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Abstract

Introduction

Multidrug resistance (MDR) is a serious issue prevalent in various agriculture-related food-

borne pathogens including Salmonella enterica (S. enterica) Typhimurium. Class I integrons

have been detected in Salmonella spp. strains isolated from food producing animals and

humans and likely play a critical role in transmitting antimicrobial resistance within and

between livestock and human populations.

Objective

The main objective of our study was to characterize class I integron presence to identify pos-

sible integron diversity among and between antimicrobial resistant Salmonella Typhimurium

isolates from various host species, including humans, cattle, swine, and poultry.

Methods

An association between integron presence with multidrug resistance was evaluated. One

hundred and eighty-three S. Typhimurium isolates were tested for antimicrobial resistance

(AMR). Class I integrons were detected and sequenced. Similarity of AMR patterns between

host species was also studied within each integron type.

Results

One hundred seventy-four (95.1%) of 183 S.Typhimurium isolates were resistant to at least

one antimicrobial and 82 (44.8%) were resistant to 5 or more antimicrobials. The majority of

isolates resistant to at least one antimicrobial was from humans (45.9%), followed by swine
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(19.1%) and then bovine (16.9%) isolates; poultry showed the lowest number (13.1%) of

resistant isolates. Our study has demonstrated high occurrence of class I integrons in S.

Typhimurium across different host species. Only one integron size was detected in poultry

isolates. There was a significant association between integron presence of any size and

specific multidrug resistance pattern among the isolates from human, bovine and swine.

Conclusions

Our study has demonstrated a high occurrence of class I integrons of different sizes in Sal-

monella Typhimurium across various host species and their association with multidrug resis-

tance. This demonstration indicates that multidrug resistant Salmonella Typhimurium is of

significant public health occurrence and reflects on the importance of judicious use of antimi-

crobials among livestock and poultry.

Introduction

Emerging and existing antimicrobial drug resistance (AMR) including multidrug resistance

(MDR) in bacteria is a major public health concern with global relevance to overall human

and animal health [1]. An early screening solution to identify AMR is an essential step to effec-

tively manage disease spread and reduce the number of new cases in humans and livestock.

Salmonella enterica bacteria can be associated with health and production issues for live-

stock and poultry. Salmonella enterica subsp. enterica serotype Typhimurium (S. Typhimur-

ium) is a globally recognized human pathogen and poses a food safety risk [2–4]. It can infect

a wide range of hosts including animals such as poultry, pigs, sheep and cattle [5]. S. Typhi-

murium ranks among the top five serotypes recovered from food production animals [2,6],

and is one of the primary causes of human foodborne infections and outbreaks in many coun-

tries [4,7,8].

Multidrug resistance (MDR) is a serious issue prevalent in various agriculture-related food-

borne pathogens including S. enterica. Presence of AMR in Salmonella has been well docu-

mented for many years, and isolation of MDR (resistant to 3 or more antimicrobial classes)

[9,10]. S. Typhimurium isolates have been increasing since the mid-1960s [11]. Even as early

as 1994, 62% of isolates were multi-drug resistant [12]. Zhao et al (2005) [2] have demonstrated

that 76% of S. Typhimurium isolated from cattle, chickens, pigs, turkeys and their meats, and

from companion animals were resistant to at least 1 antimicrobial.

Antimicrobial resistances in Salmonella has been associated with the presence of integrons

[13–15]. Integrons are bacterial genetic elements that allow the shuffling of smaller mobile ele-

ments called gene cassettes [16] and are horizontally transmissible. Integrons were constitu-

ents of the first resistance plasmids reported, conferring resistance to aminoglycosides,

chloramphenicol and sulphonamides [16]. Class I integrons can incorporate AMR genes from

the environment by site-specific recombination [17]. Of the 5 known classes of integrons, class

I integrons are the most prevalent and have been detected in up to 71% of fecal samples from

lot-fed cattle [18], and in 22% to 59% of Gram-negative human clinical isolates [19,20]. Thirty-

nine percent of isolates were reported to contain class I integrons from meat and dairy prod-

ucts [15], 25.6% from poultry and swine [21], 46% from swine environment [14], 34% and

75% from swine and human isolates [22] and 51% from various animals and their meat prod-

ucts [2]. As such, integrons likely play a critical role in transmitting AMR within and between

livestock and human populations.
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In a swine study, Rao et al (2008) [14] demonstrated a strong association between specific

class I integrons of 3 sizes (1,000, 1,200 and 1,600bp) and AMR among 730 Salmonella enterica
isolates. The most common MDR pattern identified in S. enterica included ampicillin, chlor-

amphenicol, streptomycin, sulfisoxazole and tetracycline (ACSSuT), 99% of which carried a

specific class I integron. The association between presence of integrons and AMR patterns has

also been found by other researchers [23,24].

The goal of this study was to characterize class I integron diversity between and among S.

Typhimurium isolates from various host species, including humans, cattle, swine, and poultry.

The specific aim was to evaluate the association of integrons with MDR in S. Typhimurium

within livestock, poultry and human species. If such an association exists, screening assays

could be developed that would allow early MDR detection and improved treatment of current

and emerging drug resistant S. Typhimurium in humans and animals.

Materials and methods

Selection of Salmonella Typhimurium isolates
Multiple laboratories across the United States were contacted for Salmonella Typhimurium

repositories from human, bovine, swine and poultry. The isolates were chosen from six differ-

ent and independent institutes across the United States as follows: Human isolates collected

between 2009–2014 from two institutes, Bovine isolates collected between 2009–2012 and

poultry isolates collected between 2009–2013 from two institutes, Porcine isolates collected

between 2009–2013 from three institutes (one represents the same institute as for bovine and

poultry isolates). The isolates were selected from different time points, spanning a five year

time period. They were not replicates of the same isolate and were randomly selected from the

database provided by our collaborators. One hundred and eighty-three isolates were shipped

to our laboratory: 88 human, 33 bovine, 36 swine and 26 poultry isolates. Briefly, samples were

streaked for isolation onto trypticase soy agar plates (Becton, Dickinson and Company, Frank-

lin Lakes, NJ) containing 5% sheep blood and incubated overnight at 37˚C. After verification

as serogroup B Salmonella (BD Diagnostic Systems1, Becton, Dickinson and Company) by

traditional slide agglutination, an isolated colony was inoculated into 1mL of trypticase soy

broth and incubated overnight at room temperature. After mixing in sterile glycerol to a final

glycerol concentration of 10%, the cultures were frozen at -80˚C until they were retrieved for

further testing.

Antimicrobial susceptibility testing

All Salmonella Typhimurium isolates, independent of integron presence, were tested for sus-

ceptibility to 16 antimicrobial agents by the Kirby-Bauer agar disk diffusion assay [25]. The

antimicrobial drugs and their potencies were: amoxicillin-clavulanate 20/10μg (AMC); ampi-

cillin 10μg (AM); chloramphenicol 30μg (C); cephalothin 30μg (CF); ceftiofur 30μg (CTO);

enrofloxacin 5μg (ERF); streptomycin 10μg (S); sulfisoxazole 250μg (SSS); tetracycline 30μg

(TE); trimethoprim-sulfamethoxazole 1.25/23.75μg (SXT); cefoxitin 30μg (FOX); ciprofloxacin

5μg (CIP); florfenicol μg (FFC); gentamicin 10μg (GM); kanamycin 30μg (K); and nalidixic

acid 30μg (NA). Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 were

utilized as quality control organisms.

Molecular identification of integrons

Primers that correspond to the 5’ conserved segment (CS) and 3’CS portion of class I integrons

were utilized to amplify any AMR genes within [14,26]. The primer sequences were forward:
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5’-GGC ATC CAA GCA GCA AGC-3’, and reverse: 5’-AAG CAG ACT TGA CCT
GAT-3’ [14,27].The isolates underwent the PCR protocols and thermocycler conditions men-

tioned in Rao et al., 2008 [14] to identify integron sizes. Two positive control samples for class

I integrons with sizes of 1,000, 1,200, and 1,600bp were included (5 pg total) with each PCR

[14]. PCR products of the isolates with integrons were separated on a 1% agarose gel contain-

ing markers to validate band sizes and integron bands were subsequently excised for purifica-

tion and sequencing.

Genetic sequencing of integrons

DNA purification of the excised integrons was performed using the QIAquick PCR Purifica-

tion kit (Qiagen1), followed by evaluation for sample quality, purity and concentration utiliz-

ing spectrophotometry, and purified DNA was then sequenced. Briefly, samples were prepared

using ABI’s BigDye1 Terminator v3.1 sequencing chemistry and processed using ABI 3130xL

Genetic Analyzer (Applied Biosystems™, Thermo Fisher). Sequences were generated using

both the forward and reverse primers for a complete annotation of each integron sequence.

Data analysis

Descriptive statistics were performed using frequencies and a heat map was developed to rep-

resent the AMR patterns among host species within each integron type. The AMR results were

represented as susceptible, intermediate and resistant on the heat map. For statistical analysis,

intermediate results were considered resistant. A Fisher’s exact test or a Chi-square analysis

was performed to evaluate the association between integron size and certain MDR patterns

using SAS v9.4 (SAS Institute Inc., Cary, NC).

Analysis of integron sequences

Each integron sequence (forward and reverse) was converted to FASTA format and merged

using De Novo assembly, followed by alignment with MEGARes, a comprehensive database of

antimicrobial resistance determinants [28], for identification of AMR genes. The genes with

highest query coverage and % pairwise identity were identified, along with the gene class. The

AMR genes within each integron across various host species were represented using a dendro-

gram, that was created to elucidate the genetic relatedness among integrons using a cut-off of

90% similarity (UPGMA: unweighted pair group with arithmetic mean method) [29]. All anal-

yses were performed with Geneious1 10.2.5 (Biomatters Limited) [30].

Results

Antimicrobial resistance patterns

One hundred seventy-four (95.1%) of 183 S.Typhimurium isolates were resistant to at least

one antimicrobial and 82/183 (44.8%) were resistant to 5 or more antimicrobials.

The percentage of isolates resistant to at least one antimicrobial were: 45.9% of human iso-

lates, 19.1% of swine, 16.9% of bovine and 13.1% of poultry isolates. The highest number of

resistances was observed towards streptomycin, followed by tetracycline and sulfisoxazole

among all four hosts in the study (Table 1).

Integron identification

Forty-two percent (77/183) of the 183 isolates carried at least one class I integron, represented

most by swine (16.4%); followed by humans (15.3%), bovine (8.7%) and poultry (1.6%). All of

the isolates (100%) carrying any size integron were resistant to at least one antimicrobial. Of
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all resistant samples, 100% of the integron-carrying bovine isolates and 78.6% of the integron-

carrying human isolates were resistant to at least 5 antimicrobials. There were 9 isolates (9/

183) that did not show any AMR towards any of the tested drugs and all 9 did not carry any

class I integrons.

The molecular size of integrons that were found in bovine, swine, poultry, and human iso-

lates were characterized (Fig 1). Isolates collected from humans showed the highest variety of

integron sizes, which included 1000bp, 1200bp, 1800bp, 2500bp, a combination of 1000bp and

1200bp, and a combination of 1000bp, 1200bp and 1600bp.

Swine and bovine isolates contained 1000bp, the 1800bp integron and a combination of

1000bp and 1200bp integrons. The only integron size detected in poultry was 1000bp.

The heatmap produced (Fig 2) showed AMR patterns within each integron size among var-

ious host species. There were 27 isolates (12 human, 9 swine, 3 bovine and 3 poultry) that con-

tained only the 1000bp integron, and 100% were resistant to streptomycin, 93% were resistant

to sulfisoxazole, 89% to tetracycline, and 56% to ampicillin.

Four isolates (3 human and 1 bovine) contained only an 1800bp integron, 100% of which

were multi-drug resistant (MDR) to amoxicillin-clavulanic acid, ampicillin, chloramphenicol,

streptomycin, sulfisoxazole, sulfa-trimethoprim, tetracycline, ceftiofur, cefoxitin, cephalothin

and florfenicol. All 3 of these human isolates were also resistant to nalidixic acid and 2 of them

were resistant to enrofloxacin and kanamycin. One human isolate carried a 1200bp integron

with MDR to 5 antimicrobials (amoxicillin-clavulanic acid, ampicillin, streptomycin, sulfisox-

azole, and tetracycline). Forty-three isolates (10 human, 21 swine and 12 bovine) contained

both the 1000 and 1200bp integrons, all of which were resistant to 6 antimicrobials (ampicillin,

streptomycin, sulfisoxazole, chloramphenicol, tetracycline and florfenicol (ACSSuTF)). One

human isolate contained 3 integrons, 1000, 1200 and 1600bp, and was resistant to sulfa-tri-

methoprim, cephalothin and gentamicin along with ACSSuTF. The isolate containing +-

2500bp integron was resistant to ampicillin, sulfizoxazole, tetracycline, sulfa-trimethoprim,

gentamicin and nalidixic acid.

One-hundred and six isolates (106/183, 57.9%), representing all host types, did not contain

any class I integrons. Five bovine and 3 human isolates of those were resistant to ACSSuTF.

The presence of integron of any size was significantly associated with MDR patterns of

SSuT, ACSSuT and ACSSuTF across all host species (p<0.01) except poultry (p = 0.22). The

association was also significant when the data from all the host species were combined

(Table 2).

Table 1. Number and percentage of isolates exhibiting antimicrobial resistance by host species.

Host # isolates Amp C Str Sul Tet Flor Am-Cl Tio Fox Ceph Tri-Sul Enro Cip Gen Kan NA

Human 88 n 34 19 81 46 57 19 23 11 10 16 10 9 - 13 7 16

% 38.6 21.6 92 52.3 64.8 21.6 26.1 12.5 11.4 18.2 11.4 10.2 - 14.8 8 18.2

Bovine 33 n 22 20 30 23 26 20 21 10 10 10 1 - - 5 2

% 66.7 60.6 90.9 69.7 78.8 60.6 63.6 30.3 30.3 30.3 3 - - 15.2 6.1 0

Swine 36 n 27 26 33 31 34 26 25 - 5 5 5 6 - - - 5

% 75 72.2 91.7 86.1 94.4 72.2 69.4 - 13.9 13.9 13.9 16.7 - - - 13.9

Poultry 26 n 2 - 21 7 15 1 - - - - 1 - 1 - 1 -

% 7.7 - 80.8 26.9 57.7 3.8 - - - - 3.8 - 3.8 - 3.8 -

Total 183 85 65 165 107 132 66 69 21 25 31 17 15 1 18 10 21

Amp: Ampicillin; C: Chloramphenicol; Str: Streptomycin; Sul: Sulfisoxazole; Tet: Tetracycline; Flor: Florfenicol; Am-Cl: Amoxicillin-Clavulanate; Tio: Ceftiofur; Fox:

Cefoxitin; Ceph: Cephalothin; Tri-Sul: Trimethoprim-sulfa; Enro: Enrofloxacin; Cip: Ciprofloxacin; Gen: Gentamicin; Kan: Kanamycin; NA: Nalidixic acid.

https://doi.org/10.1371/journal.pone.0243477.t001
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Integron sequence data analysis

We detected 122 integron sequences from 77 isolates, which contained a total of 127 AMR

genes (Table 3).

The majority (72/73, 98.6%) of the 1000bp integrons consisted of aadA1, aadA2 or aadA3

genes, representing resistance to the aminoglycoside class of antimicrobials. The remaining

1000bp integron, was associated with resistance to beta-lactams (in addition to the aminogly-

coside class genes) and was from a swine host. One hundred percent (45/45) of the 1200bp

integrons contained genes coding resistance to beta-lactams (pse-1 or carb-6) across different

Fig 1. Gel electrophoresis showing sizes of integrons (bp).

https://doi.org/10.1371/journal.pone.0243477.g001
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Fig 2. Heat map demonstrating antimicrobial susceptibility, intermediate and resistance within each integron size by host species.

https://doi.org/10.1371/journal.pone.0243477.g002
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hosts, whereas the one (1/122) 1600bp integron, from a human-derived isolate, contained

genes coding for resistance to aminoglycosides as well as trimethoprim but not beta-lactams.

The 4 integrons of 1800bp size contained aadA1 or aadA2 genes, and 3 among them also con-

tained dfrA12 gene, which confers resistance to trimethoprim.

The dendrogram that elucidated the similarity among integrons using a cut-off of 90% sim-

ilarity resulted in 8 distinct clusters [Fig 3]. One of the 1200bp integrons from bovine origin

was omitted from the dendrogram due to poor sequence alignment. Hence, there were 121

integrons represented in the final dendrogram. Cluster III was the largest one consisting of

Table 2. Association of integron presence with three MDR patterns.

Host Integron Yes/No Total SSuT Fisher’s Exact/ Chi-square Test ACSSuT Fisher’s Exact/ Chi-square Test ACSSuTF Fisher’s Exact/ Chi-square Test

Yes No Yes No Yes No

Bovine Yes 16 16 0 <0.0001 15 1 0.0002 15 1 0.0002

No 17 6 11 5 12 5 12

Total 33 22 11 20 13 20 13

Poultry Yes 3 1 2 0.22 3 Cannot be calculated 3 Cannot be calculated

No 23 1 22 23 23

Total 26 2 24 26 26

Human Yes 28 24 4 <0.0001 16 12 <0.0001 16 12 <0.0001

No 60 15 45 3 57 3 57

Total 88 39 49 19 69 19 69

Swine Yes 30 30 0 <0.0001 26 4 0.0001 26 4 0.0001

No 6 1 5 0 6 0 6

Total 36 31 5 26 10 26 10

All hosts Yes 77 71 6 <0.0001 57 20 <0.0001 57 20 <0.0001

No 106 23 83 8 98 8 98

Total 183 94 89 65 118 65 118

https://doi.org/10.1371/journal.pone.0243477.t002

Table 3. Number of isolates containing antimicrobial resistance genes compared to resistance to antimicrobial drug classes per species and integron size.

Integron size (bp) Class Aminoglycosides Beta-lactams Trimethoprim Total

Mechanism Aminoglycoside O-nucleotidyltransferases Class A beta-lactamases Dihydrofolate reductase

1000 Bovine 15 15

Swine 30 1 31

Poultry 3 3

Human 24 24

Total 72 1 73

1200 Bovine 12 12

Swine 21 21

Human 12 12

Total 45 45

1600 Human 1 1 2

Total 1 1 2

1800 Bovine 1 1 2

Human 3 2 5

Total 4 3 7

Total 77 46 4 127

A total of 127 AMR associated genes were derived from 122 integrons representing 77 isolates.

Aminoglycoside genes were aadA1, aadA2 or aadA3; beta-lactamase genes were pse-1 or carb-6; Dihydrofolate reductase genes were dfrA12.

https://doi.org/10.1371/journal.pone.0243477.t003
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43.8% (n = 53) of all integrons identified in the study, followed by cluster V consisting of

36.36% (n = 44), cluster II with 8.26% (n = 10) and cluster I with 6.61% (n = 8) of integrons.

Other clusters were in small numbers of 1 or 2 integrons in each.

Fig 3. Dendrogram analysis of 121 Class I integrons obtained from S. Typhimurium strains from various host species.

https://doi.org/10.1371/journal.pone.0243477.g003
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The largest cluster, III, contained 94% 1000bp integrons, 3.8% of 1800bp and 1.9% of

1200bp integrons. Cluster V contained 98% of 1200bp integrons and 2% (n = 1) of 1000bp

integrons. Ninety percent of cluster II was represented by 1000bp integrons and the remaining

(n = 1) 1600 bp integron. All of cluster I was represented by 1000bp integrons (Table 4).

Discussion

Salmonella Typhimurium impacts both humans and animals and is one of the most commonly

reported serotypes worldwide [31,32]. Integrons are known to be a primary source of transfer-

able resistance genes and are suspected to serve as reservoirs of AMR genes within microbial

populations [33,34]. Integrons are genetic units found in many bacterial species that are

defined by their ability to capture small mobile elements called gene cassettes. They contribute

to the generation of AMR diversity in bacterial, plasmid, and transposon genomes and facili-

tate extensive sharing of genetic information among bacteria [35].

In this study, we observed AMR diversity within each host species and associations with class

I integron sizes. There was a wide variety of integron sizes detected among human isolates

whereas only one integron size was detected in poultry. The occurrence of integrons detected

may be associated with the differences in environmental exposures and factors which the bacte-

rial species encounters, including antimicrobial selective pressure [36]. Due to the diversity of

production systems and differences in antimicrobial usage among various livestock species, the

presence of AMR may vary. It should be noted that the 26 poultry isolates included in this study

were from diverse sources (two institutes) and were collected over the course of 4 years, suggest-

ing that the uniformity in integron distribution is not associated with any temporal or spatial fac-

tors. Overall, the conventional U.S. chicken industry consumes medically important antibiotics

much less intensively than the conventional turkey, pig, and cattle industries [37], helping to cor-

roborate the observation of only one integron size in the poultry isolates evaluated in this study.

Humans may be exposed to MDR pathogens through a variety of routes including environ-

ments at healthcare facilities, farm and companion animals and their food, food products

made from animals, fresh produce carrying MDR pathogens acquired from contaminated soil

or water, and exposure to other individuals carrying MDR microbes [1].

Numerous studies have demonstrated the significance of class I integrons and the associations

with AMR, especially MDR [14,26,38,39]. Hsu et al. (2013) [38], demonstrated a significant rela-

tionship between the presence of class I integrons and AMR in different Salmonella serotypes

from humans and various animal hosts. Additionally, a study by Lopes et al., (2016) [39] demon-

strated that S. Typhimurium isolates from swine sampled at abattoirs carried class I integrons and

exhibited MDR, underscoring the potential risk to human health when entering food chain [39].

Table 4. Number of integrons in 8 clusters stratified by integron size and host species.

Cluster 1000 bp 1200 bp 1600 bp 1800 bp (+2500) bp

Human Bovine Swine Poultry Human Bovine Swine Human Human Bovine Human

I 2 6

II 5 1 3 1

III 16 11 23 0 1 1 1

IV 1

V 1 12 11 20

VI 2

VII 2

VIII 1

https://doi.org/10.1371/journal.pone.0243477.t004
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There are five classes of integrons that have been identified [40]. Class I integrons have

been found to be the major contributor to MDR in Gram-negative bacteria and play an impor-

tant role in disseminating AMR genes [41]. As a way to further validate the association of a

particular MDR phenotype with a particular integron presence and associated AMR genes,

each identified integron sequence was further evaluated using the MEGARes database, a tool

used to align input sequences against a comprehensive database of antimicrobial resistance

genes. AMR genes associated with Class I integrons and identified in our study include aadA1,

aadA2, aadA3, beta lactamase genes, and dfrA12. Our study demonstrated that the majority of

the isolates carrying the 1000bp integrons were resistant to streptomycin, sufisoxazole and tet-

racyclines across all host species and carried aadA genes that represent resistance to aminogly-

cosides. The majority of samples with 1200bp integrons showed, in addition to the antibiotic

resistances listed above for the 1000bp integrons, resistance to amoxicillin-clavulanate, ampi-

cillin, chloramphenicol and florfenicol and carried beta lactamase genes.

The integron of 1600bp in one human isolate contained the dfrA12 gene however, the iso-

late conferred AMR to sulfa-trimethoprim, cephalothin and gentamicin. The 1800bp integron

conferred resistance to ACSSuTF along with resistance to amoxicillin-clavulanate, sulfa-tri-

methoprim, ceftiofur, cefoxitin, cephalothin and carried dfrA12 along with aadA. Our results

were consistent with findings of Gebreyes et al. (2004) [26] who investigated AMR and occur-

rence of multidrug serotypes and class I integrons among Salmonella from pigs. In summary,

the isolates containing similar size integrons showed similar MDR patterns, with few excep-

tions. This was consistent across all host species evaluated in this study. Potential use of such

information includes the ability to design better assays for early screening of current and

emerging drug resistant S. Typhimurium.

Conclusions

Our study has demonstrated a high occurrence of class I integrons of different sizes in Salmo-
nella Typhimurium across various host species and their association with MDR. Only one

integron size was detected in poultry isolates compared to diverse integron sizes detected

among livestock species and humans. Multidrug resistant Salmonella is a significant public

health concern and our findings point to the importance of judicious use of antimicrobials

among livestock and poultry. In the future, a screening assay could be implemented after isola-

tion of S. Typhimurium. Demonstration of 1000bp or 1000+1200bp integrons by class I inte-

gron PCR would be predictive of MDR, and assist in management and treatment decisions.
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