GP model to generate cRBSs with 
desired TFB dynamic ranges. Taken together, the BAGAN-GP model 
captured cRBS sequence features in highly unbalanced minority- 
class datasets containing 3592, 980, 944, 596, and 941 cRBSs in each 
sub-library.

2.5. BAGAN-GP-generated-cRBSs show a high probability of improving 
the dynamic range

After generating thousands of cRBS sequences based on the 
BAGAN-GP model, we randomly selected 140 AI-based cRBSs 
(GSmCSm; m=52–191) (Supplementary Table S3) from sub-libraries 
I–V. Then, 140 glucarate biosensors were successfully constructed 
where outputs were detected in “ON” and “OFF” states using FACS 
(Supplementary Table S5), and dynamic ranges were calculated 
(Supplementary Figure S10). Then, to evaluate the prediction per-
formance of the BAGAN-GP model, we analyzed desired and ex-
perimentally observed TFB dynamic ranges of generated cRBSs and 
found that the BAGAN-GP model had prediction accuracies of 43% 
(Fig. 5A), 32% (Fig. 5B), 68% (Fig. 5C), 57% (Fig. 5D), and 82% (Fig. 5E) 
in the five sub-libraries, respectively. Moreover, desired and ex-
perimentally observed TFB dynamic ranges of generated cRBSs had a 
strong correlation (R = 0.94) (Fig. 5F). These results demonstrated 
BAGAN-GP model effectiveness in generating cRBSs with desired TFB 
dynamic ranges.

2.6. Establishing a filter model to reduce prediction noise in the BAGAN- 
GP model

The BAGAN-GP model de novo generated cRBSs with desired TFB 
dynamic ranges by learning sequence feature distributions of trained 
cRBSs in five sub-libraries. Therefore, the prediction accuracy of sub- 
libraries I and II was relatively low due to the high similarity of se-
quence distribution between both sub-libraries. This made it diffi-
cult for the BAGAN-GP model to determine which TFB dynamic 
ranges generated cRBSs belonged to. In other words, prediction noise 
existed in the BAGAN-GP model. Therefore, we introduced a filter 
model to reduce BAGAN-GP prediction noise in sub-libraries I and II.

Here, we chose the CNN model to construct a filter that accu-
rately identified the TFB dynamic ranges to which generated cRBS 
belonged. Firstly, 80% of cRBSs and their sequence features in each 
sub-library were randomly selected to train the filter model. Then, 
the remaining 20% of cRBS sequences and corresponding features 
were used to evaluate the performance of the filter model for 
predicting TFB dynamic ranges. In the five sub-libraries, the area 
under the curve (AUC) was 0.81, 0.93, 0.71, 0.81, and 0.80, 

N. Ding, G. Zhang, L. Zhang et al. Computational and Structural Biotechnology Journal 21 (2023) 2929–2939

2933



respectively, and the average AUC was 0.87 (Supplementary Figure 
S11). Thus, the filter displayed good performance in predicting TFB 
dynamic ranges.

To reduce the prediction noise of BAGAN-GP-generated cRBSs in 
sub-libraries I and II, we filtered out cRBS sequences that were not 
generated in sub-libraries I and II based on the constructed filter 

Fig. 3. Reverse engineering workflow. (A) The cRBS generation stage with desired TFB dynamic ranges. First, cRBS sequences from sub-libraries I–V [7] were encoded into 
64 × 64 × 1 figures based on the sequence encoder (SEn) model (Supplementary Fig. S1) (Step 1). Then, the autoencoder model was pretrained to learn the global features of Step 1- 
created datasets. The well-trained autoencoder model captured the global features of the sub-libraries I–V and initialized BAGAN-GP model weights (Supplementary Fig. S2). The 
initialized BAGAN-GP model converged faster to the desired result (Step 2). Subsequently, the initialized BAGAN-GP model was trained based on the training of the discriminator 
and generator. In the trained process of each BAGAN-GP step, the discriminator was trained five times using figures and corresponding TFB dynamic range label datasets. The 
generator was trained once to capture the figure information of the sub-libraries I–V. Novel figures were generated by the generator to fool the discriminator, and the dis-
criminator produced validity scores to determine if the figures were generated by the generator and sub-library-matching (Step 3). Finally, the generator generated novel figures 
with desired sub-library features. The generated figures transformed back into cRBS sequences with desired TFB dynamic ranges based on sequence decoder (SDe) 
(Supplementary Fig. S1) (Step 4). (B) The filtration stage which reduces prediction noise in the BAGAN-GP model. cRBSs and five TFB dynamic range datasets [7] were used to build 
and evaluate a filter model consisting of CNN, which was used to learn relationships between cRBS sequence features and TFB dynamic ranges. Finally, a filter model was 
constructed to reduce noise and accurately predict TFB dynamic ranges. (C) Validation of model prediction performances. Candidate cRBSs with expected TFB dynamic ranges 
were selected and experimentally validated in Escherichia coli BL21 (DE3). DR: dynamic range; CNN: convolutional neural network.
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model. Finally, the prediction accuracy increased to 65% and 54% in 
sub-libraries I and II, respectively (Fig. 5G). These results suggested 
that the BAGAN-GP-filter reverse engineering platform generated 
cRBSs with desired TFB dynamic ranges in E. coli.

3. Discussion

Currently, to rationally design TFBs, two enormous challenges 
must be overcome: predicting TFB dynamic ranges with given cRBSs 
for forward engineering, and generating cRBS sequences with se-
lected TFB dynamic ranges for reverse engineering [1]. To achieve 
TFB rational design, we developed a forward-reverse engineering 
platform based on WGAN-GP and BAGAN-GP models to de novo 
design cRBSs and generate cRBSs with desired TFB dynamic ranges.

To intelligently predict a phenotype based on a given genotype 
and generate biological components based on an expected pheno-
type, a forward-reverse engineering research approach is vital. In 
previous study, we obtained cRBS sequences and TFB output data-
sets from five sub-libraries based on the DNA microarrays, FACS, and 
NGS techniques [7]. However, for forward engineering, to predict the 
output and dynamic range of TFBs that were controlled by WGAN- 
GP-generated cRBSs, many one-to-one mapping datasets had to be 
constructed to train the predictive model, which would have been 
time-consuming, labor-intensive, and costly. To address this, we 
proposed obtaining these mapping datasets by random and normal 
distributions. Our predictive models, developed based on random 
and normal distribution methods, showed good performance in 
predicting TFB outputs and dynamic ranges. This approach could 
help researchers obtain one-to-one mapping experimental datasets 
and avoid time-consuming, laborious, and costly research caused by 
repeated bench work. It also provides new perspectives for the ac-
quisition of one-to-one datasets.

From the perspective of supervised pattern recognition [32–34], 
the translation mechanisms of cRBSs tuning TFB dynamic ranges 
could be considered as molecular classifiers, distinguishing gener-
ated cRBS sequences from trained cRBSs in each library. Therefore, 

generated cRBSs must have similar characteristics to trained cRBSs 
in each library to recruit translation mechanisms to tune TFB dy-
namic ranges. However, unbalanced data classification is a ubiqui-
tous natural phenomenon [19]. For example, a significant imbalance 
in cRBS datasets containing 3592, 980, 944, 596, and 941 cRBSs was 
identified in sub-libraries I–V, respectively, from our previous study 
[7], among which, classes II–V belonged to minority-class cRBSs. 
Thus, finding a suitable supervised generative model to navigate 
unbalanced biological datasets is of great importance. Fortunately, 
BAGAN-GP is superior to other state-of-the-art GANs in generating 
minority-class images for unbalanced datasets [21,35]. Moreover, 
BAGAN-GP automatically extracts crucial transcoded cRBS figure 
features from each library, mimics cRBS distribution, and generates 
high-quality cRBS sequences. Thus, the BAGAN-GP model could be 
used to augment unbalanced sequence classification datasets and 
restore its balance.

The BAGAN-GP model accomplishes generative tasks by 
learning cRBS sequence distributions in each sub-library. Therefore, 
when this distribution between sub-libraries were similar, it was 
difficult for the BAGAN-GP model to predict which sub-library 
generated cRBSs belonged to. Thus, to reduce prediction noise, a 
filter was added to improve the prediction accuracy of the BAGAN- 
GP model. This filter model improved the design accuracy of gen-
erated cRBSs with desired TFB dynamic ranges, laid a solid foun-
dation for using reverse engineering systems in TFBs, and provided 
a window for the future design of biological elements with desired 
phenotypes.

In conclusion, we proposed an AI-based forward-reverse en-
gineering platform to de novo generate cRBSs with expected TFB 
dynamic ranges. The platform showed a powerful functionality 
based on experimental verification in vivo. Our work provided new 
perspectives for the de novo generation of biological elements with 
desired biological properties. Thus, deep learning approaches have 
the potential to explore relationships between genotype and phe-
notype and the sequence features of generated elements even with 
limited prior knowledge.

Fig. 4. The SD motif and 8-mer distribution of BAGAN-GP-generated cRBSs. (A) The sequence logos of trained cRBSs and BAGAN-GP-generated cRBS sequences in five sub- 
libraries. (B) The 8-mer scatter plot showing trained cRBSs and generated cRBSs with desired TFB dynamic ranges. Each point represents a certain 8-mer. The x- and y-axes 
represent 8-mer frequencies in trained and generated cRBSs with selected TFB dynamic ranges. (C) R-squared analyses the correlations of 8-mer frequencies in step n (n = 1, 5, 10, 
15, 20) between trained cRBSs and BAGAN-GP-generated cRBSs from sub-libraries I–V. SDm and SDn represent SD sequences controlling sfgfp and cdaR translation.
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Fig. 5. Evaluating 140 AI-generated cRBSs with desired TFB dynamic ranges and improving prediction accuracy. (A–E) Prediction accuracy analyses of the BAGAN-GP model for 28 
synthetic glucarate biosensors in sub-libraries I–V, respectively. We suggested that the synthetic TFB was constructed by generated cRBSs in sub-library V, whose dynamic range 
was more extensive than trained ones (247-fold [7]). (F) Correlation analysis between desired and experimentally-observed dynamic ranges of TFBs controlled by BAGAN-GP- 
generated cRBSs in each sub-library. (G) The improved prediction accuracy of TFB dynamic ranges in sub-libraries I and II using the constructed filter model. DR: dynamic range. 
GS and CS are RBSs of the reporter sfGFP and regulator CdaR, respectively. The dotted box represents cRBSs whose desired and observed TFB dynamic ranges had a ±  30% error 
margin. Data represent the mean and standard deviation of two replicates.
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4. Materials and methods

4.1. Strains and culture conditions

All study strains are listed in Supplementary Table S6. Escherichia 
coli (E. coli) JM109 and E. coli BL21 (DE3) were used for plasmid 
cloning and protein expression, respectively. Luria-Bertani (LB) 
medium supplemented with 100 µg/mL ampicillin was used for cell 
culture at 37 °C or 30 °C. A sterile phosphate-buffered saline (PBS) 
solution containing NaCl (8 g/L), KCl (0.2 g/L), Na2HPO4 (1.44 g/L), 
and KH2PO4 (0.24 g/L) was used to wash cells three times before 
fluorescence intensity measurements.

4.2. Glucarate biosensor construction

All study plasmids and primers are listed in Supplementary 
Tables S6 and S7, respectively. To evaluate and verify WGAN-GP, 
CNN, BAGAN-GP, and filter models’ performance, 191 AI-generated 
cRBSs were cloned into glucarate biosensor vectors. The primer 
pairs: F/R-GSn; F/R-GSm; F/R-CSn; F/R-CSm; n = 1–51; m= 52–191 
were designed based on different cRBS sequences (Supplementary 
Table S3). The modified glucarate biosensor plasmid pJKR-H-RBSn1- 
cdaR-RBSm1 [7] was used as a template for whole-plasmid poly-
merase chain reaction (PCR). PCR products were then purified and 
digested using Dpn I at 37 °C for 30 min and transformed into E. coli 
JM109 cells for screening by colony PCR and Sanger sequencing. 
Thus, 51 pJKR-H-CSn-cdaR-GSn plasmids and 140 pJKR-H-CSm-cdaR- 
GSm plasmids were successfully constructed.

4.3. Fluorescence assays

E. coli BL21 (DE3) cells expressing the glucarate biosensor were 
cultured to saturation phase and incubated at a concentration of 2% 
in 24-well plates containing fresh LB medium at 300 rpm and 37 °C. 
After 3 h, 0 or 20 g/L glucarate was added to 24-well plates, and 
incubation resumed for 12 h to assess the fluorescence intensity of 
sfGFP (TFB output). The minimum TFB output was determined when 
cells were induced with 0 g/L glucarate (“OFF” state) [7] (Fig. 1A). The 
maximum TFB output was determined when cells were induced 
with 20 g/L glucarate (“ON” state) [7] (Fig. 1A). TFB dynamic ranges 
were defined as fold change in TFB outputs in “ON” and “OFF” states 
[7] (Fig. 1A). Before measurements, induced cultures were diluted in 
0.01 M PBS (pH 7.4) and incubated on ice until evaluation using a BD 
FACS AriaII cell sorter (Becton Dickinson). At least 100,000 events 
were captured for each sample. BD FACS-Diva software was then 
used to analyze TFB outputs in “ON” and “OFF” states (Bandpass 
filter = 530/30 nm; blue laser = 488 nm). FlowJo software was used 
to calculate the dynamic range of glucarate biosensors.

4.4. Data construction using normal and random data distribution 
approaches

We proposed two methods to build the one-to-one mapping 
dataset, including normal and random data distribution. For the 
normal distribution method, 7053 TFB outputs in “ON” and “OFF” 
states were obtained based on the mean and standard deviation of 
TFB outputs using the truncated normal distribution function in the 
SciPy module in Python3. Similarly, for the random distribution 
approach, 7053 TFB outputs in “ON” and “OFF” states were obtained 
based on TFB output ranges using the random function in the NumPy 
module in Python3. Then, cRBSs with large counts were assigned as 
high TFB outputs based on published next-generation sequencing 
(NGS) results [7]. Subsequently, 7053 cRBSs and their corresponding 
TFB outputs in “ON” and “OFF” states were obtained based on 
normal and random distribution methods. Finally, we developed 
models to predict the TFB outputs of each given cRBS in “ON” and 

“OFF” states. Thus, the dynamic range of the glucarate biosensor was 
calculated based on predicted TFB outputs.

4.5. Introduction and training the predictive model

We trained CNN [36,37] and developed predictive models for TFB 
“ON” and “OFF” states based on constructed one-to-one mapping 
data. Datasets from our previous work contained 7053 cRBSs with 
corresponding TFB outputs in “ON” and “OFF” states [7]. For the 
trained data of TFB “ON” and “OFF” states built based on the normal 
and random methods, the batch size was set to 64 and 128, re-
spectively. Batch size, defined as the number of cRBSs selected 
during the training process, affected the optimization degree and 
speed of the predictive models. We used the Leaky Rectified Linear 
Unit (LeakyReLU, alpha = 0.1) as the activation function to efficiently 
learn cRBS sequence features and stochastic gradient descent 
(learning rate = 0.0001) as the optimization approach to improve the 
training rate. We trained this predictive model using 5400 cRBSs and 
corresponding TFB outputs as the training set, 600 cRBSs and cor-
responding TFB outputs as the validation set, and others as the 
testing set.

4.6. Introduction and training the encoder model

Rumelhart et al. first proposed the autoencoder model [23], 
while several recent studies described autoencoder applications in 
molecular biology [22,38,39]. The autoencoder contained encoder 
and decoder networks [40]. By adjusting the number of neurons in 
the hidden layer of a vast neural network, sequences were changed 
into any size or dimension vector and coding processes completed. 
Thus, the sequence encoder model took sequences into a 64 × 64 × 1 
figure format, and the sequence decoder model decoded the figure 
format to the sequence. Training datasets were from the reported 
7053 cRBSs [7] and the optimizer used Adam with a learning rate 
equal to 0.0001, beta 1 equal to 0.9, and beta 2 equal to 0.99 for 
training.

4.7. Training the BAGAN-GP model

Training datasets contained 7053 experimentally identified cRBS 
sequences for the glucarate biosensor [7]. We used all cRBS se-
quences in the dataset as trained samples. In the BAGAN-GP model, 
the batch size was 64, and we trained the sequence autoencoder 
(Supplementary Figure S1) network for 100 epochs. Then, cRBS se-
quences were encoded as figures by sequence encoder. The 5642 
figures were randomly selected as the training set to train the 
BAGAN-GP model (Supplementary Figure S2), and others were used 
as the testing set.

We first trained the autoencoder network for 200 epochs in the 
BAGAN-GP model and then transferred the weight from autoencoder 
to the GAN model. In this model, we trained five times for the dis-
criminator and once for the generator in each batch training. We 
used RMSprop optimizer for training. The batch size was 64, and the 
step was 20. Each step trained 300 epochs, and the learning rate was 
0.0002. The best result was identified at step 20, so we selected this 
parameter for the reverse engineering design of cRBSs with desired 
TFB dynamic ranges. Finally, generated cRBS sequences were ob-
tained based on sequence decoder.

4.8. Statistics

The area under the receiver operating characteristic (ROC) curve 
(AUC) was calculated using the metrics.auc function in the “sklearn” 
Python package. Two replicates were used for each glucarate bio-
sensor strain. All statistical analyses were performed using SciPy 
(1.5.0), NumPy (1.18.5), and scikit-learn (0.23.1) Python packages. 
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Deep learning was conducted using TensorFlow (2.2.0) and Keras 
(2.3.1) frameworks. Model plots were generated in Python 3.8 using 
matplotlib (3.2.2) plotting libraries. Statistical test details are de-
scribed in corresponding figure legends.
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