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Abstract

Background: Cytoplasmic male sterility (CMS) conferred by the cytoplasm from Gossypium harknessii (D2) is an
important system for hybrid seed production in Upland cotton (G. hirsutum). The male sterility of CMS-D2 (i.e., A
line) can be restored to fertility by a restorer (i.e., R line) carrying the restorer gene Rf1 transferred from the D2
nuclear genome. However, the molecular mechanisms of CMS-D2 and its restoration are poorly understood.

Results: In this study, a genome-wide comparative transcriptome analysis was performed to identify differentially
expressed genes (DEGs) in flower buds among the isogenic fertile R line and sterile A line derived from a
backcross population (BC8F1) and the recurrent parent, i.e., the maintainer (B line). A total of 1464 DEGs were
identified among the three isogenic lines, and the Rf1-carrying Chr_D05 and its homeologous Chr_A05 had
more DEGs than other chromosomes. The results of GO and KEGG enrichment analysis showed differences in
circadian rhythm between the fertile and sterile lines. Eleven DEGs were selected for validation using qRT-PCR,
confirming the accuracy of the RNA-seq results.

Conclusions: Through genome-wide comparative transcriptome analysis, the differential expression profiles of
CMS-D2 and its maintainer and restorer lines in Upland cotton were identified. Our results provide an important
foundation for further studies into the molecular mechanisms of the interactions between the restorer gene Rf1
and the CMS-D2 cytoplasm.
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Background
Cotton is the most important fiber crop and an impor-
tant oil-producing crop worldwide. As in other crop
plants, utilization of heterosis is an important way to im-
prove yield in cotton production. To date, most com-
mercial cotton hybrids have been produced by artificial
emasculation and pollination (AEP) in China [1] and
India (http://www.cicr.org.in/), which is a time-consuming,
labor-intensive and costly process. In addition, the purity
of hybrid seeds produced by AEP cannot be guaranteed as
some artificial emasculation may not completely remove

the pollen. The cytoplasmic male sterility (CMS) system is
an ideal tool for hybrid seed production, and it has been
widely used to facilitate the use of heterosis in many crops
[2]. CMS-D2 is one of the two major types of CMS [3–6]
in cotton and has contributed to cotton heterosis
utilization. Rf1 is the restorer gene and can recover the fer-
tility of CMS-D2. Considering the importance of the CMS
and restoration system, numerous molecular mapping
studies have been conducted on of Rf1 in cotton [7–13].
Recently, a backcross population (BC8F1) with plants dis-
tinguished as male fertile (F) or sterile (S) was generated
and used to map the Rf1 gene by our group [14]. However,
there have been few studies on the molecular mechanism
of the restorer gene.
Over the past several years, next-generation sequen-

cing (NGS) has been used in numerous research areas,
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resulting in high-throughput production of massive
DNA and RNA data [15]. As a powerful tool for stu-
dying global transcriptional networks, transcriptome
sequencing provides high-resolution data and has been
widely used in many crops. In cotton, it has been used to
study boll development [16], fiber development [17–19],
leaf senescence [20], gland morphogenesis [21], abiotic
stress responses [22–24], biotic stress responses [25, 26],
RNA editing in relation to CMS-D8 [27], and genic male
sterility [28]. Differential display and gene chips were used
to study the expression levels of differentially expressed
genes (DEGs) associated with the fertility of CMS-D8 in
cotton [29, 30]. However, the global gene expression pat-
terns of CMS-D2 and its interaction with its restorer gene
Rf1 are still unknown. Now that the genome sequences of
G. raimondii [31, 32], G arboreum [33], and G hirsutum
[34, 35] have been published, gene annotation can be bet-
ter performed, which will improve genome-wide tran-
scriptome sequencing and analysis in cotton.
To better understanding the gene expression profiles

affected by the restorer gene Rf1 in Upland cotton with
the CMS-D2 cytoplasm, RNA-seq by the Illumina NGS
technology was used in this study to identify DEGs in
flower buds of fertile (i.e., restorer R line) and sterile
(i.e., CMS A line) plants of a backcross population
(BC8F1) and its recurrent parent, i.e., the maintainer B
line. GO and KEGG enrichment analysis showed that
genes related to circadian rhythms were significantly af-
fected by the presence of the restorer gene. The results
from this study will serve as a foundation for further
studies of the molecular mechanisms of interaction be-
tween the restorer gene Rf1 and the CMS-D2 cytoplasm.

Methods
Plant materials
In our previous study [14], the sterile line ZBA with the
CMS-D2 cytoplasm was crossed with the restorer line
Zhonghui46, and then the maintainer B line (designated
dB3) with the normal fertile Upland cotton (AD1) cyto-
plasm was used as the recurrent male parent to backcross
with the F1 plants to construct a BC8F1 population. In this
segregating population, the sterile plants (designated
dZB3) were considered to be the CMS-D2 A line, and the
fertile plants (designated dZK3) were considered to be the
restorer R line. All materials were provided by Institute of
Cotton Research (ICR), Chinese Academy of Agricultural
Science (CAAS). The BC8F1 population and recurrent
parent were grown in the Experimental Farm, ICR-CAAS,
Anyang, Henan province, China. A randomized complete
block design with three biological replications was used,
and crop management practices followed local recom-
mendations. On sunny days of about 30 °C, flowering
buds of about 3 mm in length (at roughly the stage of
male meiosis) were collected and combined from 50

plants for each genotype in each replication. All harvested
samples were snap-frozen in liquid nitrogen and stored at
−80 °C before use.

RNA extraction, RNA-seq library construction and
sequencing
Total RNA was isolated using the Sigma Spectrum
Plant Total RNA kit (Sigma-Aldrich, USA) according
to the manufacturer’s protocol. The concentration of
each RNA sample was measured using a NanoDrop
2000 spectrophotometer (NanoDrop Technologies
Inc., USA). Nine individual libraries (three samples
for each of the three genotypes) were constructed with
an Illumina RNA TruSeq kit (Illumina, USA) per the man-
ufacturer’s instructions using 5 μg of total RNA. Subse-
quently, PCR amplification was performed using Phusion
DNA polymerase (NEB, USA) for 15 PCR cycles, and f
cDNA fragments of 300–500 bp were isolated from a 2%
low range ultra agarose gel (Bio-Rad, USA). After quantifi-
cation by TBS380 (Picogreen, Invitrogen, USA), the
paired-end libraries were then sequenced using the Illu-
mina HiSeq™ 2500 system (2 × 151 bp read length) at
Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd.
(Shanghai, China).

Data processing and expression analysis
SeqPrep (https://github.com/jstjohn/SeqPrep) and Sickle
(https://github.com/najoshi/sickle) were used to remove
low-quality reads (i.e., Q value <25), adapter sequences,
reads with ambiguous bases (‘N’), and fragments of less
than 20 bp in length. All clean reads were mapped to
the G. hirsutum TM-1 reference genome (http://mascot-
ton.njau.edu.cn/info/1054/1118.htm) using the TopHat
software [36] which allowed no more than a 2-
nucleotide mismatch. Gene annotation and expression
quantification were performed using the software Cufflinks
(http://cufflinks.cbcb.umd.edu/), and the FPKM (frag-
ments per kilobase of exon per million fragments) method
was used to identify DEGs based on a false discovery rate
(FDR) of <0.05 and estimated absolute log2fold change > 1
between different genotypes. A heatmap was constructed
using the web server ClustVis (http://biit.cs.ut.ee/clustvis/)
with default parameters.

Functional annotation
GO and KEGG functional annotations for the transcripts
were retrieved using blast2go (http://www.blast2go.com/
b2ghome) and blastx/blastp searches against the KEGG
genes (http://www.genome.jp/kegg/genes.html) database,
respectively. GO term and KEGG pathway enrichment
analysis was performed on the significantly differentially
expressed transcripts using the Goatools software
(https://github.com/tanghaibao/Goatools) and KOBAS

Wu et al. BMC Genomics  (2017) 18:454 Page 2 of 12

https://github.com/jstjohn/SeqPrep
https://github.com/najoshi/sickle
http://mascotton.njau.edu.cn/info/1054/1118.htm
http://mascotton.njau.edu.cn/info/1054/1118.htm
http://cufflinks.cbcb.umd.edu
http://biit.cs.ut.ee/clustvis
http://www.blast2go.com/b2ghome
http://www.blast2go.com/b2ghome
http://www.genome.jp/kegg/genes.html
https://github.com/tanghaibao/Goatools


software (http://kobas.cbi.pku.edu.cn) [37], with a cor-
rected P-value ≤0.05 as the threshold.

Quantitative RT-PCR (qRT-PCR) validation
First-strand cDNA was generated from 1 μg total RNA
from individual replications using a PrimerScript RT
Reagent kit (Perfect Real Time, TaKaRa, Japan). Quanti-
tative real-time RT-PCR was performed using SYBR®
Premix Ex TaqTM (Perfect Real Time, TaKaRa, Japan)
according to the manufacturer’s instructions. Primers for
qPCR were designed using the Primer Express software
(Applied Biosystems, Foster City, CA, USA), synthesized
commercially (Tianyi Huiyuan Biotechnology, Beijing,
China), and are shown in Additional file 1. PCR analysis
was performed using a CFX96TM instrument (Bio-Rad,
USA). Each reaction contained 2 μl cDNA template,
800 nM of each primer and 10 μl 2 × SYBR® Premix Ex
TaqTM, with ddH2O to bring the final volume to 20 μl.
The reaction was pre-denatured at 95 °C for 30 s,
followed by 40 cycles of denaturation at 95 °C for 5 s,
annealing at 58 °C for 20 s and extension at 72 °C for
30 s. A melting curve was generated for each sample at
the end of each run to determine the specificity of the
amplified products. Each gene was analyzed in triplicate,
and controls without template were also included. Actin
was used as an internal control. The threshold cycle (Ct)
values of each reaction were determined automatically
by the instrument software, and the relative amount of
each gene to the internal control was calculated using
the eq. 2−ΔΔCt, where ΔΔCt = (Ct target − Ct actin) sam-
ple X − (Ct target − Ct actin) sample 1. The whole assay
protocol was repeated three times to ensure the reliabi-
lity of the assay data. The standard deviations of the data
were determined from the three independent experi-
ments. The statistical significance of expression diffe-
rences was analyzed using the Student’s t-test.

Identification of SNPs
Single nucleotide polymorphism (SNP) loci for candidate
genes were identified in the assembled transcript sequences
using the Samtools (http://samtools.sourceforge.net/) and
VarScan (http://varscan.sourceforge.net/) software.

Results
Transcriptome sequencing and mapping
In this study, near-isogenic A, B and R lines each com-
prising three individual biological samples of 3 mm-long
flowering buds at the stage of male meiosis were used
to construct cDNA libraries for a deep Illumina se-
quencing. After filtering the raw reads, 48,365,894,
46,208,878, and 40,915,284 clean reads for the three
replicates of the maintainer B line (dB3), 35,886,986,
46,397,948, and 39,667,094 clean reads for the male
sterile A line (dZB3) in the BC8F1 population, and

45,856,082, 42,6816,76, and 52,325,842 clean reads for
the fertile restorer R line (dZK3) in the BC8F1 popu-
lation were obtained (Additional file 2). More than
90% of these clean reads were mapped to the G. hirsutum
TM-1 reference genome (Additional file 3). The deep
RNA-seq had a 90.55–91.89% genome coverage of the
predicted genes in Upland cotton. In total, 62,001 of the
70,478 predicted transcripts in the reference TM-1 ge-
nome were identified in this study and were used for a
further analysis.

GO and KEGG classification of the expressed genes
Blast2go was used to retrieve the GO functional annota-
tions, and the results showed that 46,150 of the 62,001
predicted transcripts were successfully assigned GO
annotations within the three main GO categories and 57
sub-categories (Fig. 1a). ‘Metabolic process’ (32,285
genes; representing 69.9% of transcripts in the biological
process category), ‘cellular process’ (28,157 genes; 61.0%),
and ‘single-organism process’ (23,292 genes; 50.5%) had
the highest numbers of genes in the biological process
category. ‘Cell’ (21,221 genes; representing 46.0% of tran-
scripts in the cellular component category), ‘cell part’
(20,897 genes; 45.3%) and ‘organelle’ (14,269 genes;
30.9%) had the most genes in the cellular component
category. ‘Catalytic activity’ (23,001 genes; representing
49.8% of transcripts in the molecular function category),
‘binding’ (22,866 genes; 49.5%) and ‘transporter activity’
(2677 genes; 5.8%) were the most important sub-categories
in the molecular function category (Additional file 4). In
addition, a total of 23,211 transcripts were categorized into
175 pathways (Additional file 5), among which metabolic
pathways, biosynthesis of secondary metabolites and ribo-
some pathways contained the most transcripts (Fig. 1b).

Global Transcriptome changes
The number of reads mapped to the predicted tran-
scripts of the TM-1 reference genome was calculated as
the expression level for each gene. The following three
comparisons of gene expression levels were performed:
B (dB3) vs. A (dZB3), which had the isogenic nuclear
genomes (containing the recessive non-functional rf1
allele) but different cytoplasms and fertility; B (dB3) vs.
R (dZK3), both of which were isogenic and fertile but
differed in their cytoplasms and Rf1 alleles; and A
(dZB3) vs. R (dZK3), both of which had the same CMS-
D2 cytoplasm but differed in fertility and Rf1 alleles. A
total of 728 (442 upregulated and 286 downregulated),
918 (524 upregulated and 394 downregulated) and 456
(176 upregulated and 280 downregulated) DEGs were
identified in the above three comparisons, respectively
(Additional files 6–8). These DEGs represented a total of
1464 non-redundant genes, including 1368 that were
distributed across the 26 chromosomes of G. hirsutum

Wu et al. BMC Genomics  (2017) 18:454 Page 3 of 12

http://kobas.cbi.pku.edu.cn
http://samtools.sourceforge.net
http://varscan.sourceforge.net


and 96 genes on 56 scaffolds (Fig. 2). It is interesting to
note that Chr_D05 (with restorer gene Rf1) and the
homeologous Chr_A05 (99.5 DEGs vs. 48.7 DEGs)
carried more DEGs than the other chromosomes. Fur-
thermore, among the 1464 DEGs, three possible mito-
chondrial targeted protein-coding genes (Gh_D01G1128,
Gh_D06G0518 and Gh_A03G1169) and five possible
chloroplast targeted protein- coding genes (Gh_A13G2212,
Gh_A05G2854, Gh_A12G0821, Gh_A12G0217 and Gh_
D11G3195) were differentially expressed between dZK3
and dB3, and three possible chloroplast targeted protein-
coding genes (Gh_Sca078114G01, Gh_D01G0297 and
Gh_A07G1517) were differentially expressed between
dZB3 and dB3. These DEGs may be affected by the CMS-
D2 cytoplasm.
The distribution of unique and common DEGs for the

three comparisons is shown in Fig. 3. The results indi-
cated that 251 of 728 DEGs were unique to B (dB3) vs.
A (dZB3), 408 of 918 were unique to B (dB3) vs. R
(dZK3), and 192 of 456 were unique to A (dZB3) vs. R
(dZK3). Compared with R (dZK3, containing the re-
storer gene), 136 common DEGs were identified in both
B (dB3) and A (dZB3) containing the non-restoring
gene. Compared with B (dB3, with normal Upland cot-
ton cytoplasm), 349 common DEGs were identified in
both A (dZB3) and R (dZK3), which contained the
CMS-D2 cytoplasm. Compared with the male sterile A
line (dZB3), 103 common DEGs were identified in the
fertile B (dB3) and R (dZK3) lines.

GO and KEGG enrichment analysis of DEGs
For the 728 DEGs between B (dB3) and A (dZB3),
‘metabolic process’, ‘catalytic activity’ and ‘single-orga-
nism process’ were the three most common GO
terms (Additional file 9), and ‘metabolic pathways’,
‘biosynthesis of secondary metabolites’ and ‘microbial
metabolism in diverse environments’ were the three
most common KEGG pathways (Additional file 10).

Seven DEGs associated with the GO terms ‘molecular
transducer activity’ and ‘electron carrier activity’ were
specifically upregulated and downregulated, respec-
tively in dB3. For the 918 DEGs between B (dB3) and
R (dZK3), ‘metabolic process’, ‘cellular process’ and
‘catalytic activity’ were the three most common GO
terms (Additional file 11), while the three most com-
mon pathways (Additional file 12) were the same as
in B (dB3) and A (dZB3). Six DEGs associated with
the ‘cell junction’ and ‘symplast’ were specifically up-
regulated in R (dZK3). For the 456 DEGs between A
(dZB3) and R (dZK3), ‘metabolic process’, ‘cellular
process’ and ‘binding’ were the three most common
GO terms (Additional file 13), and ‘metabolic path-
ways’, ‘biosynthesis of secondary metabolites’ and ‘drug
metabolism cytochrome P450’ were the three most
common pathways (Additional file 14). Eleven DEGs
associated with growth, six with structural molecule
activity and five with electron carrier activity were
specific upregulated in dZB3.
To identify significant GO categories and KEGG path-

ways among the three comparisons, further GO and
KEGG enrichment analyses were performed. The GO
categories ‘negative regulation of circadian rhythm’, ‘tran-
scription regulatory region DNA binding’ and ‘regulatory
region nucleic acid binding’ had the highest enrichment
ratios between the maintainer B line (dB3) and the
CMS-D2 A (dZB3) line (Additional file 15), while ‘long-
day photoperiodism’, ‘negative regulation of sequence-
specific DNA binding transcription factor activity’ and
‘negative regulation of circadian rhythm’ had the highest
enrichment ratios between the A line (dZB3) and the re-
storer R (dZK3) line (Additional file 16). ‘Allene-oxide
cyclase activity’, ‘response to wounding’ and ‘oxidoreduc-
tase activity’ had the highest enrichment ratios between
the B (dB3) and the R (dZK3) lines (Additional file 17).
The three primary KEGG pathways with the highest ratios

were ‘circadian rhythm’, ‘alpha-linolenic acid metabolism’
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Fig. 1 Gene ontology classification (a) and COG functional categories (b) of unigenes
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Fig. 2 Distribution of the differentially expressed genes on different chromosomes. a Location distribution of DEGs on different chromosomes. b
DEG numbers on different chromosomes. The Y-axis represents different chromosomes. xis and numbers behind each bar represent the DEG
numbers on each chromosome
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and ‘sesquiterpenoid and triterpenoid biosynthesis’ between
the B (dB3) and A (dZB3) lines (Additional file 18); ‘circa-
dian rhythm’, ‘protein processing in endoplasmic reticulum’
and ‘photosynthesis’ between the A (dZB3) and R (dZK3)
lines (Additional file 19); and ‘protein processing in endo-
plasmic reticulum’, ‘alpha-linolenic acid metabolism’ and
‘thyroid hormone synthesis’ between the B (dB3) and R
(dZK3) lines (Additional file 20). The results showed that
the circadian rhythm pathway was an important and com-
mon pathway that was affected during meiosis.

Analysis of DEGs on Chr_D05 and DEGs related to
circadian rhythms
In our previous study [14], the restorer gene Rf1 was
shown to be located on Chr_D05 near position
54,287,522. In this study, Gh_D05G3189 and Gh_
D05G3427 near the target region were found to be spe-
cifically expressed in the fertile R lines but were not
expressed in the A or B lines. To further understand the
effect of DEGs from regions adjacent to Rf1, GO enrich-
ment analysis of 105 DEGs on Chr_D05 was performed.
The results demonstrated that ‘sesquiterpene synthase
activity’ and ‘(+)-delta-cadinene synthase activity’ were
the two major GO terms with the highest enrichment
ratios, while ‘sesquiterpenoid and triterpenoid biosyn-
thesis’, ‘protein processing in endoplasmic reticulum’ and
‘carotenoid biosynthesis’ were the three major pathways
identified in KEGG enrichment analysis. To examine the
correlation between the expression of the DEGs in diffe-
rent samples, a heatmap analysis was performed based on
the FPKM values of the 105 DEGs on Chr_D05 with the
restorer gene and 16 DEGs related to the circadian

rhythm (Fig. 4). The results showed that DEGs participa-
ting in sesquiterpene synthase activity and (+)-delta-cadi-
nene synthase activity were all expressed preferentially in
the B line, while most of the genes related to protein
processing in the endoplasmic reticulum were highly
expressed in the R line. Furthermore, it was interes-
ting to find that most DEGs related to the circadian
rhythm were highly expressed in the R and A lines
with the CMS-D2 cytoplasm, implying a possible con-
nection between the circadian rhythm and the CMS-
D2 cytoplasm.

Validation of RNA-seq data by qRT-PCR
To validate the RNA-seq data using real-time qRT-PCR,
11 DEGs were selected based on high fold-changes
(Gh_A12G1505), specific expression in certain genotypes
(Gh_A08G0004), chromosomal location on Chr_D05
(Gh_D05G0902, Gh_D05G1016, Gh_D05G3189, and
Gh_D05G3427), and association with the circadian
rhythm (Gh_D02G0690, Gh_A11G0920, Gh_A11G0926,
Gh_D09G1513, and Gh_D12G1525). The expression
patterns of these genes are shown in Fig. 5. The results
showed that except for the Gh_D09G1513 gene, the
expression patterns as determined by qRT-PCR were
consistent with those obtained by RNA-seq, confirming
the accuracy of the RNA-seq results in this study.

SNP identification of DEGs on Chr_D05
The DEGs located on Chr_D05 with the restorer gene
Rf1 were chosen for identification of SNPs among the
three lines (genotypes). For the 105 DEGs on Chr_D05,
11 SNP loci in 11 DEGs were identified between the
sequences from the R line and those from the non-
restoring genome, i.e., the A and B lines, including seven
loci in exons and four loci downstream of the coding
sequences (Table 1). Among these genes, Gh_D05G3129,
Gh_D05G3141, Gh_D05G3211 and Gh_D05G3427 were
located within the predicted target region of Rf1.
Therefore, some of them may be related to the fertility-
restoring gene, especially Gh_D05G3427, which is a
proton pump-interactor 1-like gene that was expressed
specifically in the restorer line.

Discussion
Illumina sequencing and sequence annotation
The CMS system is considered the most important tool
and is ideal for cotton hybrid seeds production. A re-
storer line containing a restorer gene is the determinant
for the CMS system. Thus, to understand restorer genes,
a large number of molecular mapping studies have been
conducted. However, there have been no reports about
how the restorer gene Rf1 affects gene expression. In
the present study, transcriptome sequencing was per-
formed to generate large amounts of cDNA sequence

251

349

408

103

25

136

192

dB3_vs_dZB3 dB3_vs_dZK3

dZB3_vs_dZK3

Fig. 3 Venn diagram showing the distribution of unique and common
DEGs among three comparisons
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data and profile transcriptome changes in a restorer
gene backcross population (BC8F1) with CMS cyto-
plasm and its backcross parent (maintainer line) without
the CMS-D2 cytoplasm. With the genome sequence of G.
hirsutum used as the reference genome, more than 90% of
clean reads were mapped to the reference genome. In
total, 62,001 of the 70,478 predicted transcripts in the
reference genome were identified in this study through
gene annotation. Thus, the transcriptomic data in this
study met the basic requirements needed for a com-
parative analysis. Finally, 1464 DEGs were identified
among the three lines, many of which could serve as
potential targets for future studies aimed at discove-
ring the molecular mechanism of nucleo-cytoplasmic
interactions.

DEGs in the restorer Gene located on chromosome c5
The 1464 DEGs were mapped to 26 chromosomes and
56 scaffolds of G. hirsutum. Chr_D05 and its homeolo-
gous chromosome Chr_A05 were the two chromosomes
with the most DEGs. In our previous study, the restorer
gene Rf1 was mapped to Chr_D05 [14]. This implied
that the expression profiles of these genes may be
affected by the restorer gene. Sesquiterpene synthase
activity, (+)-delta-cadinene synthase activity and carote-
noid biosynthesis were identified as important pathways
according to the GO enrichment analysis of the 105
DEGs on Chr_D05. Cotton (+)-delta-cadinene synthase
has been reported as a sesquiterpene cyclase that cata-
lyzes a branch-point step leading to the biosynthesis of
sesquiterpene phytoalexins, including gossypol [38–40].

Fig. 4 Heatmap showing the FPKM values of DEGs on Chr_D05 and DEGs related to circadian rhythm. The FPKM values for the DEGs in the three
samples were used for hierarchical analysis. The heatmap shows the expression abundance of the DEGs. The colors correspond to FPKM
values, ranging from blue (low expression) to red (high expression). Those genes in green boxes represent DEGs related to circadian rhythm
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In plants, carotenoids are crucial for various biological
processes, such as photosynthesis, photoprotection, and
regulation of growth and development [41–44], as well
as responses to the environment [45, 46]. During field
tests, the fertility of CMS-D2 restorer containing the
restorer gene was affected by the environment. There-
fore, whether there are correlations between terpene
biosynthesis and functions of the restorer gene re-
quires further study.
In our study, Gh_D05G3427, which had a SNP and

specifically expression in the restorer line, was identified
in the predicted target region of Rf1 on Chr_D05. It is a

proton pump-interactor 1-like gene (PPI1). Previous
studies have demonstrated that the PPI1 is a novel pro-
tein that can interact with the C-terminal autoinhibitory
domain of the plasma membrane (PM) H(+)-ATPase
[47]. PM H + −ATPases are important for plant nutrient
acquisition and can be detected at the whole plant level
[48–50]. Furthermore, some PM H + −ATPases only
expressed in anther tissues have been identified [51–53],
implying that this type of genes is important for male
gametogenesis. In this study, the PM H + −ATPases
regulatory gene Gh_D05G3427 was identified specifically
in the restorer line. Thus, it could be a potentially

Fig. 5 qRT-PCR analysis of gene expression compared with the RNA-seq data. The gray columns represented the relative expression levels of the
genes; the dotted lines represent the RNA-seq reads. A: sterile line, B: maintainer line, R: restorer line
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important gene that interacts with the restorer gene and
affects male gametophyte development. Further study of
this gene is needed to elucidate the genetic and molecular
mechanism of fertility restoration associated with Rf1.

The circadian rhythm pathway and its relationship with
pollen development
Previous research has shown that the circadian rhythm
pathway is involved in the promotion of reproductive
organs development in the vegetative stage in higher
plants [54–56], photosynthesis [57, 58], starch metabolism
[59–61], phytohormone response [61–63], hypocotyl
elongation [64, 65], and plant–pathogen interaction [66].
Additionally, some research has indicated that the cir-
cadian rhythm pathway is involved in the male sterility
transition [67, 68]. In this current study, several genes as-
sociated with the circadian rhythm were identified, some
of which comprise interlocking transcriptional feedback
loops that play important roles in the plant central clock.
Some loops integrate environmental factors, such as light
and temperature, into the central clock through the input
signaling pathway and import the rhythm signal into
downstream signaling pathways through output signaling
pathways [69, 70]. Here, circadian rhythm differences bet-
ween the fertile and sterile lines were also identified, and
the differential expression profiles of the genes related to
the circadian rhythm were confirmed by qRT-PCR. How-
ever, how the restorer gene regulates the circadian rhythm,
which in turn regulates male fertility, needs a further study.

Conclusions
Through genome-wide comparative transcriptome ana-
lysis, 1464 DEGs were identified in flower buds among
the fertile R line, maintainer B line and sterile A line.
The Rf1-carrying Chr_D05 and the homeologous
Chr_A05 had more DEGs than the other chromosomes.
qRT-PCR further confirmed the accuracy of the RNA-
seq results. The circadian rhythm pathway was identified
as an important pathway differing between the fertile
and sterile lines by GO and KEGG enrichment analysis.
In the predicted target region of Rf1 on Chr_D05,
Gh_D05G3427 was found to be expressed specifically in
the restorer line and to have a restorer line specific SNP.
Our results provide useful data for future investigations
into the molecular mechanisms of nucleo-cytoplasmic
interaction in CMS cotton.
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