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Transparent conductors are essential in many optoelectronic devices, such as displays, smart

windows, light-emitting diodes and solar cells. Here we demonstrate a transparent conductor

with optical loss of B1.6%, that is, even lower than that of single-layer graphene (2.3%), and

transmission higher than 98% over the visible wavelength range. This was possible by an

optimized antireflection design consisting in applying Al-doped ZnO and TiO2 layers with

precise thicknesses to a highly conductive Ag ultrathin film. The proposed multilayer

structure also possesses a low electrical resistance (5.75O sq� 1), a figure of merit four times

larger than that of indium tin oxide, the most widely used transparent conductor today, and,

contrary to it, is mechanically flexible and room temperature deposited. To assess the

application potentials, transparent shielding of radiofrequency and microwave interference

signals with B30 dB attenuation up to 18 GHz was achieved.
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A
wide range of electronic and optoelectronic devices

require transparent conductors (TCs) to function. These
include, for example, displays, light-emitting diodes and

photovoltaic cells, where TCs are used to either apply or collect
electrical signals without reducing optical transmission (T)1–5. An
intensive effort has been devoted to search for TC materials that
can replace indium tin oxide (ITO), a wide band gap
semiconductor, which is used in most of, if not all, the devices
today. Despite possessing large T, low electrical sheet resistance
(Rs), high chemical and environmental stability, ITO requires
high temperature processing, has poor mechanical flexibility
and high raw material cost6. Among the material alternatives,
Al-doped ZnO (AZO), carbon nanotubes, metal nanowires,
ultrathin metals, conducting polymers and, most recently,
graphene have been extensively considered7–20. Some of these
alternatives can overcome the mechanical fragility, high
temperature processing and/or cost of ITO, but still suffer from
one or more drawbacks such as poor adhesion, large surface
roughness and high optical scattering, and not always achieve a
competitive trade-off between T and Rs

21–25.
Ultrathin metal films (UTMFs) can present very low Rs but

their T is low unless antireflection (AR) undercoat and overcoat
layers are applied26,27. Although the AR concept in TC is widely
known, it has never been investigated and exploited fully,
especially in conjunction of high-quality UTMFs. In the
absence of scattering, which is the case of the work presented
in this study, the optical loss (OL) that accounts for the reduction
in T with respect to the bare substrate (without TC) comes from
absorption (A) of the TC material itself and reflection (R) at the
interfaces in the TC on substrate structure. Here we study
in-depth the AR properties of a TC structure on glass made of
ultrathin Ag, TiO2 undercoat and AZO overcoat layers, and show
that, through a proper optimised design, reflection can be
strongly suppressed. The OL of the optimized TiO2/Ag/AZO
structure (B1.6%) is even lower than that of a single layer
graphene (2.3%), whereas the figure of merit (FoM) is four times
larger than that of ITO, thanks to the very high T (498%) and
low Rs (o6O sq� 1). The proposed TC has the highest electro-
optical performance (FoM) reported so far, is mechanically
flexible, room temperature processed and its potential for real
applications is demonstrated by showing that it can be used
as an efficient transparent shield for radiofrequency and
microwave electromagnetic interference (EMI) signals, with
30 dB attenuation up to 18 GHz.

Results
Structure and optical performance of AR-TC electrode. The
structure of the proposed multilayer AR-TC is shown in Fig. 1a.
For the experiments and simulations, we deposited and studied in
detail the AR-TC structure on a fused silica substrate, but the
work can be extended to other transparent substrates with similar
refractive index, including other glasses and polymers. In parti-
cular we will also show some preliminary results on Corning
Eagle XG glass and poly ethylene terephthalate (PET). Among the
metals, we chose Ag as it has among the highest electrical con-
ductivity and lowest absorption loss. However, it has a high
reflection and tends to grow in an island form at small thick-
nesses. Previous works showed that proper seed layers favour
nucleation of Ag films, which became continuous for thicknesses
much lower than those when they were directly deposited on the
substrate’s surface28. Oxide undercoat and overcoat layers can
reduce the reflection of Ag29.

TiO2 is an ideal undercoat material as it has a high refractive
index (high AR effect), promotes strong film adhesion to the
substrate, chemical stability and nucleation seeding properties.

AZO has been used as an overcoat layer because of its relatively
low refractive index and the fact that its low conductivity ensures
electrical contact between the Ag film and other materials, which
is essential for the functionality of several devices incorporating
the AR-TC.

The AR effect in a multilayer structure relies on destructive
interference between light reflected at the different interfaces.
This can be understood using the generalized Fresnel equation for
the reflection of the multilayer structure, which is given by30:

rj=m � rj=k=m ¼ rj=kþ
tj=ktk=jrk=me2ibkdk

1� rk=jrk=me2ibkdk
ð1Þ

where rj/m is the reflection coefficient for a stack starting at
layer j and ending at layer m, and k identifies any intermediate
layer; bi ¼ k2

i � q2
� �1=2

and q¼o sin(y)/c are the perpendicular
and the parallel components of the wave vector in the layer i,
respectively, with dielectric permittivity ei, magnetic permeability
mi and thickness di. ki¼ nio/c, where ni¼ (eimi)1/2 is the refractive
index of the layer, and o and c are the frequency and the speed of
the light in vacuum, respectively. For the structure of our work
shown in Fig. 1b, one can write:

r0=5 ¼ r01þ
t01t10r1=5e2ib1d1

1� r10r1=5e2ib1d1
ð2Þ

which accounts for total reflection at the top surface (layer
number 1 is considered the intermediate layer). Here, r1/5 is
the total reflection coefficient of the layers from one to five and
the interface reflection and transmission coefficients between any
adjacent layers are:

rij ¼
bi� gijbj

biþ gijbj
; tij ¼

ffiffiffiffiffi
gij

gs
ij

s
ð1þ rijÞ ð3Þ

with gp
ik ¼ ei=ej and gs

ik ¼ mi=mj for p- and s-polarized light,
respectively.

The reflection suppression is given by:

r01 ¼
t01t10r1=5e2ib1d1

1� r10r1=5e2ib1d1
eip ð4Þ

It is noteworthy that the p phase term is related to the destructive
interference condition. In this formula, r01 represents the primary
reflected beam at the top interface, whereas the multiple reflected
beams are merged into a single term on the right-hand side of the
equation. One can easily verify this by reapplying the generalized
Fresnel formula of the multiplayer r1/5 and use the geometric
series representation of the denominator

1
1� r10r1=5e2ib1d1

¼
X1

n¼0
r10r1=5e2ib1d1
� �n ð5Þ

In this way, if need be, all the multiple reflection terms can be
identified.

Maximum AR corresponds to minimum r, which can be
obtained through optimization of film’s thicknesses, as in our case
materials are predefined. To determine the optimum thickness of
each layer, transfer matrix method (TMM) was used. TMM
automatically takes into account multiple reflections of a multi-
layer structure and determines the optical response of the system
including the entire structure’s transmission and reflection,
together with absorption in each layer. In our experiments, the
thickness of Ag was kept constant at a thickness (12 nm) that
provides low Rs (o6O sq� 1), whereas TiO2 and AZO thick-
nesses were varied to find the optimal combination for minimum
R. Figure 1c–e show the optical simulation results with clear
dependence of T, R and A on TiO2 and AZO thicknesses.
It is noteworthy that the simulated parameters include the
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substrate’s contribution, that is, they refer to the entire multilayer
TC on substrate structure. This means that in the case of
complete AR, the simulated R would not tend to zero but the
value corresponding to the backside substrate–air interface
(B3.5%). Simulation results point out that maximum T and
minimum R should be obtained for TiO2 and AZO thicknesses in
the range of 20–30 nm and 30–50 nm, respectively. Under these
conditions, the absorption takes almost entirely place in the silver
layer (Supplementary Fig. 1). Similar trends can be observed for
Corning Eagle XG glass and PET polymer substrates, which have
a refractive index different from fused silica (Supplementary
Fig. 2).

Figure 2a,b show the experimental results of TAVE and RAVE,
average values of T and R, respectively, over the visible
wavelength range (400–700 nm), for varying thicknesses of
TiO2 and AZO. There is a strong agreement with the simulation.
The optimum structures were TiO2 (25 nm)/Ag (12 nm)/AZO
(40 nm) and TiO2 (20 nm)/Ag (12 nm)/AZO (45 nm), named AR-
TC1 and AR-TC2, respectively (we have indicated in parenthesis
the layer’s thicknesses). Figure 2c,d show the measured
wavelength-dependent T and R spectra of AR-TC1 and
AR-TC2, respectively, compared with bare fused SiO2 substrate,
commercial ITO (B135 nm thick) and single-layer graphene on
fused silica. TAVE for the investigated AR-TC structures was as
high as 91.6%, B5% larger than that of ITO (86.7%) and very
close (only B1.6% lower) to that of the bare fused silica substrate
(93.2%). It is worth noting that Fig. 2d includes measurements of
two side R. To verify the AR quality of the proposed AR-TC, we
have also measured single side R. The inset in Fig. 3b illustrates
the method of measuring it. The back R from the substrate–air
interface has been suppressed by adding an absorbing substrate
(black glass), index matched to the sample through an
appropriate oil. The residual R from the AR-TC, with an average
value of B1% in the 400–700 nm wavelength range, is low

compared with both the uncoated substrate surface (3.5%) and
ITO-coated surface (5%; Supplementary Fig. 3). This strong AR
effect increases the value of T and reduces the OL for AR-TC
compared with bare substrate to less about 1.6%, that is, even lower
than that of a single-layer graphene. For a more complete
assessment of the AR properties, we simulated (Fig. 3a) and
measured (Fig. 3b) single side R for the AR-TC1 at different angles
of incidence. Fig. 3c,d show the results for AR-TC2 and commercial
ITO samples, respectively. The superior AR behaviour of the
proposed AR-TC structure is maintained up to large angles (50�). It
is noteworthy that preliminary experiments performed on Corning
Eagle XG and PET substrates with same layers as AR-TC1 on fused
silica indicate that even for these materials OL is already very low
and transmission of TC very high (see Supplementary Table 1),
despite the fact that the structures were not optimized to match a
different refractive index.

Electrical and mechanical properties. The Rs of all the AR-TC
structures were around 5.75O sq� 1, less than half of the value of
reference commercial ITO (14.01O sq� 1). It was almost entirely
provided by the Ag layer. From an electrical point of view,
the thicker the Ag layer the lower the Rs. From an optical point of
view, without the AR undercoat and overcoat layers, the thicker
the Ag layer the larger the R and A, that is, the OL. However, the
use of AR layers help to contain the increase of R as the layer gets
thicker. There is thus an optimum trade-off for the Ag thickness,
which was 12 nm in our case. The root mean square (RMS)
surface roughness of the Ag film was measured to be 2.2 nm,
much smaller than that when directly deposited on the fused
silica substrate (6.5 nm). This confirms the importance of the
undercoat TiO2 layer to achieve a very continuous and smooth
Ag film, which ensures high electrical and optical performance of
the TC structures.
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Figure 1 | Structure and modelling of AR-TC electrode. (a) Structure of AR-TC. (b) Conceptual diagram showing multiple reflection contributions leading

to destructive interference and AR effect. Simulated (c) transmission, (d) reflection and (e) absorption of AR-TC for different TiO2 and AZO thicknesses.

For all the structures, the Ag film thickness is kept constant at 12 nm. The transmission, reflection and absorption include the substrate contribution, that is,

they refer to the whole TC on substrate structure, and are average values over 400–700 nm wavelength range.
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Figure 2 | Optical performance of AR-TC electrode. Experimental average values of (a) transmission (TAVE) and (b) reflection (RAVE) over the visible

wavelength range (400–700 nm) of the proposed AR-TC, for varying thickness of TiO2 and AZO (25 different samples were prepared and measured.

Each square corresponds to a sample with the oxide thickness indicated). Wavelength dependent (c) transmission and (d) reflection of optimal

AR-TC (AR-TC1 and AR-TC2) compared with bare fused SiO2 substrate, single-layer graphene and commercial ITO. Measured values include substrate

contribution and two side reflections. The dashed line in c corresponds to the transmission of AR-TC1 without the substrate contribution, that is, the

ratio between the AR-TC1 transmission and glass substrate transmission (continuous lines). The average TC transmission is calculated to be 98.33%.
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Figure 3 | Single-side angular-dependent reflection performance of AR-TC electrode. (a) Simulated angle-dependent R of AR-TC 1 for varying angle of
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Inset of b: scheme of one-side reflection measurement obtained by index matching a completely absorbing material (black glass) to the back surface.
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For better comparing our AR-TC with ITO, graphene and
other TCs in the literature, we used a widely accepted
FoM ¼ sDC=sOP) that is the ratio between direct current (DC)
conductivity (sDC) and optical conductivity (sOP), which are
related to T and Rs

31 as

T¼ 1þ 188:5
Rs

�
� sOP

sDC

�� 2

ð6Þ

or

sDC

sOP
¼ 188:5

Rs T � 1=2� 1ð Þ ð7Þ

It is worth noting that in our estimates we considered T as the
average value over the visible wavelength region (400–700 nm)
of the entire TC on substrate structure. Our AR-TC exhibits
sDC/sOP of 730, 4 times greater than reference commercial ITO
(180) and 95 times greater than single-layer graphene with
relatively high doping (Rs¼ 325O sq� 1).

For a more straight comparison with other works in literature,
we also used another common FoM, that is, Haacke32, given by

FTC¼
T10

Rs
ð8Þ

Table 1 shows the two FoMs (sDC/sOP and FTC) of different TCs
having high transmission reported in the literature33–39, which is
re-calculated for transmission at 550 nm and includes substrate’s
contribution. A comparison with the literature of T (at 550 nm) as
a function of Rs is in Table 1 and are shown in Supplementary
Fig. 4. It is clear that, among all different TCs using different
structures and materials, the proposed AR-TC has the highest
FoM.

Mechanical flexibility is an important attribute of TC, for
two main reasons. Flexible and foldable electronic/optoelectronic
devices undergo strong curvature effects, whereas low-cost
production requires roll-to-roll processing of large substrates
coated with TC40. To demonstrate the flexibility of our AR-TC,
we deposited it onto PET polymeric substrates and subjected it to
continuous bending. Alongside, ITO-coated PET was also tested.
Rs was measured, whereas the bending radius was varied from
10 to 3 mm. Supplementary Fig. 5 shows the mechanical
flexibility results of proposed AR-TC compared with ITO. The
AR-TC shows excellent flexibility due to the mechanical ductility
of the Ag film, whereas ITO breaks due to its fragility.

The corresponding change in Rs for the AR-TC structures is
B12.7% after 1,000 cycles of bending with radius of curvature
between 10 and 3 mm. Instead, the Rs of ITO increases 1,120%
even for an order of magnitude smaller number of cycles (100).

Performance in EMI shielding applications. To assess the
application potential of developed AR-TCs, we have focused on
transparent EMI shielding particularly important for display and
imaging camera. An example is the possibility to realize invisible
windows that attenuate micro-waves and transmit visible light.
For such a window, not only the high visible optical transmission
and very low electrical resistance (high shielding effect) are
important, but equally crucial to achieve invisibility is the very
low reflection that we have demonstrated. The EMI shielding
efficiency (SE) quantifies the conductive coating’s attenuation of
electromagnetic radiation and is expressed by the ratio in decibels
(dB) between incident power (Pi) and transmitted power (Pt):

SE dBð Þ¼ 10logðPi=PtÞ ð9Þ

For example, an SE of 30 dB means that the conductive coating
attenuates 99.9% of the incident power. The SE of the TC
structures was measured in shielded room enclosure, so that
errors caused by external signals were minimized. For the mea-
surements, a 7� 7 cm AR-TC sample with Rs of B7O sq� 1 was
prepared and properly located in an aluminium frame (see
Supplementary Fig. 6). Figure 4a shows the measurement setup.
A reference measurement with Al frame (without AR-TC) was
carried out to be able to evaluate the SE of the AR-TC-coated
glass window only.

Most of the studies of EMI shielding in the literature have been
carried out in the X-band (8.2–12.4 GHz) as defence tracking,
telephone microwave relay systems, weather radar, satellite
communication and TV picture transmission work in this
spectral region41. However, extending the frequency range is
often of interest, for example, for modern house hold appliances,
microwave heating, mobile phones, wireless communication
equipment and satellite navigation. The EMI shielding in our
work was evaluated with Horn antenna from 1–18 GHz.

Figure 4b,c show the average SE of AR-TC from 1–2.8 GHz
and 2.8–18 GHz, respectively. It is evident from the figure that the
AR-TC provides an efficient shielding in higher frequencies. An
average 26.2 dB SE was measured with peak values well exceeding
33 dB. Importantly, in the widely used X band, the proposed AR-

Table 1 | AR-TC performance comparison with other works.

Reference Structure Transmission
(%) at 550 nm

Sheet
resistance (X sq� 1)

Haacke FoM
(� 10� 3 X� 1)

rDC/rOP

FoM

This work TiO2/Ag/AZO 91.6 5.75 72.3 730.0
Ref. 3 Cu2O/Cu/Cu2O mesh 88.1 15.1 18.6 189.0
Ref. 29 TiO2/Ag/ITO 88.6 6.20 48.5 497.8
Ref. 31 Dip-coated AgNw 89.9 10.2 34.0 339.0
Ref. 33 ZnO/AgNw/AZO/ZnO 87.3 11.3 22.8 237.5
Ref. 34 Graphene–metallic grid hybrid 90.0 20.0 17.4 173.9
Ref. 35 Cu nanowire 90.0 25.0 13.9 139.1
Ref. 36 Polymer–metal hybrid 89.4 10.0 32.6 327.0
Ref. 37 ZTO/Ag/ZTO 83.2 8.8 18.0 222.2
Ref. 38 Capillary printed AgNW 90.4 19.4 18.8 175.1
Ref. 39 Doped single-layer graphene 86.4 325 0.71 7.69

Commercial ITO 86.6 14.0 16.9 180.1

sDC, direct current conductivity; sOP, optical conductivity; Ag, silver; AgNw, silver nanowire; AR, antireflection; AZO, aluminium zinc oxide; Cu2O, copper oxide; Cu, copper; FoM, figure of merit; ITO,
indium tin oxide; TC, transparent conductor; TiO2, titanium oxide; ZnO, zinc oxide; ZTO, zinc tin oxide.
FoMs are re-calculated for transmission at 550 nm and including substrate contribution, this being made of fused silica. FoM of different TCs compared with AR-TC. Both Haacke and DC to optical
conductivity ratio FoMs are used.
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TC shows a high average SE (27.7 dB). SE would be even higher
for the lowest Rs samples demonstrated in this work. This is
depicted in Fig. 4d, according to the relation:

SE dBð Þ¼ 20log10ð1þZ0=2RsÞ ð10Þ

where Z0 is the free space impedance (377O)42. For the AR-TC
structure with Rs of 5.75O sq� 1, an SE of 30.8 dB is expected.
To our knowledge, this is the highest SE reported for a TC with
T including the substrate 490%. For comparison, state-of-the-art
EMI shielding with ITO provides an SE of B25 dB with T o87%.
The SE of other TCs, such as carbon nanotube, graphene and
conductive polymers are even lower (o25 dB)43,44. Metal mesh
can provide higher SE at the expense of transparency (visibility),
as they typically have significant scattering (haze). They also
present high reflectivity, contrary to the proposed AR-TC
structures.

Discussion
Our work exploits fully AR effect in optimized UTMF-based TCs.
Through simulation and experiments, we have shown that
destructive interference in a multilayer TC structure can lead to
optical transmission 498% in the visible still keeping very high
electrical conductivity (low electrical sheet resistance of
5.75O sq� 1). The resulting OL is even lower than single-layer
graphene and the record FoM is four times larger than
commercially available ITO. In addition, the proposed structure
is haze free, highly adhered to the substrate, environmentally
stable, mechanically flexible, room temperature deposited and its
performance has been tested in EMI shielding with high
attenuation.

Methods
AR-TC fabrication. Double-side, optically polished, ultraviolet-fused silica glass
substrates, with a thickness of 1 mm and an area of 1 inch square were used as
substrate. Before TC deposition, the substrates were cleaned in acetone followed by
ethanol in ultrasonic bath, each process lasting 10 min. The substrates were then
rinsed in deionized water and dried with nitrogen gas. The entire TC structure was
deposited by magnetron sputtering without breaking the vacuum. The sputtering
chamber was initially evacuated to a base pressure of E10� 7–10� 8 Torr. The
target to substrate distance was maintained at 30 cm. The substrate holder was
rotating during deposition with a speed of 60 r.p.m. For improving the adhesion
properties of the film to the substrate, low power argon plasma cleaning was
performed for 15 min inside the sputtering equipment before TC deposition.
Bias power (40 W) and pressure (8 mT) were used for cleaning in Ar (20 sccm)
atmosphere. TiO2 and Ag were deposited in pure Ar atmosphere, whereas AZO
(3% Al doping) was deposited in an Ar/O2 mixture (flux ratio of 18:2), all of them
at room temperature. An Ag (99.99%) target was used for depositing Ag films with
DC power of 100 W and working pressure of 2 mTorr. The TiO2 film was deposited
in radio frequency mode (150 W radio frequency power) at a pressure of 2 mTorr.
The AZO film was deposited in the same condition but with a pressure of
1.4 mTorr. The deposition rate was 0.1, 3.5 and 0.3 Å s� 1 for TiO2, Ag and
AZO, respectively.

Device characterization. The electrical properties of the films were measured
using four-point method with cascade Microtech 44/7 S 2749 probe station con-
nected to a Keithley 2001 multimeter. Typically, six measurements were performed
at different positions and Rs was an average of the corresponding values. Agilent
cary5000 UV-Vis-NIR Spectrophotometer with universal measurement accessory
and polarizer was used for optical transmission measurements. Before measure-
ments, the samples were cleaned using a TX 609 Technicloth wiper dampened with
HPLC-grade reagent alcohol. A background scan was performed before each new
measurement configuration (that is, polarization). Transmission and reflection
(two surface) were taken without moving the sample, with the coated surface
towards the incident beam, at 6�, 25�, 50� and 70�, for s and p polarizations. First,
surface reflection was measured with an index matching oil on the back surface of
the sample to a 3,390 black glass. In this way the second (back) surface reflection
was completely suppressed. Flexibility tests were performed using a two-point bend
testing setup connected to a motor driven by an electronic controller, allowing the
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Figure 4 | EMI shielding application of AR-TC electrode. (a) Scheme of EMI SE measurement setup with enclosure, transmitting and receiving antenna.

(b) SE (attenuation) for AR-TC with Rs of B7O sq� 1 in 1–2.8 GHz and (c) 2.8–18 GHz. The error bars represent the difference between measured data and

their average calculated using Fast Fourier Transform filtering. (d) SE as a function of sheet resistance (Rs).
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arm to move back and forth along the horizontal direction. AR-TC deposited onto
PET polymeric substrates and subjected it to continuous bending. Rs was measured
while the bending radius was varied from 10 to 3 mm.

EMI shielding performance demonstration. Attenuation of the AR-TC was
measured using Horn Antennas that transmits and receive in the 1–18 GHz
frequency range. The transmitting and a receiving Horn antennas were placed in
two enclosure rooms, to minimize noises from external signals. Both antennas are
separated 1 m away from the sample. Before measurements, the sample was
prepared on 7� 7 cm glass substrate, which was enclosed in 19.6� 19.6 cm alu-
minium frame. The test was performed in two stages. In the first stage, reference
attenuation measurement was carried out with only Al frame for establishing the Al
frame contribution to SE. In the second stage, the same measurement was carried
out with the AR-TC in the frame. Finally, effective attenuation was calculated by
subtraction.

Simulation methods. All simulations were performed using a TMM implemented
in a python environment.

Data availability. The data that support the findings of this study are available
from the authors upon request.
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