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Abstract
Test publishers usually provide confidence intervals (CIs) for normed test scores that reflect the uncertainty due to the
unreliability of the tests. The uncertainty due to sampling variability in the norming phase is ignored. To express uncertainty
due to norming, we propose a flexible method that is applicable in continuous norming and allows for a variety of score
distributions, using Generalized Additive Models for Location, Scale, and Shape (GAMLSS; Rigby & Stasinopoulos, 2005).
We assessed the performance of this method in a simulation study, by examining the quality of the resulting CIs. We varied
the population model, procedure of estimating the CI, confidence level, sample size, value of the predictor, extremity of the
test score, and type of variance-covariance matrix. The results showed that good quality of the CIs could be achieved in most
conditions. The method is illustrated using normative data of the SON-R 6-40 test. We recommend test developers to use
this approach to arrive at CIs, and thus properly express the uncertainty due to norm sampling fluctuations, in the context
of continuous norming. Adopting this approach will help (e.g., clinical) practitioners to obtain a fair picture of the person
assessed.

Keywords Continuous norming · GAMLSS · Box-Cox power exponential distribution · Posterior simulation ·
Psychological tests

Introduction

Norms are needed to give an interpretation of someone’s test
score. A normed score can be expressed in different ways,
like a percentile and z score. It indicates the person’s relative
standing on the test to other people in the population. For
instance, the normed scores of intelligence tests are typically
expressed as normalized intelligence quotient (IQ) scores,
with a population mean of 100 and standard deviation of 15,
yielding an immediate interpretation of any observed IQ score.

Normed tests are often applied as high-stakes tests,
meaning that they are used to make important decisions
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about individuals. A clear example relates to the fact that
mentally retarded individuals are exempted from death
penalty in 18 of the United States (Death Penalty Infor-
mation Center, 2015). Some states, like Idaho and Florida,
use IQ scores to identify mental retardation, applying a
rigid cutoff (i.e., observed IQ score ≤ 70). Another instance
of the use of a rigid cutoff can be found in the Nether-
lands, where mental retardation indicated by an observed
IQ score of 85 or below qualifies for the long-term care act
(Zorginstituut Nederland, 2017), allowing the financing of
supervised living and debt repayment programs.

In using test scores for important individual decisions, it
is essential to acknowledge the uncertainty in observed test
scores. There is an increasing awareness of the importance
of reflecting this uncertainty. For instance, in the fifth
edition of the DSM (Diagnostic and Statistical Manual
of Mental Disorders; American Psychiatric Association,
2013), unlike earlier editions, a standard error of 5 IQ
points was explicitly included in defining the upper range
of intellectual disability. These expressions of uncertainty
in observed test scores reflect the notion that observed
scores may differ across assessments, even if the individual
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assessed would remain exactly the same, or two individuals
would be exactly the same, on the characteristic measured.

In line with this increased awareness, the Dutch Com-
mittee on Testing (COTAN) recommends test publishers to
report information regarding the accuracy of the test (i.e.,
standard error of measurement, standard error of estimate,
or test information function/standard error) and the appro-
priate intervals (Evers et al., 2009). Nowadays, many test
publishers express this uncertainty related to test reliabil-
ity, e.g. the WISC-IV (Wechsler, 2003) and the Bayley-III
(Bayley, 2006).

Nevertheless, this is insufficient for normed scores,
because it ignores another source of uncertainty, namely
due to the test norming itself. Test norming takes place
on the basis of a norming sample, rather than the full
population, implying that the norms themselves are due to
sampling fluctuations. This source of uncertainty in normed
test scores has been acknowledged only recently, with the
proposal of two methods to estimate CIs for normed test
scores, under the assumption that the norming sample stems
from a single population.

Crawford et al. (2011) proposed a method to obtain
CIs around percentile norms, under the assumption that
the scores in the norm population are normally distributed.
Recently, Oosterhuis et al. (2017) derived standard errors
for four different norm statistics (standard deviation,
percentile ranks, stanine boundaries, and z scores), under
the assumption that the scores in the norm population stem
from a multinomial distribution. As described by Oosterhuis
et al. (2016), this method can be applied to residuals of
raw test scores in the context of regression-based norming,
in which relevant personal characteristics (e.g., age) are
used to estimate the raw test score distribution. Even
though the method of Oosterhuis et al. (2017) has less
strict assumptions than the method of Crawford et al.
(2011), it still assumes normally distributed errors and
homoscedasticity of the error variances, which are often
unrealistic assumptions in practice. For instance, floor- and
ceiling effects may introduce skewness.

We propose a method to derive CIs indicating uncertainty
in normed scores that does not rely on those strict
assumptions. To this end, we use the flexible Generalized
Additive Models for Location, Scale, and Shape (GAMLSS;
Rigby and Stasinopoulos, 2005), which has been advocated
as a useful approach to continuous norming (e.g., Bayley-III
(Bayley, 2006) and SON-R 2-8 (Tellegen & Laros, 2017)).
GAMLSS includes a broad range of distributions, yielding
a good chance of finding a well-fitting distribution for
empirical normative data. Interestingly, the ordinary linear
regression model described by Oosterhuis et al. (2016) is
a restricted, special case of a model within the GAMLSS
framework.

GAMLSS

Applying GAMLSS implies that the score distribution is
modelled conditional on predictor(s) of interest (e.g., age),
based on certain distributional parameters. For instance,
the Box-Cox power exponential (BCPE; Rigby and
Stasinopoulos, 2004) distribution is a flexible continuous
distribution, involving four distributional parameters, which
relate to the location (μ), scale (σ), skewness (ν),
and kurtosis (τ). These distributional parameters can be
estimated as a function of predictor(s), like age. Once a
model (e.g., μ = β0 + β1 age + β2 age2) has been selected
for each of these distributional parameters, this estimated
relationship between the predictor(s) and the distributional
parameters fully determines the distribution of the test
scores given the scores on the predictor(s). This distribution
can then be used to calculate for any given testee what the
relative position (i.e., normed score) of his/her observed
score is within the estimated conditional score distribution.

So, if the only predictor is age, the normed scores can
be determined for every possible test score conditional
on every age value within the age range of interest. In
this study, we focus on GAMLSS models with the BCPE
distribution. We presume that a proper fitting BCPE model
can be selected for the normative data at hand. The
automated model selection procedure (Voncken et al., 2017)
has been shown to perform well in the context of continuous
norming. Note that extensive model fitting, followed by
norming based on the same data, might lead to some
overfitting.

Further, we focus on norms in the form of percentiles.
This does not limit its applicability, because CIs of one
type of norm statistic can easily be transformed to CIs of
any other type of norm statistic (e.g., IQ scores, z scores,
stanines). Hence, it is not necessary to derive the CI for
every norm statistic separately. For instance, percentiles can
be transformed to (normalized) z scores with the inverse
normal distribution. A percentile of 50 is equal to a z score
of 0. The z score can be transformed to an IQ score by
multiplying the z score by the standard deviation of the
desired distribution (i.e., 15), and then adding the mean of
the distribution (i.e., 100).

Estimating CIs for percentiles

Posterior simulation procedure Once the BCPE model
has been selected for the normative data at hand, the
point estimates for the percentiles, conditional upon the
predictor(s) (e.g., age), can be readily obtained as a quantity
derived from the fitted model. To make inferences about
quantities derived from a fitted GAMLSS model, the
recommended method is posterior simulation (Wood, 2006).
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With this method, the parameter estimates are simulated
conditional on the data.

In our study, we denote the CI that captures sampling
fluctuation as CInorm, to explicitly distinguish from the CI
that captures test unreliability, denoted as CIrel. By denoting
the normed scores (e.g., percentiles, IQ scores) as θnorm,
we define CInorm as the CI for θnorm, thus capturing the
uncertainty in the normed scores due to sampling variability.
We propose to estimate CInorm with a posterior simulation
procedure consisting of the six steps described below.
Table 1 provides an overview of the notation within the
posterior simulation procedure.

(1) Select a continuous norming model (e.g., with
the automated model selection procedure described
before).

(2) Estimate the model parameters, denoted by θ̂par, of
the continuous norming model, and their covariances.
The estimated model parameters, θ̂par, involve all
estimated parameters for each of the four distributional
parameters of the BCPE distribution (i.e., β̂μ, β̂σ, β̂ν,

and β̂τ). For example, if the model for each
distributional parameter involves a linear effect of one
predictor, there are 8 estimated model parameters: 4
intercepts and 4 linear terms of the predictor.

(3) Simulate θ̂spar, from a multivariate normal distribution:

θ̂spar ∼ N
(

θ̂par, �(θ̂par)
)
, where θ̂par represents

the vector of the parameter estimates, and �(θ̂par)
represents the corresponding estimated variance-
covariance matrix.

(4) Compute from the model with θ̂spar the estimated

normed scores of interest, θ̂snorm, for the test taker’s test
score conditional on the predictor value(s) (e.g., test
taker’s age) of interest. Repeat steps (3) and (4) many
(e.g., S = 5,000) times.

(5) Construct a distribution, θ̂s*norm, of the S estimated
normed scores for the test taker θ̂snorm computed in

this process. This distribution contains the estimated
normed scores of interest corresponding to each of the
S sets of simulated model parameters.

(6) Estimate CInorm based on the constructed distribution,
using the percentiles or the standard deviation of the
distribution, depending on the method of estimating
the CI.

Step (6) of our procedure involves the estimation of
CInorm from the constructed distribution θ̂s*norm. We will
consider three methods to do this: Wald method, percentile
method, and bias-corrected (BC) percentile method.

Wald method The Wald CInorm is based on θ̂norm and
the standard error SE∗, the standard deviation of the
distribution. The lower and upper bounds of the 100(1-α)%
CI are given by θ̂norm−z( 12α) ·SE∗ and θ̂norm+z(1− 1

2α) ·SE∗,
respectively, where α is the significance level and z(α) the
100αth percentile from the standard normal distribution.

Percentile method The percentile CInorm is based on the
100( 12α)th and 100(1- 12α)th percentile of the cumulative
distribution. The lower and upper bounds of the 100(1-

α)% CInorm are given by θ̂s*(
1
2α)

norm and θ̂s*(1−
1
2α)

norm , respectively,
where θ̂s*(α)

norm reflects the 100αth percentile of θ̂s*norm.

Bias-corrected percentile method The bias-corrected per-
centile method (BC; Efron, 1982 p. 82) corrects the per-
centiles of the distribution for bias (i.e., the discrepancy
between the centre of distributions θ̂s*norm and θ̂norm). The BC
method estimates the lower and upper bounds of the 100(1-
α)% CInorm by θ̂s*(α1)

norm and θ̂s*(α2)
norm , respectively, where α1

and α2 are estimated as

α1 = �
(
2ẑ0 + z( 12α)

)

α2 = �
(
2ẑ0 + z(1− 1

2α)
)
.

(1)

Table 1 Notation within the posterior simulation procedure

Parameter Definition

θpar Set of model parameters of the continuous norming model in the population. This involves all parameters for each of the
distributional parameters (e.g., βμ, βσ, βν, and βτ for the BCPE distribution).

θ̂par Estimates of θpar based on the normative sample.

�(θ̂par) Variance-covariance matrix of θ̂par.
θ̂spar Simulated set of model parameters within the posterior simulation procedure, drawn from a multivariate normal distribution

defined by θ̂par and �(θ̂par).
θnorm Normed scores (person parameters) under the population model with parameters θpar.
θ̂norm Estimates of θnorm under the estimated model with parameters θ̂par.
θ̂snorm Estimated normed scores under the model with a simulated set of model parameters, θ̂spar, within the posterior simulation

procedure.
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�(·) is the standard normal cumulative distribution func-
tion. The bias correction, ẑ0, is equal to the proportion of
estimators θ̂snorm smaller than the sample estimate θ̂norm,

ẑ0 = �−1
(

#(θ̂s*norm<θ̂norm)

S

)
, (2)

where �−1(·) is the inverse of �(·), and # is the count
function. The BC method reduces to the percentile method
if ẑ0 equals 0.

The variance-covariance matrix of the parameter esti-
mates, �(θ̂par), which is required in step (3), may be
estimated unreliably in case of additive terms (e.g., poly-
nomials) and/or link functions other than the identity link
(e.g., log link) (Stasinopoulos et al., 2015). As most distri-
butions within the GAMLSS framework use link functions
other than the identity link and additive terms are typically
required to obtain good fit, it is not guaranteed that proper
CIs follow from this procedure. To assess to what extent and
under which conditions the posterior simulation procedure
yields proper CInorms for the normed score estimates, we
performed a simulation study.

Research Questions

The goal of this study is to assess the quality of the estimated
CInorms derived by our posterior simulation procedure,
using two different population models (based on the SON-
R 6-40 and FEEST normative data), three different CI
methods (Wald, percentile, and bias-corrected percentile),
two different confidence levels (CI90 and CI95), three
different sample sizes (N = 501; 1,001; and 2,001), and
two different methods of estimating the variance-covariance
matrix �(θ̂par). The CInorms will be determined for all
combinations of four different age values and three different
true percentiles (5, 50, and 95). The quality of the CInorms
will be assessed in terms of coverage (i.e., proportion of
CInorms that cover the population parameter). Additionally,
we investigate the proportion of CInorms that missed the true
score on the left or right side of the CInorm, and the length of
the CIs. In general, there is a trade-off between the coverage
and the CI length (Frangos & Schucany, 1990).

Theoretically, the percentile methods are preferred over
the Wald method. Unlike the percentile methods, the Wald
method is neither transformation respecting (i.e., CI changes
with transformations) nor range preserving (i.e., the CIs
can fall outside the allowable range of the statistics) (Efron
& Tibshirani, 1993 pp. 174-175). In addition, the BC
percentile method is preferred over the percentile method,
as the former corrects for bias (i.e., asymmetry in the
distribution). That is why we expect the BC percentile
method to outperform the percentile method, and the
percentile method to outperform the Wald method.

We expect the coverage to be better for the 90% CInorm
than for the 95% CInorm because the latter requires more
information about the tails of the distribution, which are
difficult to estimate (Efron & Tibshirani, 1993 e.g., p. 275).
Moreover, we expect an increase in sample size to result in
smaller CInorms.

We use two different methods to estimate �(θ̂par): a
standard variance-covariance matrix (‘vcov’) and a robust
variance-covariance matrix (‘rvcov’), which has somewhat
larger SEs. In general, the robust version is more reliable
than the standard version when the variance model is
suspected not to be correct, given that the mean model is
correct (see Stasinopoulos et al., 2015 for more details).
Given that we use the same mean estimates for the
standard and robust variance-covariance matrix, we expect
the coverage to be better for the latter. However, this also
means that the CInorm of the robust version is larger than the
standard version.

We expect the coverage to be better for mid-range age
values compared to age values at the extremes, as in the mid-
dle of the age range more information is available from sur-
rounding age values to estimate the normed scores. More-
over, as more observations are present around the scores
corresponding to the 50th percentile than scores correspond-
ing to the 5th and 95th percentile of the conditional score
distribution, we expect better coverage for the 50th per-
centile than the 5th and 95th percentile. This is in line with
the findings of Oosterhuis et al. (2017), who concluded that
extreme percentile ranks had poor coverage of CInorms for
small sample sizes (N < 1,000). Finally, we expect the
CInorms for the 50th percentile to be wider than those of the
5th and 95th percentiles.

Method

The various conditions and different steps in the simulation
study will be explained now. A schematic overview is
presented in Fig. 1. The R code that was used for the
simulation study and the analyses can be found on the Open
Science Framework (OSF) via http://osf.io/z62xm/?view
only=8af3a8c83d76496a8651964f25835736.

Populationmodels

In this paper, we studied two population models: the
estimated norming model of the SON-R 6-40 (Tellegen
& Laros, 2014), which is a non-verbal intelligence test,
and the estimated norming model of the Ekman 60 faces
test, which is a facial emotion recognition test part of
the Facial Expressions of Emotion – Stimuli and Tests
(FEEST; Young et al., 2002; Voncken et al., 2018). The
BCPE distribution (Rigby & Stasinopoulos, 2004) within
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Fig. 1 Schematic overview of the simulation study. A solid arrow indicates a next step in the procedure. A dotted arrow indicates the use of a
result for comparison

the GAMLSS framework (Rigby & Stasinopoulos, 2005)
is used to model the score distribution as a function of
predictors for each of the four distributional parameters (μ,
σ, ν, and τ). The SON-R 6-40 has one predictor, which
is age, and the FEEST has three predictors: age, sex, and
education. The model selection of the SON-R 6-40 test
was done with the ‘free order’ automated model selection
procedure in combination with the BIC as selection criterion
(Voncken et al., 2017). As this ‘free order’ automated
model selection procedure is not yet developed for multiple
predictors, the model selection of the FEEST was done with
a combination of the BIC and visual checks (i.e., worm
plots; van Buuren & Fredriks, 2001). The population model
parameters can be found in the Appendix.

Conditions

True percentile The true percentile, θnorm, was equal to 5,
50 or 95. We determined the true scores y corresponding
to those percentiles, conditional on the age values x of
interest. For the FEEST model, sex and education were
fixed to females and education category 6 (‘finished higher
secondary education and/or college (not university)’),

respectively. As we wanted to examine extreme age values
and values closer to the middle of the age range (6 ≤ x ≤
41 for SON-R 6-40 and 16 ≤ x ≤ 92 for FEEST), we
investigate xmin, xp5, xp25, and xp50, which corresponds to
age values of 6, 7.75, 14.75, and 23.5 (SON) and 16, 19.8,
35, and 54 (FEEST). We investigate only one half of the age
range, as the other half includes similar extremities. Given
age, we investigated the score y in the population for which
θnorm was equal to 5, 50, or 95.

Sample size New data were generated for each different
sample size. The sample sizes (N) are equal to 501, 1,001,
and 2,001. These sample sizes are in the typical range of
what is being used in practice. The age values x in each
sample were fixed to be N equally spread values ranging
from 6 to 41 (SON-R 6-40) or 16 to 92 (FEEST), as in
the empirical data. The sample sizes are not rounded to
hundreds to avoid age values with many decimal places.

Type of �(θ̂par) Within each data set, we varied whether
�(θ̂par) is equal to the standard variance-covariance matrix
or the robust variance-covariance matrix, as provided by the
software.
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CI method For each data set, we constructed the CInorms
using the Wald, percentile, and bias-corrected percentile
methods. When the Wald method was used, we applied
a logit transformation to the percentile distribution θ̂s*norm
before calculating SE∗. The rationale for this is that the
range of percentiles is restricted to the range 0− 100 (0− 1
in proportions). Afterwards, the inverse logit transformation
was applied to get the percentiles corresponding to the lower
and upper bounds of the CI.

Confidence level For each data set, we varied the confi-
dence level, and constructed a 90%CInorm (CI90) and a 95%
CInorm (CI95).

Number of replications R Every replication of the posterior
simulation procedure resulted in a single CInorm. To assess
the coverage of this CI, we replicated this procedure many
times: That is, the number of replicated data sets per
condition was fixed to R = 10,000. This number was
chosen to ensure a maximal width CI95 of the coverage
estimates themselves of 0.02. The coverage estimate follows
a binomial distribution because each individual CInorm does
either contain the true value, with expected probability p

equal to 1 − α, or does not contain the true value, with
expected probability equal to (1 − p), and is repeated R

times. The variance of the proportion of CIs containing the
true value is equal to 1

R
p (1 − p). The variance is largest

when p = 0.50. The size of the CI95 corresponding to this
maximum variance is equal to

CI95size = 2 z1−α/2

√
1
R

p · (1 − p)

= 2 z1−α/2

√
1
R
0.50 (1 − 0.50)

= 0.02,

(3)

where z1−α/2 is the 1− α/2 quantile of the standard normal
distribution, equal to about 1.96. Then it follows that R

should be equal to at least 9,603 in order to have a maximum
CI95 size of 0.02, which we rounded up to R = 10,000.
As the variance-covariance matrix was not always positive
definite, we sampled from the population model until we got
10,000 results with a positive definite matrix.

Number of simulations S Step (3) of the posterior simula-
tion procedure consists of simulating θ̂par from a multivari-
ate normal distribution. The number of simulations S was
fixed to 5,000. The larger S, the higher the precision of the
estimated distribution. According to Efron and Tibshirani
(1993, p. 52), S equal to 200 is usually more than enough
when obtaining standard errors. However, S needs to be
much larger when obtaining confidence intervals. In order
to determine the required size of S, we calculated the lower-
and upperbound of the CInorms of percentile estimates for
S ranging from 1,000 to 11,000, and one replication r . We

fixed the sample size N to 501 and we used the standard
variance-covariance matrix. We investigated the results for
the three CI methods, two confidence levels, and twelve
combinations of age and test scores. All results seemed to
have converged after 11,000 simulations. We aimed at opti-
mally balancing the trade-off between the desired precision
and the computation time, by selecting the minimal num-
ber of simulations such that the maximum difference in
estimated percentile between fewer simulations and the esti-
mate of convergence was 0.5 percentile. This criterion was
met for S = 5,000.

Quality assessment

We assessed the quality of the estimated CInorms in three
different ways, ordered in terms of importance. First,
we investigated the coverage, which is defined as the
proportion of CInorms containing the true percentile θnorm.
Ideal coverage means that this proportion is equal to 1 −
α. Second, we investigated the proportion of CInorms that
missed the true percentile on the left (‘miss left’) or right
(‘miss right’) side. For instance, if the true percentile is 50,
miss left means that the left endpoint was above 50. The
total of ‘miss left’ and ‘miss right’ can be calculated as
1 minus the coverage. Ideally, the values of miss left and
miss right are both equal to α/2. Our outcome measure
was the ratio ‘miss left’ to ‘miss right’. A ratio of 1
indicates that both proportions are equal, a ratio larger than
1 indicates that ‘miss left’ is larger than ‘miss right’, and
a ratio smaller than 1 indicates that ‘miss right’ is larger
than ‘miss left’. Third, we investigated the median interval
length: the median absolute difference of the lower- and
upper bound of the CInorm over all replications R. Ideally,
the CInorm is small (i.e., precise), given that the coverage is
good. A median interval length of 0.10 means that, over all
10,000 replications, the median width of the CInorm was 10
percentile points.

Note that each outcome measure (coverage, ratio ‘miss
left’ to ‘miss right’, and median interval length) is
calculated across the 10,000 replications (e.g., proportion of
replications for which CInorm contains the true percentile).
As a result, the total number of observations per outcome
measure equals 3 (N) × 2 (�(θ̂par) method) × 2
(confidence level) × 3 (percentile) × 4 (age) = 144.

Results

Comparison CI methods in terms of coverage

To achieve an overview of the comparative performances
of the CI methods, we first consider the coverage. Table 2
shows for the two population models the deviations between
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Table 2 Deviation from ideal coverage, averaged over the 4 age values and 3 percentiles

SON-R 6-40 FEEST

N = 501 Wald Percentile Bias-corrected Wald Percentile Bias-corrected

vcov CI90 +0.020 (0.023) –0.016 (0.008) –0.025 (0.024) +0.004 (0.010) –0.010 (0.010) –0.001 (0.008)

CI95 +0.012 (0.013) –0.015 (0.006) –0.019 (0.014) –0.001 (0.007) –0.011 (0.010) –0.012 (0.007)

rvcov CI90 +0.022 (0.017) –0.010 (0.012) –0.019 (0.026) +0.016 (0.003) +0.007 (0.009) +0.005 (0.008)

CI95 +0.011 (0.010) –0.014 (0.010) –0.017 (0.017) +0.009 (0.004) +0.001 (0.005) +0.002 (0.005)

N = 1,001 Wald Percentile Bias-corrected Wald Percentile Bias-corrected

vcov CI90 +0.013 (0.017) –0.006 (0.003) –0.015 (0.016) +0.009 (0.007) � (0.006) � (0.005)

CI95 +0.008 (0.011) –0.007 (0.003) –0.011 (0.009) +0.004 (0.005) –0.002 (0.005) –0.002 (0.003)

rvcov CI90 +0.016 (0.014) –0.002 (0.006) –0.011 (0.018) +0.016 (0.003) +0.007 (0.008) +0.006 (0.007)

CI95 +0.008 (0.009) –0.006 (0.005) –0.010 (0.011) +0.008 (0.003) +0.001 (0.005) +0.002 (0.005)

N = 2,001 Wald Percentile Bias-corrected Wald Percentile Bias-corrected

vcov CI90 +0.008 (0.014) –0.001 (0.008) –0.008 (0.009) +0.005 (0.004) +0.001 (0.004) +0.001 (0.003)

CI95 +0.004 (0.009) –0.002 (0.004) –0.006 (0.005) +0.003 (0.003) � (0.003) � (0.003)

rvcov CI90 +0.010 (0.014) +0.001 (0.007) –0.007 (0.008) +0.013 (0.004) +0.008 (0.005) +0.008 (0.005)

CI95 +0.005 (0.008) –0.002 (0.004) –0.005 (0.004) +0.008 (0.004) +0.004 (0.004) +0.004 (0.005)

Note SDs between parentheses. For each population model, the CI method with the smallest deviation from ideal coverage per row is bolded

� Deviation between –0.001 and 0.001

the ideal coverage (0.90 in the CI90 conditions and 0.95 in
the CI95 conditions) and the observed coverage, averaged
over the four age values and three percentiles, for the
combinations of CI method, type of variance-covariance
matrix, confidence level, and sample size. For example,
a deviation of −0.006 for CI95 means that the actual
coverage, averaged over the four age values and three
percentiles, was 0.944. In each row, per population model,
the best performing method in terms of deviation from ideal
coverage is bolded. We will discuss the results for the two
population models separately.

SON-R 6-40 The results of the SON population model show
that, in general, the coverage is close to the ideal coverage
and the coverage becomes better as sample size increases.
The standard deviation, which is given between parentheses,
reflects the variation between the different age values and
percentile conditions. The percentile method performs best
in almost all conditions, in terms of both the mean deviation
and its standard deviation. The percentile method is only
outperformed by the Wald method when N = 501 and
the confidence level equals .95. We indeed expected the
percentile method to outperform the Wald method, but
we didn’t expect the percentile method to outperform the
bias-corrected percentile method as well.

FEEST The results of the FEEST population model show
that, in general, the coverage for this model is even closer

to ideal coverage than in the SON population model. Again,
coverage becomes better as sample size increases, but the
increase is very small when going from N = 1,001 to 2,001,
as the coverage is already very close to ideal coverage for N

= 1,001. The percentile and bias-corrected methods perform
about equally well, and they are only outperformed by the
Wald method when N = 501, the confidence level equals
.95, and the vcov method is used. This is in line with our
expectations, as the percentile method didn’t outperform the
bias-corrected method.

Tables S1, S2, and S3 of the supplementary material
show the results separately for each of the three percentiles
(i.e., 5, 50 and 95, respectively). The 5th and 95th
percentiles are more interesting in the clinical and education
context than the 50th percentile, because these contexts
often involve a selection of the x%worst or best performing
test takers. The results show that for the FEEST population
model, the difference between the CI methods if small
regardless of the percentile. For the SON population model,
on the other hand, the difference between the CI methods are
rather large for the 5th and 95th percentiles, and small for
the 50th percentile. More specifically, for the 5th and 95th
percentiles, the percentile CI method outperforms the Wald
and bias-corrected CI methods in almost all conditions.

Taken together, the coverage of the FEEST population
model is close to ideal coverage in almost all conditions.
In contrast, the coverage of the SON population model
varies depending on the different conditions. In addition, the
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percentile CI method performed well for both population
models. That is why we will further investigate the effect of
sample size, type of variance-covariance matrix, confidence
level, percentile, and age for the SON population model and
the percentile CI method only.

Results SON populationmodel and percentile CI
method

To obtain insight into the effects of the factors on the
absolute deviation from ideal coverage and the ratio ‘miss
left’ to ‘miss right’ for the SON population model in com-
bination with the percentile CI method, an analysis of
variance (ANOVA) with main effects and 2-way interac-
tions was performed. Higher order interactions were not
taken into account because of interpretability issues. Note
that we refrained from performing a mixed effects ANOVA
to account for the within factors (i.e., type of variance-
covariance matrix, confidence level, percentile, and age)
because it is not possible to estimate the mixed effects
ANOVA due to rank deficiency (since for each combina-
tion of the five factors only a single observation is avail-
able). Instead, we performed a between-subjects ANOVA.
We believe ignoring the within structure, and ignoring
ANOVA’s assumptions of normal and homoscedastic errors,
is not problematic because we are interested in the rela-
tive effect of the factors rather than the exact results of the
ANOVA. Table 3 shows the results from the ANOVA. We
consider effects with partial ω2 < 0.2 for the deviation
from ideal coverage and partial ω2 < 0.4 for ‘miss left’ to
‘miss right’ ratio to be too weak to study in more detail.
We will describe the results for the median interval length
only briefly, without tables or figures, as the coverage and
‘miss left’ to ‘miss right’ ratio are more important outcome
measures.

Coverage The ANOVA results for the absolute deviation
from ideal coverage are shown in Column ‘Deviation’. The
main effects of N and percentile, and the interaction effects
between N and percentile, and percentile and age have
partial ω2 ≥ 0.2.

The main and interaction effects are shown in Fig. 2.
Panel (a) shows the interaction effect between N and
percentile. It shows that the mean absolute deviation from
ideal coverage decreases with increasing sample size. We
expected the coverage to be better for the 50th percentile
than the 5th and 95th percentiles. This is indeed what we
have found. This effect diminishes as sample size increases,
as the absolute deviations of all three percentile conditions
get closer to zero with increasing sample size.

Panel (b) shows the interaction effect between percentile
and age. The effect of percentile is in general the same
as in panel (a). We expected the coverage to be better for

Table 3 Partial ω2s of absolute deviation from ideal coverage and ratio
‘miss left’ to ‘miss right’ for the percentile CI method and the SON-R
6-40 population model

Source Deviation MLMR

N .564 .457

�(θ̂par) method � −.007

confidence level −.005 .169

percentile .243 .967

age .069 .517

N × �(θ̂par) method −.008 −.012

N × confidence level .017 .057

N × percentile .209 .697

N × age .060 .252

�(θ̂par) method × confidence level −.001 −.007

�(θ̂par) method × percentile .045 −.013

�(θ̂par) method × age .061 −.018

confidence level × percentile −.006 .441

confidence level × age .016 .051

percentile × age .271 .672

Note Deviation = absolute deviation from ideal coverage. MLMR
= ratio ‘miss left’ to ‘miss right’. N = sample size. The effects of
the SON-R 6-40 population model with partial ω2 ≥ .2 (Deviation)
and partial ω2 ≥ .4 (MLMR), which we inspected more closely, are
displayed in bold font. � Partial ω2 between –0.001 and 0.001

mid-ranged age values than more extreme age values.
However, we did not always find that coverage was better
for mid-ranged age values. For the 5th percentile, the
absolute deviation from ideal coverage indeed becomes
smaller as the age value becomes less extreme, except
that xp5 has a slightly higher deviation compared to xmin.
For the 50th percentile, the four age values have a rather
similar absolute deviation, but xp50 has the highest absolute
deviation. For the 95th percentile, the differences in absolute
deviation between the age values are larger again. The
absolute deviation is largest for xp5 and xp50. Overall, the
deviation from ideal coverage is quite small. A maximum
absolute deviation of 0.01 means that the coverage of the
90% CInorm was between 0.89 and 0.91.

Contrary to our expectations, there seems to be no effect
of �(θ̂par) method and confidence level on the absolute
deviation from ideal coverage.

Miss left and miss right The ANOVA results for the ratio
‘miss left’ to ‘miss right’ are shown in Column ‘MLMR’.
The main effects of N , percentile and age, and the
interaction effects between N and percentile, confidence
level and percentile, and percentile and age have ω2 ≥ 0.4.
These main and interaction effects are shown in Fig. 3. The
dashed line represents the point where ‘miss left’ and ‘miss
right’ are equal. The vertical axis shows the ‘miss left’ to
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Fig. 2 Violin plots with boxplots depicting the absolute deviation from
ideal coverage with the percentile CI, for the interaction between N

and percentile, and percentile and age

‘miss right’ ratio on a logarithmic scale. As a result, positive
values on the y axis indicate that ‘miss left’ is larger than
‘miss right’, and negative values indicate that ‘miss right’
is larger than ‘miss left’. In addition, the absolute vertical
distance from the dashed line (y = 0) represents the same
effect size above and below the dashed line. That is, for
instance, a value of 0.7 indicates that ‘miss right’ is about
twice as large as ‘miss left’, and a value of −0.7 indicates
that ‘miss left’ is about twice as large as ‘miss right’.

Percentile is involved in all three interactions effects.
Panel (a), (b), and (c) show that the log ratio of ‘miss left’
and ‘miss right’ is only about equal to zero for the 50th
percentile. In general, ‘miss right’ is larger than ‘miss left’
for the 5th percentile and ‘miss left’ is larger than ‘miss
right’ for the 95th percentile. In addition, it is shown that,

Fig. 3 Violin plots with boxplots depicting the ‘miss left’ to ‘miss
right’ ratio on a logarithmic scale with the percentile CI, for the
interactions betweenN and percentile, confidence level and percentile,
and percentile and age
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regardless of percentile level, the log ratio becomes closer to
zero as sample size increases (panel a) and is closer to zero
for the 90% CInorm compared to the 95% CInorm (panel b).
Finally, panel (c) shows that, for the 5th and 95th percentile,
the log ratio is closest to zero for xp50, and, for the 50th
percentile, xmin has a log ratio slightly above zero, while the
other age values have a log ratio slightly below zero.

Median interval length We expected the median interval
length to be smaller as sample size increases, larger for the
50th percentile compared to the 5th and 95th percentiles,
and larger for ‘rvcov’ than for ‘vcov’. The first two expecta-
tions are indeed confirmed, but there seems to be no effect of
�(θ̂par) method on the median interval length. For each of
the 72 conditions considered, the ratio of the median interval
lengths of the ‘rvcov’ and ‘vcov’ methods lied between 1.00
and 1.09. In addition, we found that the median interval
length becomes smaller as age becomes less extreme.

Discussion simulation study

Based on these results, we conclude that in most conditions
the coverage of CInorm is good. As we generally want
to construct CInorms across the whole range of the score
distribution, for all possible age values, we recommend
to use the percentile CI method, in combination with a
large sample size (see Table 2). The percentile CI method
especially outperforms the Wald and bias-corrected CI
methods for the 5th percentile (see supplementary tables).
The 95% CInorm appears to be more difficult to estimate
than the 90% CInorm, as the latter has more similar ‘miss
left’ and ‘miss right’ values. We don’t have a preference for
a �(θ̂par) method, as we did not find a clear effect of this on
our outcome measures.

Empirical illustration construction CInorm

Using the ‘rvcov’ method for the variance-covariance
matrix and the recommended percentile CI method, we
illustrate with the SON-R 6-40 data (Tellegen & Laros,
2014) how to construct CInorm. The sample size of the
SON-R 6-40 data is 1,933. This seems a reasonable sample
size for our purposes, because in our simulation study
that involved simulated data with a structure resembling
these empirical data, a sample size close to 2,000 seemed
sufficient to achieve proper estimates for CInorm.

The R code with the procedure to construct CInorm for
your own data can be found as supplemental material. This
procedure allows you to construct CInorm with a specified
confidence level, for specified combinations of age and test
score. The steps in this procedure are as follows: First,
you have to load your data, specify the confidence level
(e.g., CI95), and specify the combination(s) of age value

and test score for which you want to calculate CInorm.
Second, a model needs to be selected. We used the ‘free
order’ automated model selection procedure (Voncken et al.,
2017). This procedure selects the order of the orthogonal
polynomials in each of the parameters related to the BCPE
distribution (i.e., μ, σ, ν, and τ). With the chosen model,
the parameter estimates and the corresponding variance-
covariance matrix are obtained. Third, in the posterior
simulation, 5,000 model parameters are simulated from a
multivariate normal distribution, with the point estimates of
the parameters as mean, and ‘rvcov’ as covariance matrix of
the parameters. For each set of the 5,000 simulated model
parameters, the corresponding percentiles are calculated for
the specified combination(s) of age value and test score.
Finally, based on the distribution(s) of the 5,000 resulting

Fig. 4 Kernel density plots illustrating the simulated distribution of
the intercept parameter of µ, β̂s

μ0, (panel a) and the distribution of

percentiles, θ̂s*norm, corresponding to an age value of 8 and a test score
of 9 (panel b). The vertical solid lines represent the point estimate
(panel a) and the percentile corresponding to the point estimates of
the distributional parameters (panel b), and the vertical dashed lines in
panel b represent the bounds of the CI95norm
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percentiles in the previous step, the confidence intervals are
determined for each specified combination of age value and
test score.

The last two steps of this procedure are illustrated
in Fig. 4. In the third step, 5,000 model parameters
are simulated. Panel (a) shows the simulated posterior
distribution of the intercept term of distributional parameter
μ, β̂s

μ0. The vertical line represents the point estimate, β̂μ0,
which is the originally estimated model parameter in the
second step. The distribution around it represents the 5,000
simulated intercept terms of distributional parameter μ.

Each estimated model parameter has its own simulated
posterior distribution. For each set of the 5,000 simulated
model parameters, the percentile for each combination of
test score and age value was determined. That is, each of the
5,000 sets of simulated parameters resulted in a test score
distribution conditional on age. Given a test taker’s age, the
percentile corresponding to his/her test score can be derived
for each of the 5,000 simulations.

Panel (b) shows the simulated posterior percentile distri-
bution, θ̂s∗

norm, for a 8-year-old with a test score of 9. It shows
the distribution of all 5,000 resulting percentiles, θ̂s

norm. The

Fig. 5 PDFs, panel a, and CDFs, panel b, for the SON-R 6-40 model estimated with the BCPE distribution (solid line) and normal distribution
(NO; dashed line), conditional on three different age values (i.e., 8, 12, and 38-year-olds)
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vertical solid line represents the percentile corresponding to
the point estimates of the estimated model parameters. The
dashed vertical lines represent the bounds of the CI95norm
(2.5th and 97.5th percentiles of the distribution), which
are equal to 40.1 and 46.6. The final step of the procedure
involves determining those bounds of the CI based on the
simulated posterior percentile distribution. So, using the
percentile CI to derive CI95norm, the CI95norm for a 8-
year-old with a SON-R 6-40 test score of 9 is [40.1, 46.6].

Comparison BCPE and normal distribution The chosen
model here involved age dependence of the median, scale,
skewness, and kurtosis of the score distribution, with
polynomials of age up to degree four. This non-normality
is very common for (psychological) normative data because
of floor- and ceiling effects. In general, the disadvantage
of a more flexible model (i.e., with more parameters to
estimate) compared with a simpler model is that more
observations are needed to estimate the model. However,
if the assumptions of the simpler model are (strongly)
violated, the improved model fit of the more complex model
outweighs the costs of added complexity. When comparing
a normal distribution (NO) with only age dependence of
the mean (as in the BCPE model, the polynomial of degree
4 resulted in the best fit) and the BCPE distribution with
age dependence of all four distributional characteristics,
even with the double number of parameters (i.e., 12 vs. 6),
the BCPE distribution model had a lower BIC value (i.e.,
8655 vs. 8960) than the normal distribution model. This
means that even when taking into account the number of
parameters, the BCPE distribution model fits the normative
data better than the normal distribution model.

Figure 5 shows the estimated PDFs and CDFs conditional
on three different age values (i.e., 8, 12, and 38-year-olds),
for the BCPE distribution and normal distribution. The
PDFs show the estimated conditional score distributions.
For age 8, the BCPE and NO distributions are both (about)
symmetric, but the BCPE distribution has a smaller variance
and is leptokurtic. The older the test taker is, the larger
the deviation from normality is. A clear ceiling effect is
visible for older test takers, as indicated by strong negative
skewness. The maximum obtained raw test score in the
population was about 20. This is captured by the BCPE
distribution, while the estimated normal distribution goes
beyond this score for older test takers.

Importantly, because the norms are directly derived from
the estimated conditional score distribution, the use of a
bad fitting model directly affects the quality of the norm
estimates. The CDFs show the percentile point estimates
corresponding to the raw scores conditional on three age
values. It may seem that the lines are relatively close to
each other, but this is misleading. For instance, for the above
described 8-year-old test taker with test score 9, the lines

seem to be very close to each other, but the difference
in percentile point estimate is 6.6. The corresponding
CI95norms are [40.1, 46.6] and [43.9, 49.9] for the BCPE
and NO distribution, respectively. So, in this case, about
half of the CI95norms overlap. For older test takers, this
difference in point estimates is even larger. For 38-year-old
test takers with score 17, the difference in percentile point
estimate is 16.2, with CI95norms of [45.1, 57.2] and [60.1,
75.1] for the BCPE and NO distribution, respectively. Here,
the CI95norms have an overlap below 25%. This shows that
not taking into account non-normality can greatly affect the
estimated percentiles in empirical practice.

Discussion

The results of the simulation study showed for two different
population models, with one or three predictors, that
the performance of the CInorms was overall best for the
percentile CI method. The application of the posterior
simulation in combination with this method to construct
CInorm was illustrated for the SON-R 6-40 data. While
a sample size of 2,001 resulted in the best performing
CInorms, the results showed that a sample size of 1,001
yielded only minor deteriorations in performance. For the
FEEST population model, the difference in performance
between those two sample sizes was even negligible. So, we
conclude that a sample size of 1,001 is sufficient to achieve
a reasonable precision for data with structures comparable
to the ones of the simulated data.

Practical implications

Oosterhuis et al. (2017) described how to link CInorm and
CIrel. They construct CIrel around the individual test scores
and CInorm around the scores corresponding to the norm
statistic (e.g., percentiles). Then, they use the heuristic
rule that there is a significant difference between the two
statistics if the overlap between the two CIs is 25% or less
(Van Belle, 2003). This allows practitioners to check if a
certain person has a test score above/below a certain norm
value.

As an illustration, consider person X having a certain
test score on an intelligence test, which corresponds to a
point estimate of his/her IQ of 72 given his/her age. If this
person’s IQ is at most equal to 70, the death penalty does
not apply to this person. If we do not take into account
any uncertainty, we conclude that person X’s IQ is higher
than 70. However, there is some uncertainty around the
normed test score due to test unreliability, which results in,
for instance, CIrel = [70, 74]. In addition, there is some
uncertainty around the norms. Our bootstrap procedure
provides you with the CI around the IQ of 70 given person
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X’s age, for instance, CInorm = [68, 72]. As the overlap
between the two CIs is larger than 25%, the IQ of person
X does not differ significantly from the IQcutoff of 70. As a
result, if we take into account both types of uncertainty, we
conclude that the death penalty does not apply to person X.

Limitations

This study has two possible limitations. First, we only used
the BCPE distribution. Hence, we do not know the quality
of the CIs for other distributions. The GAMLSS framework
includes many other distributions, which might fit your
data better. Fortunately, the BCPE distribution is applicable
in many cases because of its flexibility. This distribution
is generally suited for continuous outcome variables. For
test score distributions that deviate substantially from
a continuous distribution, GAMLSS may provide an
alternative distribution, as for example the beta-binomial
distribution for discrete numbers.

As we used both polynomials and the log link function
for two distributional parameters (i.e., σ and τ), which
might cause the variance-covariance matrix to be estimated
unreliably, we do not expect the quality of the CIs to be
worse for other distributions.

Second, as described in the method section, the variance-
covariance matrix was not positive definite in some
replications. For the SON data, for instance, the matrix
was not positive definite in about 2.4% of the replications
when N = 2,001, about 9.7% when N = 1,001, and about
25.4% when N = 501. This might be an indication that
501 (and 1,001) observations are not enough. We continued
replicating until we had 10,000 results with positive definite
matrices. In practice, you only have one replication, and it is

possible that the matrix is not positive definite there. To deal
with this, one could either use an algorithm to force positive
definiteness (e.g., Knol & Ten Berge, 1989, Higham 2002),
or tolerate a specified amount of lack of numerical positive-
definiteness (in the procedure applied in the ‘mvrnorm’
function in the MASS package in R (Venables & Ripley,
2002)).

General conclusion

We recommend test developers to use our approach to
derive CInorm because of its flexibility and because it is
incorporated in the continuous norming process. It allows
them to properly express the uncertainty due to norm
sampling fluctuations. So, adopting this approach will help
(e.g., clinical) practitioners to obtain a fair picture of the
person assessed.
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Appendix: Populationmodel parameters

The population model parameters for distributional parame-
ters μ (location), σ (scale), ν (skewness), and τ (kurtosis)
are as follows

SON-R 6-40 model
μSON = βμ0 + βμ1 · f1(age) + βμ2 · f2(age) + βμ3 · f3(age) + βμ4 · f4(age)

= 13.12 + 102.80 · f1(age) − 66.38 · f2(age) + 27.19 · f3(age) − 7.94 · f4(age),

σSON = βσ0 + βσ1 · f1(age) + βσ2 · f2(age) = −1.79 − 8.92 · f1(age) − 3.74 · f2(age),

νSON = βν0 + βν1 · f1(age) = 2.44 + 44.61 · f1(age),

τSON = βτ0 + βτ1 · f1(age) = 0.84 + 19.64 · f1(age),

FEEST model
μFEEST = βμ0 + βμ1 · f1(age) + βμ2 · f2(age) + βμ3 · sexfemale + βμ4 · education6

= 42.53 − 23.02 · f1(age) − 18.80 · f2(age) + 0.90 · sexfemale + 4.92 · education6,
σFEEST = βσ0 = −1.59,

νFEEST = βν0 + βν1 · age + βν2 · education6 = 9.04 − 0.08 · age + 5.50 · education6,
τFEEST = βτ0 = 0.20,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where fd(age) refers to an orthogonal polynomial of age,
with degree d. The predictors sex and education level are
fixed to females and education category 6, respectively.
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