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Abstract

The chemokine receptor CXCR7 binds CXCL11 and CXCL12 with high affinity, chemokines that were previously thought to
bind exclusively to CXCR4 and CXCR3, respectively. Expression of CXCR7 has been associated with cardiac development as
well as with tumor growth and progression. Despite having all the canonical features of G protein-coupled receptors
(GPCRs), the signalling pathways following CXCR7 activation remain controversial, since unlike typical chemokine receptors,
CXCR7 fails to activate Gai-proteins. CXCR7 has recently been shown to interact with b-arrestins and such interaction has
been suggested to be responsible for G protein-independent signals through ERK-1/2 phosphorylation. Signal transduction
by CXCR7 is controlled at the membrane by the process of GPCR trafficking. In the present study we investigated the
regulatory processes triggered by CXCR7 activation as well as the molecular interactions that participate in such processes.
We show that, CXCR7 internalizes and recycles back to the cell surface after agonist exposure, and that internalization is not
only b-arrestin-mediated but also dependent on the Serine/Threonine residues at the C-terminus of the receptor.
Furthermore we describe, for the first time, the constitutive ubiquitination of CXCR7. Such ubiquitination is a key
modification responsible for the correct trafficking of CXCR7 from and to the plasma membrane. Moreover, we found that
CXCR7 is reversibly de-ubiquitinated upon treatment with CXCL12. Finally, we have also identified the Lysine residues at the
C-terminus of CXCR7 to be essential for receptor cell surface delivery. Together these data demonstrate the differential
regulation of CXCR7 compared to the related CXCR3 and CXCR4 receptors, and highlight the importance of understanding
the molecular determinants responsible for this process.
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Introduction

CXCL12 (SDF1a)-mediated effects have been classically

attributed to its interaction with chemokine receptor CXCR4.

However, it has recently been appreciated that CXCL12 also

binds with high affinity to chemokine receptor CXCR7 (earlier

also referred to as RDC-1 or CXC-CKR2), an evolutionary

conserved G protein-coupled receptor (GPCR) [1,2]. In addition,

the CXCR3-ligand CXCL11 (I-TAC) [1,2] has also been found to

bind to CXCR7. CXCR7 plays a role in cardiac development [3]

as well as in promoting tumor development and progression [4,5].

In fact, CXCR7 has been shown to promote the growth of tumors

formed from lung, breast and liver cancer cells [4,6] and increased

expression of CXCR7 has been correlated with the aggressiveness

of prostate cancer [7], suggesting an important role for this

receptor in tumor metastases and progression [8]. More recently,

it has been shown that CXCR7 is also expressed in the nervous

system, where it has been described to be involved in both the

development of the CNS [9,10] as well as in tumor malignancy

[11]. Importantly, in cortical interneurons, CXCR7 has been

postulated to indirectly regulate the expression of CXCR4 and

consequently sustain normal levels of this receptor [12]. Similarly,

in zebrafish, CXCR7 is critical for the proper migration of

primordial germ cells [13]. Such an emerging role for CXCR7 in

both normal development and cancer are motivating ongoing

efforts to target this receptor therapeutically. However, molecular

interactions and signaling events following CXCL11 or CXCL12

binding to CXCR7 remain poorly defined and controversial.

Several reports suggest that CXCR7, despite conserving most of

the canonical GPCR features, does not activate Gai-mediated

pathways that are typical for chemokine receptors and would

result in GTP hydrolysis, calcium mobilization, and chemotaxis

[2,3,14]. In contrast, other studies suggest CXCR7 as a modulator

of CXCR4-mediated signaling through CXCR7-CXCR4 hetero-

dimerization. Indeed, the presence of CXCR7 has a dramatic

effect on the signaling derived from CXCR4 activation [14–16].

Another hypothesis on the physiological function of CXCR7

suggests its role as a ‘‘decoy’’ receptor or chemokine scavenger.

Internalization upon binding of CXCL11 or CXCL12 would

generate the gradient of chemokine necessary for a correct

CXCR4 migratory response [12,13,17,18], without any signaling

following chemokine binding to CXCR7. Yet, some of these decoy

receptors have been shown to be constitutively internalized by a b-

arrestin-mediated mechanism [19]. It has recently been described

that CXCR7 also interacts with b-arrestin in a ligand-dependent

manner [15,20,21] and, more importantly, that this interaction
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results in ERK1/2 phosphorylation and translocation via a G

protein-independent, b-arrestin-mediated signal [22,23], suggest-

ing different functions other than the ‘‘decoy’’ activity of this

receptor.

As for all membrane proteins, the magnitude of the cellular

response elicited by a ligand binding to a GPCR is dictated by the

level of receptor expression at the plasma membrane, which is the

balance of finely tuned endocytic and recycling pathways. Recent

data reveal that receptor trafficking can have differential effects on

the strength of the intracellular signaling cascade [24]. One of the

most common events for receptor desensitization and internaliza-

tion involves the recruitment of the b-arrestin protein, which binds

to the activated and phosphorylated receptor. This uncouples the

receptor from its G protein and scaffolds the binding of proteins

involved in formation of clathrin-coated pits and receptor

endocytosis [25]. Once internalized in early endosomes, some

GPCRs are dephosphorylated and subsequently recycled back to

the plasma membrane where they can again respond to agonists, a

process termed resensitization. Alternatively, a subclass of GPCRs

enter the degradation pathway, where they are targeted to

lysosomes for proteolysis, giving rise to long-term attenuation of

signaling or downregulation [25]. Despite recent advances, the

mechanisms mediating endosomal sorting remain elusive; howev-

er, receptor ubiquitination, i.e. the covalent addition of the small

protein ubiquitin to the lysine side chains of the substrate protein,

has recently been reported to play an important role for several

GPCRs. Recent studies suggest that mammalian GPCR ubiqui-

tination is essential for lysosomal sorting but not for receptor

internalization [26,27]. Direct b2-adrenergic receptor (b2AR)

ubiquitination is not required for internalization but regulates

lysosomal sorting and degradation of activated receptors [27].

Similar to b2AR, ubiquitination of CXCR4 is essential for agonist-

promoted receptor lysosomal degradation but not for internaliza-

tion [26]. In contrast, the protease-activated receptor-1 (PAR-1)

has been shown to be basally ubiquitinated and de-ubiquitinated

after receptor activation, revealing a novel function for ubiquitina-

tion in the regulation of GPCR internalization [28]. Several recent

reports show that CXCR7 internalizes upon agonist stimulation

and, recycles to the cell surface [17,20,21,29]. However, the

mechanisms involved in such regulation have not yet been

identified. Thus, there is a need to define fundamental

mechanisms for the activation and regulation of this receptor. In

the present study we have investigated the molecular determinants

responsible for CXCR7/b-arrestin interaction and CXCR7

regulation. We have identified C-terminal CXCR7 residues that

are of key importance for its internalization and subsequent

recycling. Importantly, and in contrast to what has been described

for the closely related receptor CXCR4, we show that CXCR7 is

basally ubiquitinated and investigate the role of ubiquitination/de-

ubiquitination in CXCR7 regulation.

Results

CXCR7 C-terminal Serine/Threonine residues are essential
for b-arrestin recruitment

In order to investigate potential CXCR7-mediated signaling, we

evaluated CXCR7 activation in several assays that have been

traditionally linked to chemokine receptor activation. Unlike

classical chemokine receptors, and despite being expressed at the

cell surface, CXCR7 does not show Gai protein coupling as

assessed by [35S]GTPcS accumulation assay or inhibition of

forskolin-induced cAMP levels (Fig. S1 and [14]). Additionally, no

CXCR7-mediated response was observed in cAMP and inositol

phosphates accumulation experiments, ruling out the possibility of

any detectable Gas and Gaq/11 protein activation (data not

shown). More recently, the ability of CXCR7 to recruit b-arrestin

has emerged as the potential initial signaling step after receptor

activation [15,20,21,23]. In agreement with this, we detected b-

arrestin recruitment to CXCR7 using a BRET approach. In

HEK293T cells transiently transfected with CXCR7-RLuc and b-

arrestin2-YFP, a dose-dependent increase in energy transfer was

observed when stimulating the receptor with CXCL11 or

CXCL12 (pEC50 = 8.560.1 and 8.660.1 respectively) (Fig. 1A).

Furthermore, b-arrestin1 recruitment to CXCR7 by CXCL11

and CXCL12 was induced with similar potencies as observed for

b-arrestin2 (pEC50 = 8.760.1 and 8.660.1 for CXCL11 and

CXCL12 respectively). The anti-CXCR7 antibody 8F11 blocked

the chemokine-mediated b-arrestin recruitment in the transfected

Figure 1. b-arrestin2 recruitment to CXCR7 is dependent on C-terminal Ser/Thr residues. (A) CXCL11 or CXCL12-mediated b-arrestin2
recruitment to CXCR7. HEK293T co-expressing RLuc-tagged CXCR7 and YFP-tagged b-arrestin2 were stimulated with increasing concentrations of
CXCL11 (open circles) or CXCL12 (filled circles) (B) HEK293T co-expressing RLuc-tagged CXCR7 and YFP-tagged b-arrestin2 were incubated overnight
with 25 ng/ml of PTX or for 30 min with the CXCR7-specific antibody 8F11 prior to the BRET measurement. (C) CXCL12-induced b-arrestin2
recruitment to CXCR7 wt (filled circles), a truncated CXCR7 lacking the C-terminus (CXCR7 DC, filled triangles) or a mutant CXCR7 for which all the Ser
and Thr residues were mutated to Ala (CXCR7 ST/A, open squares). HEK293T cells coexpressing RLuc-tagged CXCR7 mutants and YFP-tagged b-
arrestin2 were stimulated with increasing concentrations of CXCL12 prior to BRET measurements. Data represent the mean 6 SEM of 4 experiments
each performed in triplicate. Results are expressed in Net BRET as described in Materials and Methods. ***, p,0.001 by one-way ANOVA and
Bonferroni post test.
doi:10.1371/journal.pone.0034192.g001
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HEK293T cells, indicating that it is a CXCR7-specific effect

(Fig. 1B and [21]). In addition, b-arrestin recruitment was shown

to be Gai/o protein-independent, as an overnight treatment of the

cells with pertussis toxin (PTX) had no effect on the ability of

CXCR7 to interact with the scaffolding protein (Fig. 1B).

It has been shown for several GPCRs that b-arrestin binds to

phosphorylated amino acid residues of the C-terminus of the

GPCR protein [30]. We therefore generated a C-terminally

truncated CXCR7 mutant, which lacks the 39 C-terminal amino

acids after the NPXXY motif (CXCR7 DC, Table S1).

Radioligand binding assays showed that the truncated receptor

retained the same binding affinity for CXCL12 as the wild type

(pKd 6 SEM, 9.760.1 and 9.360.1 for CXCR7 wt and CXCR7

DC, respectively, see Table S2). b-arrestin recruitment experi-

ments using an RLuc-tagged form of CXCR7 DC confirmed that

this truncated receptor was unable to recruit b-arrestin2 (Fig. 1C).

In addition, mutation of all the serine (Ser) and threonine (Thr)

residues in the C-terminus to alanine (Ala) residues (CXCR7 ST/

A, Table S1) resulted in similar observations. CXCR7 ST/A was

not able to recruit b-arrestin2 (Fig. 1C). As expected, CXCL12

displayed similar affinity for the CXCR7 ST/A mutant compared

to the CXCR7 WT (pKd6SEM, 10.660.3, and 9.760.1,

respectively, Table S2). Cell surface expression of RLuc-tagged

CXCR7 DC or ST/A was confirmed by whole cell [125I]-

CXCL12 binding, ruling out the possibility that the lack of b-

arrestin recruitment is caused by the absence of the receptor

mutants at the cell surface (Fig. S2).

CXCR7 internalizes via clathrin-coated pits in a b-arrestin-
dependent manner
b-arrestins have classically been involved in GPCR signal

termination and internalization by binding to activated/phos-

phorylated receptors. We therefore investigated CXCR7 regula-

tion after agonist exposure (Fig. 2). After 45 min incubation with

1028 M CXCL12, a decrease in cell surface CXCR7 expression

was observed by ELISA using the specific CXCR7 antibody

11G8. This effect was mimicked by CXCL11 and was not affected

by overnight PTX treatment (Fig. 2A and 2C). Internalization

was blocked when the incubation was performed at 4uC or in

presence of 0.4 M sucrose, typical inhibitors of receptor

internalization [31] (Fig. 2A). Co-transfection of CXCR7 with

the b-arrestin (319–418) dominant negative (DN), effectively

inhibited agonist-induced CXCR7 internalization. b-arrestin

(319–418) encodes for the last 100 aa of the C-tail of b-arrestin1

and effectively binds clathrin, but completely lacks the capacity to

bind GPCRs. Consequently, overexpression of b-arrestin (319–

418) DN depletes the clathrin-mediated endocytic machinery [32].

Therefore, these results suggest that CXCR7 rapidly internalizes

upon CXCL11 and CXCL12 exposure by a mechanism

dependent on clathrin-coated pits (CCPs). This result, together

with the fact that the endocytic processing of CXCR7 is G protein-

independent, suggests the involvement of b-arrestins in CXCR7

internalization. This hypothesis was further validated by perform-

ing internalization ELISA experiments in the presence of siRNA

targeting b-arrestin1 and 2 (Fig. 2B). Transfection of HEK293/

CXCR7 cells with a non-targeting siRNA pool had no effect on

the previously observed CXCL12-induced internalization. How-

ever, transfection of siRNA pools targeting b-arrestin1 and -2,

resulted in a significant knock-down of the endogenous levels of

these proteins (as shown by Western blot analysis in Fig. 2B) and

was able to completely inhibit CXCL12-mediated internalization

of CXCR7 (Fig. 2B).

Furthermore, and in agreement with the previous results

indicating the lack of b-arrestin recruitment, no internalization

was observed after CXCL12 or CXCL11-stimulation of the

CXCR7 DC or the CXCR7 ST/A mutant receptors since the cell

surface receptor levels detected by ELISA were not significantly

different in the presence or absence of either CXCL11 or

CXCL12 (Fig. 2C). Altogether, these results demonstrate that

CXCR7 internalization is mainly (if not only) b-arrestin-

dependent and relies on the presence of the Ser and Thr residues

in the C-terminus of the receptor.

CXCR7 recycles to the cell surface after internalization
Once internalized, GPCRs are either directed to late endosomes

and processed for lysosomal degradation, or recycled to the cell

Figure 2. (A) CXCR7 internalization depends on CCPs and is G protein-independent. HEK293T cells were transfected with wt CXCR7 (and
b-arrestin (319–418) were indicated) and cell surface levels of the receptor after CXCL12 stimulation was detected by ELISA using the CXCR7-specific
antibody 11G8. Incubation with 0.4 M Sucrose was done 30 min prior and during stimulation. PTX was incubated overnight at 25 ng/ml final
concentration. (B) b-arrestin1/2 knock-down prevents CXCR7 internalization. HEK293/CXCR7 cells transfected with control siRNAs (white
bars) or pools targeting b-arrestin1/2 (filled bars), were stimulated with CXCL12 (1028 M) or vehicle for 45 min and receptor surface expression was
determined. Knockdown of b-arrestin1 and -2, 48 hrs after transfection, was assessed in western blot using an anti-b–arrestin1/2 antibody (inset).
Anti-STAT3 (mAb 79D7, Cell Signaling Technologies) was used as loading control. (C) CXCR7 C-terminus is essential for receptor
internalization. HEK293T cells were transfected with wt CXCR7 (filled bars), CXCR7 DC (grey bars) or CXCR7 ST/A (white bars) and cell surface
receptor levels were assessed as above. Data represent the mean 6 SEM of at least 3 experiments each performed in triplicate. ***, p,0.001 by one-
way ANOVA and Bonferroni post test.
doi:10.1371/journal.pone.0034192.g002
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surface [25]. To investigate the fate of internalized CXCR7

receptors, we stimulated HEK293 cells, stably expressing CXCR7,

with 1028 M of CXCL11 or CXCL12 and incubated them for

45 min or 3 hours and subsequently stained for CXCR7

immunoreactivity. In basal conditions, CXCR7 was uniformly

distributed at the cell surface (Fig. 3A). However, after 45 min of

chemokine incubation a marked decrease in cell surface staining

was observed, in agreement with the results from the ELISA

experiments and suggesting receptor internalization (Fig. 2). In

contrast, after 3 hours incubation with chemokine, the level of cell

surface CXCR7 expression was similar to the expression in basal

conditions, indicating the reappearance of CXCR7 proteins at the

cell surface (Fig. 3A). These results were then confirmed by time-

course ELISA experiments. In cells transiently transfected with

CXCR7, we observed receptor internalization after 1 hour of

ligand stimulation and recovery of cell surface CXCR7 levels at

3 hours of chemokine incubation (Fig. 3B). In contrast,

stimulation of CXCR3 with its agonist CXCL11, led to significant

internalization after 1 hour, but no recycling to the cell surface was

detected at later time points, indicating the occurrence of receptor

downregulation (Fig. 3B). In addition, permeabilization of the

cells showed a decrease of CXCR3 but not CXCR7 total receptor

levels (Fig. S3) further highlighting the differences in post-

endocytic sorting of both receptors. To rule out the detection of

newly synthesized receptors after 3 hours of agonist incubation,

cells were treated with the de novo protein synthesis inhibitor

cycloheximide (10 mg/ml). This had no effect on the recovery of

CXCR7 cell surface levels, suggesting that after internalization,

CXCR7 recycles back to the cell surface, despite the continuous

presence of chemokines (Fig. 3C). Several reports have recently

Figure 3. CXCR7 recycles to the cell surface after internalization. (A) HEK293T stably expressing CXCR7 were stimulated with 1028 M
CXCL11, CXCL12 or vehicle for 45 min or 3 h and fixed immediately. CXCR7 was detected using the specific 11G8 antibody and an Alexa-488-
conjugated secondary antibody. Scale bar represents 10 mm. (B) HEK293T cells expressing CXCR7 (filled symbols) or CXCR3 (open symbols) were
incubated with CXCL11 (1028 M, squares), CXCL12 (1028 M, triangles) or vehicle (circles) for the indicated times. Cell surface receptor levels were
detected by ELISA using CXCR7- or CXCR3-specific antibodies (11G8 and mAB160, respectively). Results were normalized to basal surface protein
levels, and data represent the mean 6 SEM of 4 experiments each performed in triplicate. (C) ELISA was performed as in B in cells pre-incubated for
2 h with the de novo protein synthesis inhibitor cycloheximide (10 mg/ml). (D) ELISA performed as in C on intact HEK293/CXCR7 cells treated with
vehicle or 1 mM of bafilomycin A1 (Baf A1), 30 min prior to incubation with CXCL12. (E) C-terminal Ser/Thr clusters determine receptor fate
after internalization. HEK293T cells were transiently transfected with CXCR7 wt (white bars) or with a chimeric receptor consisting of CXCR7
harboring the C-terminal sequence of CXCR3 (CXCR7-X3, filled bars). To assess the cell surface expression of the receptor, ELISA experiments were
performed after 30 min or 3 hours of incubation with 1028 M CXCL12. Data represent the mean 6 SEM of 3 experiments each performed in triplicate.
***, p,0.001, **, p,0.01, and *, p,0.05 by one-way ANOVA and Bonferroni post test.
doi:10.1371/journal.pone.0034192.g003
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suggested that CXCR7 can reside within intracellular pools

[13,17,29] and therefore, mobilization of CXCR7 from such

intracellular stores could also account for the reappearance of the

receptor at the plasma membrane, even in presence of

cycloheximide. To exclude this possibility we examined the effects

of bafilomycin A1, an inhibitor of vacuolar-type H+-ATPases, on

CXCR7 recycling. It has previously been shown that endosomal

acidification promotes dissociation of ligand from GPCRs, and

that inhibitors of such acidification prevent receptor recycling and

resensitization [33,34]. As shown in Fig. 3D, incubation of

CXCR7 expressing cells with 1 mM bafilomycin A1 did not affect

CXCR7 internalization after 45 min of CXCL12 stimulation. In

contrast, bafilomycin A1 treatment did severely affect the

reappearance of CXCR7 at the cell surface after 3 hours

(Fig. 3D). These results therefore indicate that CXCR7 proteins

are able to recycle to the plasma membrane after CXCL12

stimulation.

The presence of Ser and Thr clusters within the C-terminus of

GPCRs is indicative of a stable interaction with b-arrestin and a

slow or no recycling to the cell surface. Conversely, absence of

such clusters induces a more transient interaction with b-arrestin

and allows rapid recycling of the receptor to the cell surface [35].

Indeed, the sequence of the C-terminal tails of CXCR3 and

CXCR7 differs substantially (Table S1). Whereas the C-terminus

of CXCR3 contains Ser/Thr clusters, such a motif is not present

in the CXCR7 C-terminus. To test the role of the C-terminus in

receptor recycling, we generated a chimeric CXCR7 receptor

harboring the C-terminal sequence of CXCR3 (CXCR7-X3).

This chimeric receptor showed the same affinity for CXCL12 as

the wild type receptor (9.760.1 vs 9.560.1, pKd 6 SEM, Table
S2). ELISA experiments with transiently transfected HEK293T

cells showed no recycling of this chimeric receptor after long-term

agonist exposure, indicating that the presence of Ser/Thr clusters

on the CXCR3 C-terminus determines its downregulation,

whereas the absence of these clusters on the CXCR7 C-terminus,

allows its re-routing to the cell surface (Fig. 3E). Unfortunately,

generation of a chimeric receptor of CXCR3 with the C-terminus

of CXCR7 (CXCR3-X7) resulted in a receptor with very limited

cell surface expression whilst the total expression level was similar

to that of the wild type CXCR3. These observations suggest the

presence of molecular determinants on the CXCR3 C-tail

sequence that are absent in CXCR7 and that are important for

proper cell surface delivery of CXCR3. This observation is in line

with previous results on the CXCR3 receptor where several C-

terminal truncations result in poorly expressed receptors (Scholten

et al., unpublished observations).

CXCR7 is constitutively ubiquitinated and CXCL12
stimulation induces receptor de-ubiquitination

Recently, it has been proposed that ubiquitination plays an

important role in GPCR regulation [36]. Receptors such as the b2-

adrenergic receptor, the vasopressin receptor, PAR-1 receptor and

CXCR4 are all regulated by the covalent linkage of intracellular

lysine residues and the small protein/peptide ubiquitin [26–

28,37]. Ubiquitination of CXCR4 by the E3 ubiquitin ligase AIP4

following activation with CXCL12 results in receptor downregu-

lation [26]. Sequence comparison of the C-terminus of CXCR4

and CXCR7 revealed that, similar to CXCR4, CXCR7 contains

several lysine (Lys) residues in its C-terminus. We therefore

investigated the ubiquitination status of CXCR7 by co-immuno-

precipitation experiments using HA-tagged ubiquitin (HA-Ub)

and CXCR7 wt (Fig. 4). Interestingly, and in contrast to CXCR4,

we observed that CXCR7 is ubiquitinated under basal conditions.

In the lane corresponding to non-stimulated cells, a clear band

could be detected after immunoprecipitation of HA-Ub and

subsequent detection of CXCR7 with the 11G8 antibody (Fig. 4).

This band was not observed when the co-immunoprecipitation

was performed in samples expressing the CXCR7 DC or a

CXCR7 mutant in which all Lys residues had been replaced by

Ala (CXCR7 K/A), confirming ubiquitination of CXCR7 at C-

terminal Lys residues. Moreover, activation of CXCR7 by

CXCL12 induced a rapid receptor de-ubiquitination, as the

intensity of the band corresponding to ubiquitinated receptor

decreased significantly after 30 min incubation with CXCL12

Figure 4. The C-terminus of CXCR7 is constitutively ubiquitinated. (A) CXCR7 gets deubiquitinated by CXCL12-stimulation. HEK293T
cells were transfected as indicated and processed for immunoprecipitation of the HA-Ub (See Materials and Methods). (A) CXCR7 was stimulated with
1028 M CXCL12 for 30 min, and removal of CXCL12 was performed by two washes of the cells and additional 30 min incubation with fresh
chemokine-free media. Detection of the immunoprecipitated CXCR7 was done with the 11G8 antibody. HA-Ub expression was confirmed by blotting
lysates using an anti-HA antibody and equal loading was controlled by detection of actin on the same blot. Molecular weight markers (kDa) are
indicated on the right of the blot. (B) Detection of total CXCR7 protein expression by ELISA in the same cells.
doi:10.1371/journal.pone.0034192.g004
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(1028 M). Conversely, removal of the chemokine by subsequent

washout steps resulted in the reappearance of the band

corresponding to the ubiquitinated state of CXCR7 (Fig. 4)

suggesting that ligand-induced de-ubiquitination of CXCR7 is a

reversible process.

In contrast to CXCR7, the chemokine receptor CXCR3 has no

Lys residues in its C-terminus. We therefore performed similar co-

immunoprecipitation experiments in cells transfected with the

chimeric receptor CXCR7-X3 and the reciprocal CXCR3-X7. As

shown in Fig. 5, and in agreement with the results obtained with

the CXCR7 DC and CXCR7 K/A mutants, the introduction of

the CXCR3 tail sequence on the CXCR7 tail resulted in a

receptor unable to undergo basal ubiquitination, whereas

introducing Lys residues in the CXCR3 receptor resulted in a

mutant receptor able to be co-immunoprecipitated with HA-Ub.

To confirm the constitutive ubiquitination of CXCR7 and the

subsequent de-ubiquitination after CXCL12 activation, we

performed BRET2 experiments that allow real-time monitoring

of receptor ubiquitination [38]. In these experiments, cells were

co-transfected with RLuc-tagged CXCR7 and a GFP2-tagged

ubiquitin or, as a negative control, a (G75A, G76A)-Ub-GFP2

mutant that is unable to take part in the ubiquitination process

[38]. In cells transfected with CXCR7-RLuc as energy donor, a

decrease of the BRET response was detected after 30 min

incubation with 1028 M CXCL12. These data are in agreement

with the suggested CXCR7 de-ubiquitination after agonist

exposure (Fig. 6). In addition, no change in energy transfer was

observed when the (G75A, G76A)-Ub-GFP2 mutant was co-

expressed with CXCR7-RLuc (Fig. 6A). When the same

experiment was performed with the CXCR7 DC-RLuc (Fig. 6A)

or CXCR3-RLuc (Fig. 6C) as energy donors, agonist stimulation

did not induce any change in BRET2 indicating the absence of

modulation of the ubiquitination state of these receptors.

Interestingly, when the phosphorylation-deficient mutant CXCR7

ST/A-RLuc was used, we observed an increase of receptor

ubiquitination upon CXCL12 stimulation. This result suggests

that, in the absence of b-arrestin recruitment, CXCR7 cannot

undergo de-ubiquitination and, most importantly, that the

ubiquitin-conjugated CXCR7 is the prevalent form at the cell

surface. Finally, when CXCR4-RLuc was used as energy donor,

CXCL12 stimulation induced an increase in energy transfer

(Fig. 6B), which is in agreement with previous reports on

increased CXCR4 ubiquitination after agonist exposure and

therefore suggesting differential regulation of the two CXCL12

receptors [26].

C-terminal lysine residues are important for correct
CXCR7 trafficking to the cell surface

Despite normal binding characteristics when assessed by [125I]-

CXCL12 membrane binding, no cell surface expression could be

detected for the CXCR7 K/A mutant when performing [125I]-

CXCL12 whole cell binding, intact cell ELISA and intact cell

immunocytochemistry (Fig. 7). However, the CXCR7 K/A

mutant could be detected after permeabilization of cells in both,

ELISA and immunocytochemistry experiments (Fig. 7C and D).

Under these conditions CXCR7 WT was distributed in punctate

intracellular vesicles whereas the K/A mutant was uniformly

distributed in the cytoplasm and displaying a marked colocaliza-

tion with b-arrestin (Fig. S4). Such colocalization is in agreement

with the fact that, although being unable to detect an CXCL12-

dependent b-arrestin recruitment for CXCR7 K/A (due to its

absence from the cell surface), we could observe an increased

receptor- b-arrestin2 BRET signal in the basal state of CXCR7

K/A when compared to the wild type receptor (Fig. S5). These

results suggest that although its ability to bind chemokines remains

unaltered, the absence of C-terminal Lys residues results in

constitutive internalization and intracellular retention of CXCR7,

demonstrating the importance of these residues in the C-terminus

of CXCR7 for the correct trafficking of this receptor to the cell

surface.

Discussion

Due to its potential role in cancer development and progression,

the recently deorphanized chemokine receptor CXCR7 has

become a potential therapeutic target for the treatment of a

variety of tumors [4,7,8]. In addition, the fact that CXCR7 binds

CXCL12 with high affinity requires a revisit of some observed

effects thought to be solely mediated by CXCR4 and a detailed

understanding of the biochemistry and pharmacology of CXCR7.

An initial step in the characterization of CXCR7 is to establish the

mechanisms that regulate its expression at the cell surface. The

regulatory processes for CXCR4 have been extensively studied

and it has been demonstrated that CXCR4 is phosphorylated by

several kinases at specific sites that result in differential CXCL12-

induced signaling [39]. b-arrestin recruitment to phosphorylated

Figure 5. CXCR7/CXCR3 tail switch alters ubiquitination properties of the receptors. (A) Immunoprecipitation experiments were
performed in cells expressing chimeric receptors consisting on CXCR7 with CXCR3 C-terminus (CXCR7-X3) or the reciprocal CXCR3 with CXCR7 C-
terminus (CXCR3-X7). Detection of the immunoprecipitated CXCR7 and CXCR3 was done with the 11G8 and mAB160 antibodies, respectively. HA-Ub
expression was confirmed blotting lysates using an anti-HA antibody and equal loading was controlled by detection of actin on the same blot.
Molecular weight markers (kDa) are indicated on the sides of the blots. (B) Detection of total CXCR7 protein expression by ELISA in the same cells.
doi:10.1371/journal.pone.0034192.g005
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residues of the CXCR4 C-terminus has been shown to mediate

not only receptor internalization but also CXCL12-mediated

chemotaxis via p38 MAPK [40–42]. In addition, it has also been

demonstrated that the interaction between b-arrestin and CXCR4

targets the receptor for lysosomal degradation [43]. In the present

report we show that b-arrestin recruitment is also the main

component of the endocytic machinery that internalizes CXCR7

after agonist exposure. Interestingly, despite the difference in

CXCR7 affinities of CXCL11 and CXCL12 in radioligand

binding studies, they have similar potencies in b-arrestin

recruitment. We have identified the Ser/Thr residues of the C-

tail of the receptor to be essential for b-arrestin interaction as well

as CXCR7 internalization, given the findings that CXCR7 DC

and CXCR7 ST/A fail not only to recruit b-arrestin but also to

internalize. As intracellular Ser and Thr residues represent the

phosphorylation sites of GPCRs that lead to arrestin recruitment

and subsequent desensitization and internalization, our results

suggest the existence of one or several kinases responsible of

CXCR7 phosphorylation. Further investigation is required to

determine the nature of this phosphorylation and which kinases

(e.g. GRKs) are involved. Both b-arrestin recruitment and

receptor internalization are G protein-independent as shown by

their PTX insensitivity. In addition, a clathrin-coated pit endocytic

mechanism could also be suggested from the inhibition of CXCR7

internalization by the b-arrestin (319–418) peptide. Finally, the

ability of b-arrestin1/2 siRNA to completely block receptor

internalization provided further evidence for the involvement of

these proteins in the regulation of CXCR7.

A sequence comparison of the C-terminal tail of CXCR7 and

CXCR3 highlighted the presence of Ser/Thr clusters in the latter

receptor. Such Ser/Thr clusters have been proposed to be

responsible for a strong interaction with b-arrestin thus inducing

slow internalization and, eventually, receptor downregulation [35].

This was in fact observed when assessing the internalization of

CXCR3, which showed a decrease in the total number of

receptors after 3 hours incubation with CXCL11. Internalization

via b-arrestin recruitment and subsequent degradation has also

been described for CXCR4, which also contains Ser/Thr clusters

in its C-terminus [40]. On the other hand, we here show that once

internalized, CXCR7 recycles back to the cell surface, which is in

agreement with the absence of Ser/Thr clusters in its C-tail,

corresponding to a more dynamic interaction with b-arrestin. By

generating a chimera of CXCR7 with the C-terminus of CXCR3,

we obtained a receptor unable to recycle and, most likely, subject

to CXCR3-like mechanisms of receptor regulation. Unfortunately,

we were unable to assess the regulation pattern of the reverse

Figure 6. Real-time monitoring of receptor ubiquitination using BRET2. HEK293T cells were transfected with Ub-GFP2 (white bars) or
(G75A,G76A)-Ub-GFP2 (filled bars) and (A) CXCR7-RLuc, CXCR7 DC-RLuc, or CXCR7 ST/A-Rluc, (B) CXCR4-RLuc, or (C) CXCR3-RLuc. BRET2 was
measured 30 min after stimulation with 1028 M of CXCL12 (CXCL11 for CXCR3) by addition of coelenterazine 400a and immediate read out. Results
are expressed in Net BRET normalized to basal as described in Materials and Methods. Data represent the mean 6 SEM of 3 experiments each
performed in triplicate. **, p,0.01, and ***, p,0.001, by Student t test.
doi:10.1371/journal.pone.0034192.g006
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chimeric receptor corresponding to the CXCR3 with CXCR7 C-

terminus due to the very limited cell surface expression of this

mutant. However, our results suggest that the presence or absence

of such clusters in CXCR7 C-tail determines the fate of receptors

after endocytosis leading to downregulation or recycling, respec-

tively. When monitoring the cell surface levels of CXCR7 after

agonist exposure, it was observed that receptor internalization

occurred in the first 30–60 minutes. Strikingly, recycling was

observed in both conditions, upon chemokine removal (data not

shown) but also when the incubation mixture was left for longer

time periods. Recent publications by Naumann et al. and Luker et

al. reconcile these events suggesting that CXCR7 mediates

effective ligand internalization and targeting of the chemokine

cargo for degradation. Such CXCR7-mediated depletion of

CXCL12 [17,29] would be sufficient to allow receptor recycling.

Apart from receptor phosphorylation, reversible ubiquitination

constitutes a key regulatory mechanism for GPCRs [36]. This

post-translational modification results in the covalent addition of

the small protein ubiquitin to the intracellular lysine side chains of

GPCRs with profound consequences for endocytic cycles of

GPCRs [36]. In particular, CXCR4 has been shown to undergo

CXCL12-induced ubiquitination resulting in lysosomal degrada-

tion of the receptor. CXCR4 ubiquitination occurs after receptor

internalization and is mediated by the E3 ubiquitin ligase AIP4 via

its interaction with b-arrestin [44], highlighting a novel function of

b-arrestins in endosomal sorting of GPCRs. Deubiquitination of

CXCR4, and therefore its escape from degradation, has been

shown to be mediated by USP14 [45], while the deubiquitinating

enzyme (DUB) USP8 has been shown to participate indirectly on

CXCR4 regulation by modulating the dynamics of the signaling

endosomes [46]. Similar to CXCR4, CXCR7 contains several

intracellular lysines. Therefore, we hypothesized a potential role

for ubiquitination in the regulation of CXCR7. By using two

complementary techniques, i.e. co-immunoprecipitation and

BRET2 [38], we show that in the basal state, CXCR7 is

ubiquitinated while this is not the case for mutant receptors

lacking the entire C-tail (CXCR7 DC) or the intracellular lysine

residues (CXCR7 K/A). Furthermore, we prove that the Lys

residues on the C-terminus of CXCR7 are responsible of receptor

ubiquitination by showing that the chimeric CXCR3 receptor

containing the CXCR7 C-terminus is ubiquitinated, while the WT

CXCR3 and the CXCR7 receptor with the CXCR3 C-terminus

are not. Moreover, we observed that receptor activation by

CXCL12 results in reversible de-ubiquitination since subsequent

removal of the chemokine from the media partially restored the

ubiquitinated receptor levels detected in the basal state. These

Figure 7. CXCR7 C-terminal Lys residues are important for correct trafficking of the receptor to the cell surface. (A) [125I]CXCL12
radioligand binding in total membranes of HEK293T cells transfected with CXCR7 wt (filled circles) or CXCR7 K/A (open squares) shows that both
receptors display the same affinity for CXCL12 (pKd = 9.760.1 and 9.560.1 respectively). (B) [125I]CXCL12 radioligand binding was performed in whole
cells expressing pcDEF3 (mock) CXCR7 wt (WT) or CXCR7 K/A (K/A) (C) CXCR7 wt or CXCR7 K/A expressing cells were fixed (open bars) or fixed and
permeabilized (filled bars) and CXCR7 was detected by ELISA using CXCR7-specific antibody 11G8. (D) Immunocytochemistry of HEK293T cells
transfected with CXCR7 wt (upper panels) or CXCR7 K/A (lower panels). Cells were fixed (left panels) or fixed and permeabilized (right panels) and
detection of CXCR7 was performed with 11G8 antibody. Scale bar represents 10 mm.
doi:10.1371/journal.pone.0034192.g007
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results are in contrast to what has been described for CXCR4, and

highlight the differences that could potentially underlie distinct

functions and/or patterns of expression of the two CXCL12

binding receptors.

So far, the only receptor reported to undergo agonist-mediated

de-ubiquitination is PAR-1, for which ubiquitination has been

shown to play a role in regulation of receptor trafficking and a

mutant PAR-1 lacking intracellular lysines has been shown to be

constitutively internalized [47]. Our data suggests that we could

propose a similar scenario for CXCR7 as we have observed that a

CXCR7 receptor with mutated C-terminal lysines is unable to

reach the cell surface, but is retained intracellularly and displays an

increased basal interaction with b-arrestin2. Therefore, the

observation of differential receptor trafficking of the different

mutants has led us to propose a preliminary model based on

ubiquitination as an essential determinant for CXCR7 regulation

(Fig. 8). According to this model, CXCR7 ubiquitination is

necessary for cell surface delivery of the receptor and the absence

of this ubiquitination would lead to a constitutively internalized

receptor. Upon CXCL12 stimulation, CXCR7 phosphorylation

promotes b-arrestin recruitment. We hypothesize that b-arrestin

would scaffold the interaction with a de-ubiquitinating enzyme

(DUB) responsible for CXCR7 de-ubiquitination. The de-

ubiquitinated receptor would subsequently be internalized. Due

to the dynamic interaction of b-arrestin and the CXCR7 C-

terminus, uncoupling of b-arrestin and interacting proteins would

render the receptor able to undergo ubiquitination and recycle to

the cell surface. According to this model, CXCR7 DC, despite not

being ubiquitinated would be delivered at the cell surface due to

the absence of the motifs responsible for b-arrestin interaction and

endocytosis. Additionally, the absence of arrestin recruitment

would prevent CXCR7 de-ubiquitination and therefore stabilize

the receptor at the cell surface, as is observed for the CXCR7 ST/

A mutant. As a consequence, the overall ubiquitination status of a

cell would influence the regulation of CXCR7 and, therefore, its

function. It will therefore be of key importance in the future to

validate the previous findings in cells natively expressing CXCR7

and relate them to the ubiquitination machinery of such cells.

Future studies will also focus on the identification of the E3 ligase

and DUB interacting with CXCR7 and/or b-arrestin.

Recently, Sanchez-Alcaniz et al. reported that CXCR7

indirectly regulates the expression of CXCR4 in cortical

interneurons. Such regulation is achieved by the dynamic

internalization of CXCR7 and prevention of excessive CXCR4

desensitization and endocytosis [12]. CXCR7 would thus ‘‘fine-

tune’’ the concentrations of CXCL12, thereby enabling directional

migration of interneurons. Therefore, the differential ubiquitina-

tion patterns of these two receptors upon agonist stimulation could

reflect a potential mechanism of achieving such dynamic

regulation.

It is well established that deregulation of ubiquitin pathways

[48] as well as defective endocytosis [49] result in the development

of diseases, including many types of tumors. In this context, recent

studies have shown that CXCR7 expression increases tumor

formation and metastasis for some cancers [4,7], which suggests

that this receptor plays an important role in this process. However,

the ubiquitination state of CXCR7 under these pathophysiological

conditions remains to be explored. Recent reports also suggest that

Figure 8. Proposed model for regulation of CXCR7 trafficking. CXCR7 requires ubiquitination of the Lys residues of its C-tail in order to reach
the cell surface. Receptor activation by CXCL12 and subsequent phosphorylation of the C-terminal Ser/Thr residues results in b-arrestin recruitment
by CXCR7 and receptor internalization in CCPs. In addition, b-arrestin scaffolds the interaction of CXCR7 with an unknown de-ubiquitinating enzyme
(DUB) responsible for receptor deubiquitination. After chemokine degradation in early endosomes and due to the transient interaction of CXCR7 with
b-arrestin, release of b-arrestin (and DUB) from the endocytosed receptor results in a CXCR7 able to undergo ubiquitination by a specific E3 ligase (E3)
and subsequent delivery of the recycled receptor to the cell surface.
doi:10.1371/journal.pone.0034192.g008
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one important function of CXCR7 is to prevent degradation of

CXCR4 [12]. Therefore, high expression of CXCR7 in tumor

cells may contribute to excessive signaling through CXCR4, a

landmark of the pathophysiology of WHIM syndrome, which is

also associated with tumor growth and metastasis formation [50].

In summary, we have identified ubiquitination as a post-

translational modification of CXCR7 responsible for its regulation

and we have, for the first time, shown the constitutive

ubiquitinated state of a chemokine receptor. Hence, future studies

are essential to establish not only the role of ubiquitination

processes in CXCR7-related cancer progression but also the

potential of therapies targeting the blockade of CXCR7 in cells in

which it is co-expressed with CXCR4.

Materials and Methods

Materials
All materials for tissue culture were purchased from PAA

Laboratories GmbH (Paschen, Austria). Lipofectamine 2000 was

purchased from Invitrogen (Paisley, UK). Poly-L-lysine, cyclohex-

imide, bafilomycin A1, o-phenylenediamine and monoclonal anti-

HA-Agarose conjugate were from Sigma-Aldrich (St. Louis, MO,

USA), Coelenterazine-h was obtained from Promega (Madison,

WI, USA). DeepBlueC (Coelenterazine 400a) was obtained from

Biotium (Hayward, CA, USA). [125I]-CXCL12 (2200 Cimmol21)

and [35S]GTPcS were obtained from PerkinElmer Life and

Analytical Sciences (Boston, MA, USA). Unlabeled chemokines

were purchased from PeproTech (Rocky Hill, NJ, USA).

Monoclonal antibody anti-CXCR7 (clone 11G8) and anti-

CXCR3 (mAb160) were from R&D Systems. Monoclonal

antibody anti-b-arrestin1/2 (clone D24H9) was purchased from

Cell Signaling Technology (Boston, MA, USA). The CAMYEL

biosensor was purchased from ATCC (#ATCC-MBA-277). b-

arrestin1-YFP was a kind gift from C. Hoffmann, b-arrestin (319–

418) from J. Benovic, HA-Ub from F. Mayor Jr., and Ub-GFP2

constructs were a generous gift from M. Bouvier. The CXCR7-

RLuc construct was generated using PCR, by substituting the

stopcodon of CXCR7 with a SpeI/NotI linker and fusing it in

frame to RLuc, as described previously [51]. For siRNA

transfection experiments, Dharmacon siRNA control pools (#D-

001810-10) and siRNA pools targeting b-arrestin1 (#L-011971)

and b-arrestin2 (#L-007292) were purchased from Thermo

Scientific (Epsom, UK).

Cell Culture and Transfection
HEK293T cells and HEK293 cells stably expressing human

CXCR7 (HEK293/CXCR7), were grown at 37uC and 5% CO2

in Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with 10% FBS, penicillin, and streptomycin. HEK293T cells were

transfected using linear polyethyleneimine (PEI) with a molecular

weight of 25 kDa (Polysciences, Warrington, PA) as described

previously [52]. In b-arrestin knockdown experiments, HEK293

cells stably expressing CXCR7 were transfected with a total of

250 pmol of siRNAs against both b-arrestin1 and -2 (1:1), using

lipofectamine 2000 according to standard protocol. The growth

medium was replenished 5 hours after transfection. In any case,

the day after transfection, cells were trypsinized, resuspended into

culture medium, and plated in the corresponding poly-L-lysine-

coated assay plates. Pertussis Toxin (PTX) treatment was

performed overnight at a final concentration of 25 ng/ml.

Membrane preparation and Chemokine Binding
Membrane preparation and competition bindings were per-

formed as described previously [52]. Briefly, cell membrane

fractions from HEK293T cells expressing CXCR7 were prepared

by washing the cells twice with ice-cold PBS and centrifuging them

at 1500 g for 10 min. The pellet was resuspended in ice-cold

membrane buffer (15 mM Tris, pH 7.5, 1 mM EGTA, 0.3 mM

EDTA, and 2 mM MgCl2), and homogenized using a Teflon-glass

homogenizer and rotor. The membranes were subjected to two

freeze-thaw cycles using liquid N2, and centrifuged at 40,000 g for

25 min. The pellet was resuspended in Tris-sucrose buffer (20 mM

Tris, pH 7.4, and 250 mM Sucrose) and aliquots were frozen in

liquid nitrogen. For [125I]-CXCL12 competition binding experi-

ments, 1 mg/well of membranes were incubated in 96-well plates

in binding buffer (50 mM HEPES, pH 7.4, 1 mM CaCl2, 5 mM

MgCl2, 100 mM NaCl, and 0.5% (w/v) BSA) with approximately

70 pM [125I]-CXCL12 and various concentrations of displacer for

two hours at room temperature. Membranes were harvested by

filtration through Unifilter GF/C plates (Perkin-Elmer) presoaked

with 0.5% PEI, using ice-cold wash buffer (50 mM HEPES,

pH 7.4, 1 mM CaCl2, 5 mM MgCl2, and 500 mM NaCl).

Radioactivity was measured using a MicroBeta scintillation

counter (Perkin-Elmer).

[35S]-GTPcS binding assay
5 mg/well of cell membranes were incubated with CXCL11 and

CXCL12 in assay buffer (50 mM Hepes, 10 mM MgCl2, 100 mM

NaCl, pH 7.2) supplemented with 3 mM GDP and 500 pM of

[35S]-GTPcS. Incubations were placed at room temperature for

1 hour before harvesting the membranes by filtration through

Unifilter GF/B plates. [35S]-GTPcS binding was determined using

a Microbeta scintillation counter.

cAMP biosensor BRET assay
The experimental procedure for this assay has been adapted

from Masri et al. [53], using the CAMYEL BRET-based biosensor

for cAMP. Twenty-four hours post-transfection, cells were

trypsinized and seeded in poly-L-lysine coated white 96-well

microplates. The cells were then cultured for an additional 24 h.

Cells were rinsed once with Hank’s Balanced Salt Solution (HBSS)

to remove traces of phenol red and were then incubated in fresh

HBSS. The Renilla luciferase (RLuc) substrate coelenterazine-h was

added to reach a final concentration of 5 mM. The non-specific

phosphodiesterase inhibitor IBMX was added simultaneously to a

final concentration of 40 mM. For measuring effects of chemokines

on cAMP levels, they were added 5 min after coelenterazine-h.

Forskolin was added 5 min later, yielding a final concentration of

10 mM. After 5 min of incubation with forskolin the YFP emission

(535 nm), as well as the RLuc emission (480 nm), were

sequentially recorded for every assay point using a Victor3

multilabel counter (Perkin-Elmer). The BRET signal (BRET ratio)

was determined by calculating the ratio of the light emitted at 505

to 555 nm (YFP) to the light emitted at 465 to 505 nm (RLuc).

b-arrestin recruitment BRET
For b-arrestin recruitment experiments, HEK293T cells were

transfected with a 1:4 ratio of cDNA coding for CXCR7-RLuc

and b-arrestin1- or -2-YFP (total DNA 2.5 mg per million cells).

24 hours post-transfection, cells were trypsinized and seeded in

poly-L-lysine coated white 96-well culture plates (Greiner). The

cells were then cultured for an additional 24 h. Cells were rinsed

once with HBSS to remove traces of phenol red and were then

incubated in fresh HBSS. The Renilla luciferase (RLuc) substrate

coelenterazine-h was added to reach a final concentration of

5 mM. After 5 min of incubation with coelenterazine-h, the

corresponding agonist was added, and incubated for 10 additional

minutes. After 10 min readings were collected using a Victor3
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instrument (PerkinElmer) and BRET ratios were calculated. The

values were corrected by subtracting the background signal

detected when the Receptor-RLuc construct was expressed alone.

In inhibition experiments, cells where incubated with the anti-

CXCR7 antibody 8F11 30 min prior to the addition of

coelenterazine-h.

Cell surface receptor expression and internalization ELISA
Transiently transfected HEK293T- or HEK293/CXCR7 cells,

were trypsinized and replated in poly-L-Lysine coated 48-well

plates. After 24 hours, cells were incubated with medium

containing CXCL11, CXCL12 at 1028 M or vehicle for several

time periods in case of internalization experiments, or directly

fixed when only receptor expression levels were determined. After

ligand treatment, cells were subjected to three sequential acid

washes (DMEM pH,2), fully removing the chemokines from the

receptors, such that they did not interfere with antibody binding

(data not shown). Subsequently, cells were fixed with 4%

formaldehyde in Tris-buffered saline (TBS). When stated, cells

were permeabilized with TBS/0.5% NP-40. After blocking with

1% skim milk in 0.1 M NaHCO3 pH 8.6, cells were incubated

overnight at 4uC with anti-CXCR7 or anti-CXCR3 antibodies

(11G8 [54] and mAB160, respectively) in TBS (50 mM Tris,

150 mM NaCl, pH 7.5) containing 0.1% BSA. The cells were

then washed three times with TBS, and incubated with goat anti-

mouse HRP-conjugated secondary antibody (Bio-Rad). Subse-

quently, cells were incubated with substrate buffer containing

2 mM o-phenylenediamine, 35 mM citric acid, 66 mM

Na2HPO4, and 0.015% H2O2 at pH 5.6. The coloring reaction

was stopped by adding 1 M H2SO4, and the absorption at 490 nm

was determined in a Powerwave X340 absorbance plate reader

(BioTek).

Immunofluorescence
HEK293 cells expressing CXCR7 growing on poly-L-lysine-

coated coverslips were incubated with DMEM containing

CXCL11, CXCL12 or vehicle for different time periods. Next,

the cells were washed three times with acid wash (DMEM pH,2),

fixed with 4% formaldehyde in PBS and blocked with 3% skim

milk in PBS or simultaneously permeabilized using 3% skim milk

containing 0.15% Triton X-100/PBS. Then the cells were

incubated consecutively with primary anti-CXCR7 11G8 mono-

clonal antibody and Alexa488-conjugated anti-mouse secondary

antibody (Molecular Probes, Invitrogen). An Olympus FSX100

BioImaging Navigator was used for detection of fluorescence and

the capturing of images.

Whole cell binding
HEK293T cells expressing wt or mutated CXCR7 were plated

100,000 cells/well into a 48-well assay plate (Greiner). The next

day, the medium was aspirated and the cells were incubated in

binding buffer (50 mM Hepes pH 7.4, 1 mM CaCl2, 5 mM

MgCl2 and 100 mM NaCl) containing ,70 pM of [125I]-

CXCL12 in the presence and absence of unlabeled ligands. After

4 hours at 4uC, the cells were washed three times with ice-cold

wash buffer (50 mM Hepes pH 7.4, 1 mM CaCl2, 5 mM MgCl2
and 500 mM NaCl), lysed and bound radioactivity was measured

in a Wallac Compugamma counter (PerkinElmer).

Detection of receptor ubiquitination by
immunoprecipitation

A total of five 10-cm plates of transfected HEK293T cells were

used for every co-immunoprecipitation condition. 48 hours after

transfection cells were rinsed twice and collected in a final volume

of 5 ml of ice-cold PBS (1 ml per plate). Cells were pelleted by

centrifugation for 3 min at 1000 rpm and subsequently lysed,

homogenized and incubated at 4uC for 30 min with 1 ml of lysis

buffer (1% NP-40, 1 mM EDTA, 150 mM NaCl, 10% Glycerol

and 1 mM CaCl2). The lysates were then centrifuged at

14,000 rpm and the supernatant was recovered. 50 ml of these

lysates were collected for later analysis and the remaining volume

was incubated with agarose-conjugated HA-antibody for 90 min

at 4uC on a rotating shaker. Immunoprecipitates were then

washed three times by centrifugation with wash buffer (0.1%

Triton X-100, 50 mM Tris pH 7.4, 300 mM NaCl, 5 mM

EDTA) and an additional final wash with cold PBS. Finally,

samples were eluted with sample buffer and processed for Western

Blot analysis.

SDS-PAGE and Western Blot
Cell lysates were subjected to SDS-PAGE analysis using 4–12%

Bis-Tris gels (BioRad). After electrophoresis, proteins were

transferred onto nitrocellulose membranes that were incubated

in 5% non-fat milk and 0.1% Tween-20/TBS solution at room

temperature on a rotating shaker for 2 h to block nonspecific

binding sites. The membrane was incubated overnight with the

corresponding antibody and detected using a horseradish

peroxidase-linked secondary antibody. Immunoblots were devel-

oped by application of enhanced chemiluminescence solution

(Pierce).

BRET2 monitoring of receptor ubiquitination
To assess receptor ubiquitination using BRET2, HEK293T cells

were co-transfected in a 1:4 ratio of RLuc-tagged receptor

(CXCR7 wt, CXCR7 DC, CXCR7 ST/A, CXCR4 or CXCR3)

and GFP2-tagged Ubiquitin (wt or G75A, G76A mutant).

24 hours post-transfection, cells were trypsinized and seeded in

poly-L-lysine coated white 96-well culture plates. The cells were

then cultured for an additional 24 h. On the day of the

experiment, cells were rinsed once with Hank’s Balanced Salt

Solution (HBSS) to remove traces of phenol red and were then

incubated in fresh HBSS for additional 30 min. Subsequently,

cells were incubated with 1028 M of chemokine for 30 min.

BRET2 measurements were collected 20 s after the addition of the

Renilla luciferase (RLuc) substrate Coelenterazine 400a (Biotium), at

a final concentration of 5 mM. Readings were collected with

Victor3 instrument (PerkinElmer) detecting the signals in the 370–

450 and 500–530 nm ranges. BRET2 ratios were calculated as

described previously [30].Data

Analysis
Nonlinear regression analysis of the data and calculation of

affinity values was performed using Prism 5.04 (GraphPad

Software Inc., San Diego, CA).

Supporting Information

Figure S1 CXCR7 does not activate Gai/o proteins. (A)

[35S]GTPcS binding assay in membranes of HEK293 cells

transiently transfected with CXCR7 (triangles) or stably expressing

CXCR3 (circles). Membranes were incubated with increasing

concentrations of CXCL11 (black symbols) or CXCL12 (open

symbols). Results are expressed as fold over basal [35S]GTPcS

binding from three independent experiments and represent mean

6 SEM. (B) Inhibition of forskolin-induced cAMP accumulation

in HEK293 cells transiently transfected with CXCR7 or stably

expressing CXCR3 and simultaneously transfected with the cAMP

Role of Ubiquitination in CXCR7 Regulation

PLoS ONE | www.plosone.org 11 March 2012 | Volume 7 | Issue 3 | e34192



BRET biosensor CAMYEL. Data results from three independent

experiments and is expressed as percentage of forskolin (Fsk)

response and represent mean 6 SEM.

(PDF)

Figure S2 Cell surface expression of RLuc-tagged
receptors. Surface expression of RLuc -tagged CXCR7

constructs was assessed by [125I]CXCL12 whole cell binding.

Data represent the mean 6 SEM of 3 experiments each

performed in triplicate.

(PDF)

Figure S3 CXCR7 recycles after agonist stimulation
while CXCR3 downregulates upon prolonged exposure
to its ligand. Receptor surface expression was assessed by

ELISA in HEK293T cells transiently transfected with wt CXCR7

or wt CXCR3. To assess for total receptor expression cells were

permeabilized after fixation with 0.5% NP-40. Data represent the

mean 6 SEM of 3 experiments each performed in triplicate.

(PDF)

Figure S4 CXCR7 K/A colocalization with b-arrestin2.
HEK293T cells were transiently transfected with CXCR7 wt or

K/A (red channel) and b-arrestin2-YFP (green channel). Cells

were fixed and permeabilized prior to the immunodetection of

CXCR7 with the 11G8 anti-CXCR7 antibody and an anti-mouse

Alexa546-conjugated secondary antibody. Scale bar represents

10 mm.

(PDF)

Figure S5 CXCR7 K/A shows increased basal interac-
tion with b-arrestin2. HEK293T cells coexpressing RLuc-

tagged CXCR7 wt or K/A mutant and YFP-tagged b-arrestin2

were stimulated with 1028 M of CXCL12 prior to BRET

measurements. Results are expressed as fold of basal Net BRET

as described in Materials and Methods. Data represent the mean

6 SEM of 3 experiments each performed in triplicate.

(PDF)

Table S1 Amino acid sequence of the mutated C-tails of
CXCR7. Bold letters indicate the introduced changes from the

CXCR7 original sequence. The conserved NPXXY motif is

underlined as a reference.

(DOC)

Table S2 CXCL12 binding affinities for mutant CXCR7
receptors. pKd values were obtained by [125I]-CXCL12

homologous competition binding on membrane preparations of

cells expressing CXCR7 WT or mutant receptors.

(DOC)
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