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Abstract: The process of evaluating the efficacy and toxicity of drugs is important in the production
of new drugs to treat diseases. Testing in humans is the most accurate method, but there are technical
and ethical limitations. To overcome these limitations, various models have been developed in
which responses to various external stimuli can be observed to help guide future trials. In particular,
three-dimensional (3D) cell culture has a great advantage in simulating the physical and biological
functions of tissues in the human body. This article reviews the biomaterials currently used to
improve cellular functions in 3D culture and the contributions of 3D culture to cancer research, stem
cell culture and drug and toxicity screening.

Keywords: 3D cell culture; biomaterials; drug screening; alternative model

1. Introduction

The human body consists of highly sophisticated biological systems [1]. Cells form
tissues in various combinations and patterns, tissues form organs with different types of
tissues, and organs are organically connected to maintain the human body [2]. For a long
time, two-dimensional (2D) cell culturing has been carried out on widely available flat
plastic dishes to mimic the complex human body [3,4]. However, in a 2D culture system, the
cells spread on the flat and hard surfaces and proliferate unnaturally. There is a difference
in the cellular morphology, functions, and overall behavior compared to those in the natural
environment [4]. In addition, the phenotype of the cell is not accurately reproduced in
2D culture. Indeed, chondrocytes grown in vitro to a large number gradually lose their
differentiated phenotype, which is indicated by the loss of synthesis of type II collagen
during 2D cell culture [5–7]. Similarly, 2D cultured primary human hepatocytes (PHHs)
show rapid declines in critical phenotypic functions, such as cytochrome P-450 (CYP450)
enzyme activities, insulin responsiveness, and expression of the master liver transcription
factor hepatocyte nuclear factor 4α within hours to days [8]. Moreover, the transwell
culture system, a kind of layered 2D culture system, was introduced as a co-culture system
to simulate the in vivo environment, but this method has limitations in maintaining or
improving cellular function over a long time [9,10]. Thus, cell culturing should be adapted
to better reflect the natural environment.

Cells in the natural environment are embedded in the extracellular matrix (ECM),
forming a complex three-dimensional (3D) structure [11]. The ECM plays the role of regu-
lating cell-to-cell interactions, cell adhesion, differentiation, and growth [12–14]. Therefore,
an understanding of ECM composition and structure is critical for the development of
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novel 3D cultures for predicting biological mechanisms and therapeutic effects. Mounting
evidence has shown that physiologically more relevant factors can be revealed by imitation
of the components and structure of the ECM in the natural environment [13,15,16]. In
particular, cells cultured in a 3D microenvironment with ECM components showed realistic
morphology and expressed several genes that failed to be expressed in a 2D culture [5–7].
Moreover, these cells synthesized ECM as they do in vivo for regeneration [11–14]. Thus,
3D cell culturing requires the use of biomaterials with a high level of similarity with the
ECM for the enhancement of cellular functions.

A number of 3D culture systems are already available (Table 1). Biomaterials are
available for 3D cell culture to improve the efficiency of culture and cell functions in various
forms, including hydrogels, solid scaffolds, decellularized native tissue, and ultra-low
attachment (ULA) surface (Figure 1). Knowledge of 3D culture methods has significantly
increased, which has resulted in the development of numerous applications. Thus, this
review addresses the applications of biomaterials in 3D cell culture and the contribution of
3D cell culture to cancer research, stem cell research, and drug and toxicity screening.

Table 1. Types of biomaterials used in three-dimensional (3D) cell culture and their advantages and
disadvantages.

Type Advantage Disadvantage References

Hydrogel
Tissue like flexibility

Easily supplies water-soluble
factors to cells

Low mechanical
resistance [5,11,13,17,18]

Solid scaffold

Various materials can
be used

Physical strength is
easily adjusted

Difficulty in
homogeneous dispersion

of cells
[15,16,19–21]

Decellularized
native tissue

Provides complex
biochemistry, biomechanics

and 3D tissues of
tissue-specific extracellular

matrix (ECM)

Decrease of mechanical
properties (roughness,
elasticity, and tension

strength) of the tissues as
compared to the

native group

[22–26]

Ultra-low
attachment

surface

Provides an environment
similar to in vivo conditions

Difficulty in mass
production

Lack of uniformity
between spheroids

[27–31]
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scaffold, (C) Decellularized native tissue (D) Ultra-low attachment surface. 
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attention in 3D cell culture [6,14]. Hydrogels are categorized as either synthetic or natural 
(Table 2). As the name suggests, synthetic hydrogels are composed of unnatural molecules 
such as poly vinyl alcohol (PVA), poly-2-hydroxyethyl methacrylate (pHEMA), and poly 
ethylene glycol (PEG). These materials can provide mechanical support for various types 
of cells [14]. However, they are biologically inert. In addition, they lack endogenous fac-
tors essential for cell behavior and act mainly as a template to permit cell function. Thus, 
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2. Applications of Biomaterials in 3D Cell Culture
2.1. Hydrogels

Hydrogels have 3D structure, hydrophilic property, and polymeric networks capable
of absorbing large amounts of water or biological fluids [32]. These hydrogels can mimic
soft and wet environments similar to ECM of native tissues and promote the transportation
of O2, nutrients, waste and soluble factors [33]. Therefore, they have received much
attention in 3D cell culture [6,14]. Hydrogels are categorized as either synthetic or natural
(Table 2). As the name suggests, synthetic hydrogels are composed of unnatural molecules
such as poly vinyl alcohol (PVA), poly-2-hydroxyethyl methacrylate (pHEMA), and poly
ethylene glycol (PEG). These materials can provide mechanical support for various types
of cells [14]. However, they are biologically inert. In addition, they lack endogenous factors
essential for cell behavior and act mainly as a template to permit cell function. Thus,
synthetic hydrogels need modification with suitable biological components to promote
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signals of cellular function. On the other hand, synthetic hydrogels such as PEG represent
a very good candidate for the encapsulation of various bioactive factors, drugs, and
chemicals to avoid complicating systemic factors derived from hydrogels for a more
controlled comparison of encapsulated materials [34]. Recently, it has been reported
that the combination of arginine-glycine-aspartic acid (RGD) groups or alginate-PEG
hydrogel improved the spread and proliferation of fibroblasts and enhanced the osteogenic
differentiation of mesenchymal stem cells (MSCs) for 3D cell culture [35]. Similarly, PEG
hydrogels were used to culture and expand a variety of neural and glial cell types simply
by altering the material properties of the hydrogel [36].

Table 2. Synthetic and natural hydrogels for 3D cell culture.

Properties Materials Cells Applications

Synthetic
Provide structural
support to various

cell types

PVA
Mouse 129 teratocarcinoma AT805

derived cells (ATDC5) [37], Human iPS
cells (HPS0077) [38]

Repair cartilage [37], promote
differentiation [38]

pHEMA Bovine ear chondrocytes [39] Proliferate chondrocytes [39]

PEG Ovarian Follicle cell [40], human
mesenchymal stem cells (hMSCs) [41]

Promote cell survival, growth [40], and
viability by encapsulation [41]

Natural

Support cellular
activities and are

biocompatible and
biodegradable

Collagen Human umbilical vein endothelial cells
(HUVECs) [42] Form stable EC networks [42]

Alginate
Human adipose-derived stem cells

(hASCs) [43], rat astroglioma
(LRM55) [44]

Maintain their ability to secrete
therapeutic factors [43], maintain the

viability and function [44]

Hyaluronic acid

Human induced pluripotent stem
cell-derived neural progenitor cells

(hiPSC-NPCs) [45], human breast cancer
MCF-7 cells [46]

Promote neural differentiation [45],
higher tumorigenic capability of MCF-7

cells [46]

Natural hydrogels are made up of natural substances such as collagen, alginate,
hyaluronic acid and many more that promote several cellular functions with a range of
endogenous factors present, which can benefit the viability, proliferation, and differentia-
tion of many cell types [47–53]. However, due to the complexity and undefined nature of
these hydrogels, it is difficult to very accurately determine which signals promote cellular
function. Collagen is one of the abundantly present proteins in the ECM [54]. These
compounds possess native tissue-like properties and characteristics. Thus, collagen can be
used to create gels for 3D cell culture [48,55]. Collagen can be used in culturing various cell
types to improve cell growth, adhesion, and differentiation. Cells can proliferate and form
tissue-like structures within the collagen matrix [56]. Collagen plays an important role in
maintaining the chondrocyte phenotype and supporting chondrogenesis, both in vitro and
in vivo [57,58]. Previous studies have shown that type I collagen promotes the proliferation
of chondrocytes and that type II collagen supports the chondrogenic differentiation of
MSCs [59,60]. The results from this study suggest that there is clinical value in the cartilage
repair capabilities of Col I/II hydrogel with encapsulated MSCs [61,62]. Nonetheless,
the long-term performance of pure type I collagen may be compromised by significant
shrinkage and weak mechanical properties [63,64]. To control these problems in collagen
hydrogels, one possibility is to introduce additional molecular bonds between the collagen
fibrils via different chemical cross-linkers. Lotz et al. aimed to improve the long-term
stability and mechanical properties of collagen hydrogels by using the nontoxic chemical
cross-linker four-armed succinimidyl glutarate polyethylene glycol (PEG-SG) to obviate
negative impacts on cell viability. The hydrogels showed increased mechanical stability
and compression E-modulus compared with pure collagen. This could indicate a more ster-
ically rigid molecular network, rendering human dermal fibroblasts, and human epidermal
keratinocytes unable to contract the hydrogel. This leads to a reproducible generation of
full-thickness skin equivalents for in vitro testing or clinical application [65]. Incorporation
of other materials into polymeric hydrogels can also be a suitable option to overcome these
problems and improve the biological performance of the hydrogels. Sun et al. observed that
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collagen–chitosan could promote axonal regeneration and neurological recovery compared
with collagen–chitosan hydrogels fabricated by traditional technology. In addition, it was
demonstrated that 3D printing of collagen–chitosan decreased the formation of scars and
cavities, and improved the regeneration of nerve fibers as well as functional recovery in
rats [66,67]. Ying et al. fabricated a porous structure of this collagen–hyaluronic acid (HA)
hydrogel that contributed to water retention, gas exchange, nutrition penetration, and cell
dwelling [68]. In addition, these materials are suitable to study tissue reconstruction by
seeding co-cultures of fibroblasts and endothelial cells within the collagen matrix [69]. In
this system, fibroblasts form connective tissue, and endothelial cells produce angiogenic
growth factors and vasculature.

Hyaluronic acid (HA) is distributed in many tissues, such as skin and cartilage [70].
HA can be obtained not only from animal tissues, but also via microbial fermentation in
Escherichia coli to produce animal-free HA [71]. The role of HA in tissue is to promote cellu-
lar survival, migration, angiogenesis, and differentiation by transduction of intracellular
signals [72–74]. In addition, the higher content of HA present in the cancer microenviron-
ment promotes tumor progression and resistance to anticancer drugs [75,76]. Tumor cells
showed decreased adhesion to the surface of HA. These properties promote the production
of tumor spheroids and mimic cell HA signaling in the tumor microenvironment for anti-
cancer drug screening purposes. Ahrens et al. reported that HA promotes the growth rate
of melanoma cells by enhancing the secretion of basic fibroblast growth factor (bFGF) [77].
Other researchers have reported that when cells are 3D cultured in the presence of HA,
the activity of multidrug resistance proteins is enhanced and therapeutic effectiveness is
reduced compared to the 2D cultured cells [78]. Another interesting application of HA
hydrogel is to improve the efficacy of 3D cell culture by mixing these materials with various
substances. Lou et al. reported that HA-collagen hydrogels promoted cell spreading, fiber
remodeling, and focal adhesion in 3D cell culture [49]. Häckel and coworkers demonstrated
that human nucleus pulposus cells cultured in fibrin-HA hydrogels showed an increase in
collagen type II and carbonic anhydrase XII gene expression [79]. Furthermore, Lee et al.
also reported that chitosan/HA blend hydrogels exhibited enhanced physical stability,
mechanical properties, cell binding affinity, and tissue compatibility [80]. Recently, HA
combined with alginate and fibrin has been used as a bioink for 3D bioprinting of periph-
eral nerve tissue regeneration [81]. Finally, acetylated HA (AcHA) was used to enhance
the mechanical strength of the thermogel via simple blending of modified glycol chitosan.
The blended gel showed not only good cell binding affinity in vitro and biocompatibility
in vivo, but also more effective cartilage formation than that of the original hydrogel [80].

Alginate is derived from the cells of brown algae, and its monomers have the ability
to cross-link to form hydrogels [50]. Normally, alginate does not interact directly with
mammalian cells and is not degradable [82]. Thus, when hydrogels exhibiting minimal
degradation are desired, alginate is selected for these studies. In addition, cell adhesion
can be improved via covalent coupling of the RGD cell adhesion peptide to the alginate
chains [83]. A previous study reported a material approach to tune the rate of stress
relaxation of hydrogels for 3D culture, independent of the hydrogel’s initial elastic modulus,
cell adhesion ligand density, and degradation. The influence of substrate stress relaxation
on cell spreading and proliferation was enhanced when RGD cell adhesion and ligand
density was increased in gels with faster relaxation [84]. Another study reported that
stem cells encapsulated in ionically crosslinked alginate hydrogels undergo predominantly
adipogenic differentiation at initial moduli of 1–10 kPa and predominantly osteogenic
differentiation at initial moduli of 11–30 kPa [85]. Recently, alginate hydrogels have
been extensively used as bioinks to provide 3D cell growth because of their relatively
higher viscosity and rapid crosslinking process after printing [86,87]. In addition, oxidized
alginates showed great potential as ink for bioprinting [88]. Finally, alginate hydrogels
encapsulating stem cells have been investigated for the prevention of immune rejection of
transplanted cells [89,90]. Stock and coworkers reported that alginate capsules prevented
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infiltration of immune cells while allowing smaller molecules, such as oxygen, nutrients,
glucose, and insulin to diffuse freely through the capsule [91].

2.2. Porous and Fibrous Scaffolds

Solid scaffold-based cell culturing is one of the older techniques used in the field of 3D
cell culture [92]. In this system, scaffolds may facilitate proliferation, cell adhesion, and sig-
naling activities between the cells. These efficacies of a scaffold are affected by the materials
that make up the scaffold and its physical structures, such as exposed surface, pore size,
pore distribution, and interconnectivity (Table 3). These solid scaffolds are mainly porous
foams or fibrous meshes fabricated from synthetic polymers, such as poly(glycolic acid)
(PGA), poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone
(PCL), and naturally derived polymers, such as collagen, hyaluronic acid, fibrin, alginate,
gelatine, silk, and chitosan [93–99].

Table 3. Fabrication of porous scaffolds: advantages and disadvantages.

Method Advantages Disadvantages References

Particulate Leaching Modulate pore size
and porosity

Limited pore shape
and size [15]

Solvent Casting

Modulate pore size
and porosity

Easy incorporation of drugs
within the scaffold

Low pore
interconnectivity [100,101]

Emulsion Templating Modulate particle size, high
porosity, interconnectivity

Difficulty in
obtaining emulsions

with sufficient
monodispersity for

crystallization

[16,102,103]

Gas Foaming
Modulate pore size

and porosity
Free of toxic organic solvents

Unexpected pore
interconnectivity [104–106]

Melt Molding Modulate pore size
and porosity

High temperature
required when

molding
[107]

Porous foam-solid scaffolds have high porosity and a uniform interconnected struc-
ture. Many attempts have been made to fabricate porous foam-solid scaffolds [108,109].
Particulate leaching is a physical process that involves casting polymers around soluble
beads known as porogens [100]. Solvent casting uses a polymer dissolved in an organic
solvent. This solution is mixed with ceramic particles and poured into a predefined 3D
mold, which is left to set. The solvent casting and particulate leaching (SCPL) method,
which combines the particulate leaching method and solvent casting method, has been
used to produce scaffolds for the culture of osteoblasts and osteogenic differentiation of
stem cells [110]. Mouse embryonic osteoblast cells (MC3T3-E1) cultured on PLGA scaf-
folds made with the SCPL method showed increased alkaline phosphatase activity and
expression of type I collagen [111]. Emulsion templating is one of the common methods
for the fabrication of porous scaffolds [16]. Porous polymers can be generated within
high internal phase emulsions. It has been reported that metabolic activity is improved
when hepatocytes are cultured on PCL scaffolds containing various factors by emulsion
templating [112,113]. The gas forming technique is performed by agitating the polymer
and creating foam [104]. High-pressure gases such as CO2 can be used as the gas foaming
agent, and the porosity of the scaffold can be controlled by the amount of gas dissolved in
the polymer. The melt molding method uses both polymer and porogen, which are poured
into a mold and heated above the polymer glass transition temperature [107,114]. Various
types of cells have been successfully cultured in 3D on porous solid scaffolds [115–118].
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Vascular smooth muscle cells adhered to and proliferated in engineered smooth muscle
tissue on highly porous and elastic tubular scaffolds [119]. Human hepatoma cells showed
higher cell infiltration in PLGA scaffold fabricated by the gas foaming method. The porous
PLGA scaffold fabricated by the particulate leaching method supported cell adhesion
and growth. After implantation, there was better bone and cartilage formation inside the
scaffold [120,121].

Fibrous scaffolds provide a large surface area for cell growth in 3D cell culture (Table 4).
These structures allow appropriate space for gas and nutrition exchange and cell infiltra-
tion. In addition, fibrous scaffolds can imitate oriented and aligned tissues, which include
skeletal muscles, the central nervous system, and cardiac tissues [122–126]. Accordingly,
the aligned fibers help control stem cell differentiation into the desired cell type [127–130].
Several natural and synthetic polymers, including collagen, gelatine, hyaluronic acid, algi-
nate, chitosan, silk, PLA, PLGA, and others, have been used for the fabrication of fibrous
scaffolds [124,129,131,132]. The fiber mesh is either knitted or woven into 3D patterns
of different pore sizes [133]. However, these materials do not have sufficient mechanical
and structural stability. Fiber bonding was thus developed to overcome the drawbacks
of fiber mesh. Enhanced mechanical strength is provided by binding the fibers at the
joints or intersections by raising temperatures above the polymer melting points or by
using special solvents [134]. The electrospinning method uses an electric field generated
using two electrodes (one each placed in the polymer and collector solutions) having
electric charges of opposite polarity for the production of continuous fibers ranging from
submicron to nanomicron diameters. This system allows cells to adhere and elongate
along the fibers, which induces cell alignment and directionality in the cultures [135].
Lee et al. fabricated PLLA fibrous scaffolds using the electrospinning method, and their
morphologies were controlled by the fiber collection speed. Therefore, the morphology
of the designed fibrous scaffolds in this work has successfully controlled cell alignment
as well as the direction of calcification [136]. For phase separations, two phases that are
polymer rich and polymer poor are formed upon the addition of water, inducing phase
separation [137,138]. Upon cooling below the solvent melting point followed by vacuum
drying, the scaffold is obtained. This method can easily be combined with other fabrication
technologies, such as particulate leaching, to design 3D structures with the desired pore
morphology. Finally, nanofibers can be generated by the self-assembly of synthetic or natu-
ral molecules [139,140]. These scaffolds fabricated by self-assembly facilitated attachment
and migration of hepatocytes, stem cells, and endothelial cells [141,142].

Table 4. Fabrication of fibrous scaffolds: advantages and disadvantages.

Method Advantages Disadvantages References

Fiber Mesh High surface area for
cell attachment

Low structural
stability [21]

Fiber Bonding
High surface to

volume ratio, high
porosity

Limited applications
to other polymers [132]

Electrospinning
Induces cell

alignment and
directionality

Limited by cell
seeding [143–145]

Phase Separation No reduction in the
activity of molecules

Difficult to control the
scaffold morphology [138,146]

Self-Assembly
Form extremely

stable scaffolds, less
use of organic solvent

Expensive material,
complicated and
elaborate process

[147,148]

Another way to fabricate a porous scaffold is 3D printing. This method allows for
easier and more detailed manufacturing than the above two methods and allows various
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architectures and control of mechanical stability [149]. The method can be applied to bone
tissue engineering by taking advantage of its strong mechanical strength [150]. Chitosan
material, which has been used as a soft scaffold in the form of a conventional hydrogel,
can also be used for bone tissue engineering after reinforcement of its mechanical strength
by applying this method. This can be done by incorporating a chitosan thermogel into a
porous PCL scaffold [151].

2.3. Decellularized Native Tissue

One of the ideal scaffolds is a decellularized matrix that provides natural geometric
morphology, flexibility, and mechanical strength, which is difficult to mimic perfectly
with synthetic scaffolds. Recently, various approaches have been introduced to fabricate
decellularized scaffolds, including perfusion of the whole organ (recommended for dense
organs/tissues), application of a pressure gradient (employed for hollow tissues), use of
supercritical fluid (appropriate for long-standing storage of decellularized scaffolds), and
immersion and agitation (suitable for thin tissues) [152–157]. During the decellularization
process, the cells are eliminated to inhibit inflammatory reactions or immediate rejection
after implantation. The ECM derived from decellularized matrix provides an endogenous
environment, from a biochemical and anatomical point of view, for regeneration of target
organs. Recellularization is performed by direct injection of cells into the vein because of
its proper vascular diameter and accessibility. This method is broadly used for blood vessel
recellularization of different organs, such as the heart, lungs, and liver [158–160]. Another
approach for recellularization is cell inoculation into mass media by allowing cells to
recover through the circuit to seed scaffolds, but the efficiency of this method is lower than
that of direct injection using veins [161]. In various studies, researchers investigated the
effect of decellularized scaffolds on cell proliferation and construction of organs, including
the liver, heart, lung, kidney, and pancreas [162–167].

2.4. Ultra-Low Attachment Surface

Cell culture plates can be covered with biomaterials with low cell-binding properties
to prevent the cells from adhering to the surface. This method is one of the older techniques
to generate self-assembled cellular structures in media for 3D cell culture. This system
inhibits the attachment of cells to the surface of the culture plate, resulting in force floating
of cells. Force floating improves cell-to-cell interactions, enabling multicellular aggregation.
To provide attachment-resistant cell surfaces, cell culture plates or surfaces are coated with
polymers that possess low cell-binding properties, such as 2-hydroxyethyl methacrylate
(poly-HEMA), polyethylene glycol, chitosan, agar, and agarose [168–172]. These polymers
allow greater cell-cell interactions rather than cell-substrate interactions, which enables
spontaneous spheroid formation [173]. Cell culture plates could have flat or round surfaces.
The flat surface causes the formation of irregularly sized spheroids. However, round
surfaces are capable of generating single spheroids. Various types of cells have successfully
formed spheroids on plates or round surfaces with low cell-binding properties [174–178].
In this system, cells accumulate as clusters and synthesize their own ECM. In addition,
the signaling and communication between cells in spheroids were enhanced, and gap
junctions were created that can facilitate the exchange of ions, small molecules and electrical
currents. This method can be used for high-throughput screening [179]. Recently, Cho et al.
fabricated new polymers with low cell-binding properties for spheroid generation [180].
Spontaneous spheroid formation was completed within a few days, and the size of the
spheroids varied with the cell density.

3. Applications of Three-Dimensional Cell Culture
3.1. Cancer Research and Drug Screening

Three-dimensional (3D) cell culture has several applications in the field of biological
science. These applications can be divided into three categories: cancer research, stem
cell culture, and drug toxicity and screening. With the growing demand for effective
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validation in the field of oncology, there is a demand for research tools that provide clinically
significant results for safety and efficacy testing of anticancer drugs. Moreover, 3D culture
techniques have been able to produce 3D models, such as oncospheres, spheroids, and
other tumor models that closely resemble the natural tumor microenvironment due to the
proper supply of nutrients, oxygen, and intercellular interactions [181,182]. Increasing the
scope of this technology could reduce the number of animals sacrificed for research. In
addition, various meaningful results that could not be solved with animal models can be
obtained.

Animal models and 2D culture systems have been a standard to determine anticancer
drug effects on growth inhibition and apoptosis. However, the results produced from
these systems showed relatively low similarity in clinical outcomes [183,184]. Owing to
their close resemblance to tumor microenvironments, 3D culture systems are gradually
being used to replace animal and 2D culture models for screening anticancer drugs that
are in their initial stages of development. The spheroids contain proliferating cells on
the surface and quiescent cells in the core due to limited penetration of nutrients and
oxygen, and necrotic areas may be included in larger spheroids that resemble native
solid tumors [185,186]. Several studies have shown differences in viability in 2D- and
3D-cultured cancer cells [187,188]. The cells were treated with the same concentration of
tirapazamine (TPZ). Cells cultured in 2D were more resistant to treatment with TPZ and
showed 72% viability. In contrast, cells cultured in 3D were more responsive to treatment
with TPZ, with 40% viability. The difference was correlated with the fact that TPZ is a
hypoxic activated cytotoxin, which works more effectively on cells cultured in 3D because
the core of the spheroid is hypoxic due to limited oxygen diffusion. Some studies have
reported that cancer cells in 3D models show increased drug resistance compared to those in
2D culture [189]. The variation in response to drugs can be explained by limitations on the
mass transfer of the drugs in 3D culture systems compared to 2D cultured cells [190,191].

Cancer cells grown and maintained in 3D models show phenotypic heterogeneity [192].
This is important because cells of the same tumor group also change morphologically and
functionally as gene expression, differentiation and proliferation rates change. Due to the
diversity of cancer cells, it is difficult to develop drugs that accurately target tumor cells. In
this regard, appropriate genetic modifications of ovarian epithelial cancer in a 3D environ-
ment have been investigated during development and progression [193–195]. Therefore,
3D models are used to study changes in gene expression-related tumor microenvironments.
Moreover, 3D cell culture was used to confirm the presence of cancer stem cells [196].
Numerous studies have demonstrated that cancer stem cells can generate tumor-spheres
by a suspension of single cells in serum-free conditions. Thus, scaffold-free methods are
being used for 3D culture of cancer stem cells. In addition, 3D coculture of cancer cells
and normal cells was used to confirm the specificity of drugs for cancer cells [197,198].
These studies suggest the possibility of 3D models in anticancer drug screening to more
accurately represent tumor models.

3.2. Stem Cell Research and Drug Screening

Recently, stem cells have become an important research tool in biology, medicine and
toxicology, leading to a rapidly developing new scientific field. The importance of stem
cells is evidenced by the increasing number of articles published each year. This rapid
development requires new means of providing high-quality, well-defined and scalable
techniques for the generation of stem cells. It is essential to proliferate stem cells to be used
as a tool in scientific disciplines. Embryoid bodies (EBs) are 3D aggregates generated in
suspension by pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and
induced pluripotent stem cells (iPSCs) [199]. EB differentiation is a common tool to generate
specific cell lineages from PSCs [200,201]. Many 3D culture methods of PSCs in the form of
EBs have been developed. Conventional methods for forming EBs include scaffold-free
methods such as the ultra-low attachment (ULA) method, hanging drop methods, and
suspension culture methods. In particular, EB formation can be more accurately controlled
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by the inoculation of known cell numbers within single drops suspended from the lid of a
Petri dish [199,202]. While this method enables control of EB size by altering cell density
per drop, the formation of hanging drops is labor intensive and does not facilitate scalable
cultures. Additionally, the media cannot be readily exchanged without disturbing the EBs
every 2–3 days. Recently, new methods have been developed to enable media exchange
using a modified hanging drop plate [203]. In addition, these methods have also been
designed to readily separate EBs within individual wells on adhesive substrates for the
analysis of EBs [204,205]

One of the major efforts in the stem cell field is to develop therapeutic applications for
the regeneration of diseased, dysfunctional or complex injured tissues. To that end, it is
essential to secure technology for stem cell proliferation with increased cell viability and
differentiation potential [206]. Various studies have been conducted to prove the conve-
nience of direct transplantation, improved graft adherence, and increased cellular loading
densities through 3D cell culture [207]. Studies have reported hydrogel encapsulation in
3D cell culture for regeneration of cartilage, bone, liver, cardiac, cortical, brain, and skin
tissues [208–214]. This method facilitates cell growth, differentiation and migration of
many cell types, such as neural stem cells, mesenchymal stem cells, adipose-derived stem
cells, and PSCs. In addition, hydrogels with stem cells have demonstrated therapeutic
effects in xenograft models [215].

Three-dimensional (3D) cell culture has emerged as a promising method for the gen-
eration of organoids that could serve as a model to study various disease mechanisms
or the toxicity of new drugs (Figure 2). Organoids are highly heterogeneous 3D struc-
tures that exhibit typical tissue architecture. Thus, organoids can serve as a valuable
developmental model to explore new drugs [216,217]. To date, several protocols have
been developed for the in vitro generation of organoids for the brain, gut, retina, liver,
skin, and kidney [218–222]. Organoid formation generally requires culturing stem cells or
progenitor cells in a 3D environment [223,224]. Hydrogels such as Matrigel or collagen
gel are used to provide a 3D environment. When stem cells are used for the creation of
the organoid, cells are allowed to form embryoid bodies. These embryoid bodies are an
example of organoids. Cardiac organoids generated from cardiomyocytes have the ability
to spontaneously contract [225]. These can produce electrophysiological measurements
when plated on multielectrode arrays. Hairy human skin can be generated using a unique
approach of organoid formation. PSCs can be differentiated into epidermis, dermis, fat,
nerves and hair buds that produce hair [226]. Several studies have shown that more real-
istic outcomes can be achieved to study disease mechanisms by organoids and how cells
respond to drug treatments [227,228]. However, standard protocols of organoid generation
have yet to be defined. Therefore, the development of organoid culture platforms for large-
scale production, organoid-based high-content screening platforms, and finely controlled
systems should be continued. Finally, developing organoids generated from PSCs in an
organ-on-chip system is also an area to be explored. The function of various organs or
tissues, such as the lung, liver, kidney, heart, and gut, can be realized by using microfluidic
device technology in an organ-on-chip system [229,230]. The successful development of
organ-on-chip system will be able to mimic the systemic circulation of humans and animals
under in vitro conditions and will provide us with vast benefits as an alternative model for
drug screening and toxicology tests.
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4. Conclusions and Future Perspectives

Herein, we introduced 3D cell culture methods and summarized the trends in the
application of this technology. The 3D cell culture technologies have already emerged as
an important tool that can facilitate research in the biomedical field with more realistic
results. However, 3D culture methods have many problems to overcome. First, there are
no standardized culture methods. The 3D cell culture method is more difficult and more
complicated than that of 2D cell culture. Thus, it has low reproducibility and requires
a high level of skill. The second problem is that 3D cell culture is still inappropriate for
completely simulating the intrinsic properties of cells. One example is a vascular problem.
In the body, tissues are constantly supplied with nutrients and oxygen from microvessels
in the tissues. Cells cannot survive beyond 150 µm from a microvessel. Thus, angiogenesis
is an important consideration for successful 3D cell culture. When tissue is regenerated
in vitro, the 3D tissue should be supplied with nutrients and oxygen around it until blood
vessels grow into the tissue. In this case, growth factors as well as vascular endothelial cells
and stem cells may be used to promote angiogenesis. However, the problem is that necrosis
can occur before blood vessels are formed due to the insufficient supply of nutrients and
oxygen within the 3D tissue. Finally, even if this simulation is correctly achieved, there is
still a lack of research on analytical methods for verification. Most analyses now depend
on visual images. Therefore, it can be difficult to clearly judge the standards and grasp
the characteristics inside 3D structures. For this reason, standardization of the analysis of
3D cell culture is still difficult. Although there are still many problems to overcome in 3D
cell culture, the introduction of advanced 3D cell culture technologies has attracted several
researchers to shift their attention from 2D to 3D cell culture systems. Thus, 3D cell culture
technology is expected to contribute greatly to future research with the potential to create
excellent outputs.
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Abbreviations

3D Three-dimensional
2D Two-dimensional
PHHs Primary human hepatocytes
CYP450 cytochrome P-450
ECM Extracellular matrix
ULA Ultra-low attachment
PVA Poly (vinyl alcohol)
PLGA Poly(lactic-co-glycolic acid)
pHEMA Poly-2-hydroxyethyl methacrylate
PEG Poly ethylene glycol
RGD Arginine-glycine-aspartic acid
MSCs Mesenchymal stem cells
PEG-SG Four-arm succinimidyl glutarate polyethylene glycol
hMSC Human mesenchymal stem cell
HUVEC Human umbilical vein endothelial cell
hASC Human adipose-derived stem cell
hiPSC-NPC Human induced pluripotent stem cell-derived neural progenitor cell
HA Hyaluronic acid
bFGF Basic fibroblast growth factor
AcHA Acetylated HA
PGA Poly (glycolic acid)
PLA Poly (lactic acid)
PCL Polycarprolactone
SCPL Solvent casting & particulate leaching
TPZ Tirapazamine
EB Embryoid body
PSC Pluripotent stem cell
ESC Embryonic stem cell
iPSC Induced pluripotent stem cell
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