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THE BIGGER PICTURE The mining of the structured data in electronic health records such as diagnostic
codes enables many clinical applications, but much clinical information is locked in the unstructured
free-text clinical notes because they aremore difficult to use in datamining. In addition, the structured diag-
nostic codes are often missing or even erroneous. To accurately structure the free-text notes in the form of
diagnostic code for downstream usage, we used old and new natural language processing methods
together with interpretable classification algorithms to extract eight diagnostic codes of common cardio-
vascular diseases. This work helps to structure free-text clinical notes, impute missing diagnostic codes,
and correct erroneously diagnostic codes noted by clinicians to improve the data quality of diagnostic co-
des as the fundamental structured data for later information retrieval and downstream data-mining appli-
cations.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Free-text clinical notes in electronic health records are more difficult for data mining while the structured
diagnostic codes can bemissing or erroneous. To improve the quality of diagnostic codes, this work extracts
diagnostic codes from free-text notes: five old and new word vectorization methods were used to vectorize
Stanford progress notes and predict eight ICD-10 codes of common cardiovascular diseases with logistic
regression. The models showed good performance, with TF-IDF as the best vectorization model showing
the highest AUROC (0.9499–0.9915) and AUPRC (0.2956–0.8072). The models also showed transferability
when tested on MIMIC-III data with AUROC from 0.7952 to 0.9790 and AUPRC from 0.2353 to 0.8084. Model
interpretability was shown by the important words with clinical meanings matching each disease. This study
shows the feasibility of accurately extracting structured diagnostic codes, imputing missing codes, and cor-
recting erroneous codes from free-text clinical notes for information retrieval and downstream machine-
learning applications.
INTRODUCTION

The digitization of hospitals has enabled electronic health records

(EHR) to become accessible to researchers for secondary usage

that benefits healthcare research.1–4 The analyses of EHR

contribute to a better understanding of the clinical trajectories of

patients,5 and improved patient stratification and risk evalua-
This is an open access article under the CC BY-N
tion.6,7 However, much of the information in the EHR is locked in

free-text clinical notes.2,4 Typically, EHR include structured data

such as age (e.g., 50), sex (e.g., M), and white blood cell count

(e.g., 10.5 K/mL), and unstructured data such as free-text notes

(‘‘ . has the following active medical issues hx of afib .’’).

Analyzing these free-text clinical notes is challenging.1,2,8 Histori-

cally, the information in free-text clinical notes has been extracted
Patterns 2, 100289, July 9, 2021 ª 2021 The Authors. 1
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mostly manually by clinical experts for archiving, retrieval, and an-

alyses, and this has been particularly relevant to chronic disease

because clinical notes dominate over structured data. More

recently, natural languageprocessing (NLP) andmachine-learning

methods have shown great promise to automatically analyze clin-

ical notes.1,2,9,10

EHR data enable researchers and clinicians to perform infor-

mation extraction and encode the information for later informa-

tion retrieval and secondary usage.4 Based on these clinical

notes, ICD-10 codes (i.e., the International Classification of Dis-

eases, 10th Revision)11 are used by clinicians to encode diagno-

ses. Some typical applications of EHR have been using these

diagnostic codes in downstream tasks, such as automatic infor-

mation retrieval, risk prediction, and the prediction of disease

subtypes.1,2,9,10 As the ICD-10 diagnostic codes form the basis,

its quality determines the performance of downstream tasks.

Furthermore, EHR data in structured format rather than in free-

text format can bemore easily used inmachine-learning applica-

tions or combined with other data types.

Yet diagnostic codes are frequently missing in EHR or the re-

corded diagnostic codes may be inaccurate. Misclassification

and inaccuracy in diagnostic codes have been reported in an

increasing number of papers, for instance in cases related to

myocardial infarction and stroke.12–15 McCarthy et al.12 reported

that a substantial percentage of patients who had myocardial

injury were miscoded as having type 2 myocardial infarction,

which may have serious consequences. Chang et al.13 found

disagreement in stroke coding. The erroneous codingmay nega-

tively influence stroke case identification in epidemiological

studies and hospital-level quality metrics. Goldstein14 found pa-

tients with indicated primary ICD-9-CMcodes to have conditions

other than acute ischemic stroke. Horsky et al.15 demonstrated

that there were significant deficiencies in documented diag-

nostic codes with clinicians coding ICD-10 codes in simulated

scenarios, which also suggested that additional training for clini-

cians was needed. Recent studies have focused on the problem

of diagnostic code prediction.1,9 Although some good results

have been produced, many of the previous diagnostic code pre-

diction studies have applied deep-learning methods that make

the models difficult to interpret.2,3,9 Because ICD-10 codes are

usually the start for downstream tasks and clinicians attach sig-

nificance to interpretable information extraction systems,4 inter-

pretable models may have certain advantages over less-inter-

pretable models in that they may not only enable accurate

ICD-10 code imputation but also enable clinicians to readily un-

derstand themodels and control the quality of the diagnostic co-

des with their expertise.

In this study, we propose the use of NLP word vectorization

algorithms and logistic regression (LR) to predict eight ICD-10

codes related to common cardiovascular diseases from free-

text outpatient progress notes (Figure 1). We compared both

interpretable models and less-interpretable models with regard

to their performances on the ICD-10 code prediction tasks. The

proposed models show good classification performance on

eight ICD-10 codes in two Stanford cohorts and the models

generalized well on the MIMIC-III (Medical Information Mart

for Intensive Care III) dataset. Additionally, the most interpret-

able models also showed the best performance on all

datasets.16,17
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RESULTS

Data visualization
We first visualized the feature vectors with TF-IDF using t-distrib-

uted stochastic neighbor embedding (t-SNE) to explore the data

in the clinical notes in the cohort 1 training set (Figure 2). Due to

limited space, we presented the TF-IDF visualization as a

demonstration because of its full interpretability. We found clus-

ters related to several cardiovascular diseases. The selected

clusters within the bounding boxes showed high prevalence in

I-codes, suggesting that the feature vectors may be able to

distinguish ICD-10 codes.

Prediction of ICD-10 codes
First, we tested our machine-learning workflow for predicting

ICD-10 codes on cohort 1. These results showed that LR and

the word vectors enabled the classification of the eight diag-

nostic codes related to cardiovascular diseases (I-code) with

high prevalence on cohort 1 with both high area under the

receiver-operating characteristic curve (AUROC) and high

area under the precision recall curve (AUPRC) (Figures 3, S1,

and S5). The AUROC values in all classification tasks were

higher than 0.75, and term frequency-inverse document fre-

quency (TF-IDF) outperformed the other four word vectorization

methods, with AUROC values higher than 0.85 on four selected

codes with different prevalence. There was a variance in the

AUPRC among the codes with varying prevalence. For the co-

des with high prevalence such as I25 and I48, the AUPRC

values were above 0.65 and 0.75 for TF-IDF. Additionally, the

30 bootstrapping experiments on cohort 1 showed the best

performances given by TF-IDF on the majority of the codes

(Figure 4).

Second, on the larger cohort 2, with more data, the results

showed that the LR models trained on the word vectorization

methods classified the I-codes with an improvement in both

AUROC and AUPRC, particularly on the codes with lower prev-

alence (Figures 3 and S2). TF-IDF outperformed the other word

vectorization methods in terms of both AUROC and AUPRC.

On the codes with lower prevalence (i.e., I21 and I70) the perfor-

mances were significantly improved, with AUROC values around

0.95 and AUPRC values above 0.25 based on TF-IDF word

vectors.

Interpretation of important words in classification
To interpret the models, we extracted the ten most important

words in 30 bootstrapping experiments on cohort 1 (Table 1).

The results showed that not only many important words that

were found were overlapping in the bootstrapping experiments,

but also that most words could be explained on the basis of the

meanings related to the diagnostic codes. For example, for

acutemyocardial infarction, non-ST-elevationmyocardial infarc-

tion, myocardial, myocardial infarction, thrombus, and infarction

were found to be important; for chronic ischemic heart disease,

coronary, coronary artery disease, artery/arterial, and angina

were found to be important; for atrial fibrillation, flutter, fibrilla-

tion, atrial, fibrillation, atrial fibrillation, and paroxysmwere found

to be important. Meanwhile, the results based on the twometrics

were similar, indicating that the importance of words was rela-

tively stable over the 30 bootstrapping experiments. To



Cardiovascular OutpaƟent Progress Notes 
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ValidaƟon Notes (PaƟents) 1,125,339 (26,729)

Test Notes (PaƟents) 1,126,644 (26,729)
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Training Notes (PaƟents) 1,234,864 (77,742)

ValidaƟon Notes (PaƟents) 417,498 (25,956)

Test Notes (PaƟents) 411,041 (25,949)
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Sex:   Male(46.9%) Female(53.1%)
Ethnicity: White(56.2%) Unknown(8.2%)

Asian(14.3%) Other(14.5%)
Black(5.3%) Pacific Islander(1.2%)
NaƟve American(0.3%)

Age:

External Test Set: MIMIC-III Discharge Summary

Test Notes (PaƟents) 59,652 (41,127)

Demographics
Sex:   Male(56.4%) Female(43.6%)
More InformaƟon: [33]

Figure 1. Overview of the cohorts used in this study

Visualization of the cohorts used in this study with the number of notes and patients of the cardiovascular EHR at Stanford, two subsets (cohort 1 and cohort 2),

and the MIMIC-III test set for model validation

In each cohort, the major demographic features including sex, ethnicity, and age are also shown.
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Figure 2. t-SNE visualization of the training notes in the cohort 1 of eight I-codes based on TF-IDF

(A) t-SNE visualization of the TF-IDF word vectors of the cohort 1 training notes of eight I-code classification tasks.

(B) Prevalence of eight I-codes in the two selected regions with high prevalence of I-codes. Here, more than one I-code means all types of I-codes, not limited to

the eight I-codes we investigated.
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conclude, the models based on TF-IDF and LR predicted I-co-

des not only showed high AUROC and AUPRC, but were also

interpretable based on clinically meaningful terms determining

the prediction.
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False-positive analysis of the prediction
Next, to test whether there were missing diagnostic codes in the

datasets that could be imputed by the I-code prediction models,

we analyzed several randomly selected false-positive cases
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Figure 3. Predictive performance on two cohorts for four cardiovascular diseases

The Receiver-operating characteristic curves (ROC) and precision recall curves (PRC) of the logistic regression (LR) models trained on five different word

vectorization methods and on four of the eight I-code classification tasks that represent different prevalence

Cohort 1, A1–A4 and C1–C4; cohort 2, B1–B4 and D1–D4.
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(Table 2). We found mentions of specific diagnostic terms in the

notes of false-positive predictions, which indicated that some of

the false-positive predictions were correct with the possible

reason being that the ground-truth diagnostic codes might be

missing. This analysis suggests that it is possible to impute

missing I-codes based on the model predictions in a subset of

cases. However, additional manual curation efforts are needed

because the most accurate TF-IDF word vectorization was
word based, which cannot handle negation, and personal or

family history. For instance, an I-code might be predicted due

to a patient’s medical history but not necessarily noted down

as the diagnostic code for that specific encounter.

Model transferability on the MIMIC-III dataset
To test the model transferability, we extracted the discharge

summaries in the MIMIC-III dataset and the corresponding
Patterns 2, 100289, July 9, 2021 5



Figure 4. AUROC and AUPRC of classifiers based on different word vectorization methods in 30 bootstrapping experiments on cohort 1

(A) AUROC results. The best model in bootstrapping experiments based on AUROC was TF-IDF (mean AUROC (95% CI)): I21, 0.8952 (0.8768–0.9075); I25,

0.9487 (0.9470–0.9514); I27, 0.9537 (0.9505–0.9585); I42, 0.9763 (0.9735–0.9790); I48, 0.9745 (0.9731–0.9762); I50, 0.9543 (0.9522–0.9571); I70, 0.9185 (0.9046–

0.9333); I85, 0.9951 (0.9918–0.9981).

(B) AUPRC results. The best model in bootstrapping experiments based on AUPRCwas TF-IDF (mean AUPRC (95%CI)): I21, 0.0723 (0.0549–0.0951); I25, 0.6752

(0.6709–0.6830); I27, 0.5370 (0.5189–0.5557); I42, 0.6079 (0.5949–0.6240); I48, 0.7913 (0.7878–0.7948); I50, 0.5028 (0.4888–0.5161); I70, 0.1941 (0.1344–

0.2514); I85, 0.1281 (0.0727–0.2108).
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ICD-9 diagnostic codes of each of the eight ICD-10 codes, and

tested the pre-trained word vectorization models and classifica-

tionmodels on theMIMIC-III dataset without any fine-tuning. The

high AUROC and AUPRC values showed that all models (i.e., TF-

IDF, word2vec [W2V], batch-word2vec [W2V_batch], and doc2-

vec [D2V]) models could be well transferred to the classification

of the diagnostic codes in the MIMIC-III dataset (Figures 5 and 6;

Table 3). On the same I-code prediction task, TF-IDF showed the

best performances with the highest AUROC values and AUPRC

values while Bag-of-words (BOW) performed the worst in terms

of AUROC and AUPRC on themajority of the classification tasks.

When compared with the test set of cohort 2, the TF-IDF models

reached higher AUPRC values on I21, I25, I48, I50, and I85.

Based on these results, we observed a positive relationship be-

tween AUPRC values and prevalence, where AUPRC is better for

higher prevalence. In general, besides BOW models, all other

models generalized well to the external cohort.
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DISCUSSION

In this work, NLP methods were used to compare five different

word vectorization methods from free-text outpatient clinical

notes, whereby LR was shown to be effective in predicting

the diagnostic codes of eight cardiovascular diseases. Among

them, on both the smaller cohort 1 and the larger cohort 2

from the Stanford EHR dataset, the best word vectorization

method according to AUROC and AUPRC was TF-IDF (Fig-

ures 3, 4, S1, and S2). From cohort 1 to cohort 2, the scalabil-

ity of the models was shown that with more data, the classifi-

cation performance could be improved (Figures 3 and S4).

Additionally, the majority of the word vectorization models

and classification models trained on the Stanford EHR

dataset also showed transferability when applied to the

MIMIC-III dataset (Table 3). The TF-IDF, W2V, W2V_batch,

and D2V models performed well on the Stanford cohorts



Table 1. The tenmost importantwords found in 30 bootstrapping experiments based on rankingmetric and coefficientmetricwith TF-

IDF and LR

Code No. of words Top ten words (ranking metric) Top ten words (coefficient metric)

I21 90 nstemi, myocardi, mi, thrombu, infarct nstemi, myocardi, mi, infarct, thrombu

stemi, stent, plavix, jayden, bracken stemi, stent, plavix, jayden, xarelto

I25 65 coronari, cad, arteri, nativ, mi coronari, cad, arteri, nativ, mi

angina, plavix, cabg, stent, lad angina, plavix, cabg, stent, lad

I27 80 pulmonari, hypertens, sildenafil, ph, revatio pulmonary, hypertens, sildenafil, ph, revatio

echo, diastol, flolan, ex, shah echo, diastol, ex, vinicio, fpah

I42 79 cardiomyopathi, carvedilol, coreg, ef cardiomyopathi, carvedilol, coreg, ef, lv

hypertroph, hcm, hocm, echo, icd hypertroph, hcm, hocm, echo, icd

I48 71 fibril, atrial, fib, afib, coumadin, af fibril, atrial, fib, afib, coumadin, af

irregular, paroxysm, xarelto, digoxin irregular, paroxysm, xarelto, digoxin

I50 91 failur, chf, heart, lasix, congest failur, chf, heart, lasix, congest

diastol, systol, bnp, coreg, spironolacton diastol, systol, bnp, coreg, spironolacton

I70 94 atherosclerosi, aorta, arteri, vascular,

peripher

atherosclerosi, aorta, arteri, vascular,

peripher

stenosi, dystroph, claudic, nail, renal claudic, stenosi, dystroph, nail, renal

I85 63 cirrhosi, varic, liver, transplant, ascit cirrhosi, varic, liver, transplant, ascit

portal, esophag, lutchman,

propranolol, hepat

portal, esophag, lutchman,

propranolol, hepat

The ranking metric ranks the important words by the sum of the rankings of the word importance in bootstrapping experiments, and the coefficient

metric ranks the important words by the sum of LR coefficients in bootstrapping experiments. The words are shown after stemming.
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and generalized well on the different MIMIC-III dataset. In this

study, we did not fine-tune the models on the MIMIC-III data-

set and used it only as a test set, because the models already

showed good performance when transferred to a different da-

taset. The simple BOW word vectors showed a sharp

decrease in AUROC and AUPRC values on the different data-

sets, showing that the word vectorization models might have

overfitted the Stanford EHR dataset because it directly used

the word counts as features without any normalization, and

the distribution of the word counts in different datasets is

likely to be different. The word vectorization method with

normalization on word counts (TF-IDF) and the word embed-

dings (W2V, D2V) that seeks a lower-dimension representa-

tion showed higher robustness in classification performance

when transferred to a different dataset, potentially because

the normalization and the reduced dimensionality may

lead to smaller variance across datasets. In this study, we

did not mean to hype old or new NLP methods but to test

whether they work on the diagnostic code prediction task

with good performance, robustness, and generalizability with

a proper evaluation pipeline. We were surprised to manifest

that the word-based vectorization method TF-IDF with simple

LR was effective in accurately predicting diagnostic codes

based on free-text clinical notes. The results imply that

these models can be used in accurately predicting diagnostic

codes and improving the quality of diagnostic codes at

different clinical sites. Furthermore, although the new word

embeddings (W2V, W2V_batch, and D2V) did not show higher

AUROC and AUPRC when compared with TF-IDF, they

were in lower dimensions (200/600) than TF-IDF and BOW

(414,391), which could be helpful to significantly reduce
computational costs with fair classification performance in

AUROC and AUPRC.

Additionally, the interpretability of the models was shown in

this work by important-word analysis and false-positive-case

analysis. The important words found in each I-code prediction

task were clinically meaningful (Table 1). The robustness of the

important words was also shown by bootstrapping. In a previous

study, Wei and Eickhoff1 applied a convolutional neural network

(CNN) to predict diagnostic ICD-10 codes with good perfor-

mance, but the deep-learning based models were hard to inter-

pret. Sheikhalishahi et al.2 also mentioned in their review paper

that the model interpretability was a significant issue for more

complex methods. Wei and Eickhoff1 claimed that the simple

word vectors do not give good results and showed that the

CNN embedding with a support vector machine reached a pre-

cision value of 0.2162 and a recall value of 0.7732 in the predic-

tion of diagnostic codes. Although direct benchmarking and

comparison cannot be made due to differences in the preva-

lence of ICD-10 codes and datasets selected in our study, the

simple word vectorization models and LR showed good predic-

tive performances (Figure 3 and Table 3) while maintaining inter-

pretability, and therefore could contribute to the diagnostic code

prediction and quality control for clinicians.

False-positive case analysis showed that some of the false-

positive predictions might be correct and could be applied to

impute potential missing codes that do not have I-codes re-

corded by clinicians (Table 2). The false-positive predictions

might not be wrong but are simply missing. However, among

the false-positive cases, we also observed that certain mistakes

were caused by negation, past medical history, and family his-

tory. Because the best model of TF-IDF is word based, it models
Patterns 2, 100289, July 9, 2021 7



Table 2. Analysis of false-positive predictions based on TF-IDF

Code Evidence from note T/F Potential cause

I25 ‘‘ . all negative for stress induced

ischemia .’’

F negation

I48 ‘‘ . has the following active medical issues

hx of afib .’’

T

I48 ‘‘ . paroxysmal atrial fibrillation is seen

here .’’

T

I48 ‘‘ . was found to be in atrial fibrillation .’’ T

I48 ‘‘. cardiac history of atrial flutter and atrial

fibrillation .’’

F personal medical history

I48 ‘‘ . for post hospital check after admission

for atrial fibrillation .’’

F personal medical history

The note predictions were manually extracted, analyzed, and labeled as true (T) or false (F) based on evidence in the notes, and the potential causes of

erroneous predictions were analyzed.
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the contents of the free text by each individual word, and these

issues cannot be directly detected by the TF-IDF model. There-

fore, to impute missing I-codes, the proposed classifiers here

could be used to complete records, in combination with addi-

tional methods to assert negation, temporality, and identity of

the experiencer.

More generally, an important use case of this work is to

impute ICD-10 codes from free-text format. Diagnostic codes

rich in clinical information can be missing and the noted diag-

nostic codes may also be inaccurate, which has been shown

by recent studies for diagnostic codes related to myocardial

infarction and stroke.12,13 This study proposes a method to

impute missing diagnostic codes and potentially correct mis-

classified diagnostic codes based on model predictions. In

addition, the model interpretability also enables clinicians to

interpret the models and check whether particular imputation

is correct. The improvement of the quality of diagnostic

codes may help further machine-learning diagnosis because

machine-learning algorithms typically require structured

data. Many of the previous studies directly use the diagnostic

codes for the subsequent downstream classification

tasks.1,2,9,10 Improving the quality of diagnostic codes also

could improve the data quality for further machine-learning

processes.

Although this study has shown promising results for predict-

ing diagnostic codes based on clinical notes, there are several

points that warrant further study. First, our modification of

segregating the texts into batches by windows did not

improve the performances when compared with the conven-

tional W2V model that took an average of all word vectors.

The probable reason may be that the notes and sections

are of different lengths. Roughly splitting the notes into fixed

batches may not successfully partition the different sections.

In the future, studies can be designed to automatically

detect and partition sections to improve the classification

performance.

Second, we have shown that our models developed on the

basis of the Stanford EHR datasets worked well on both Stan-

ford dataset and the MIMIC-III dataset, which has been

regarded as the standard and publicly available dataset for

clinical data-mining research. These results showed the po-
8 Patterns 2, 100289, July 9, 2021
tential of the models for cross-institute applications without

extra fine-tuning. However, the models were built and evalu-

ated on diagnostic codes without clinician curation, and there

is a lack of highly curated datasets with cleaned correct code

labels for diagnostic code prediction benchmarking. In the

future, it would be worthwhile for researchers to collect and

publish a better curated dataset that can serve as the stan-

dard baseline to assess any diagnostic predictors developed

by researchers and thus benefit this field of research in the

long term.

Third, wemainly applied the context-independent word vecto-

rization methods (besides D2V) as features for notes in the diag-

nostic code prediction for better interpretability. In this study, we

did not investigate the use of transformer-based models and

recurrent-neural-network-based models, motivated for several

reasons. First, recent reports have shown that transformer

models did not show significant improvement over conventional

models in recent studies.18–20 For example, Rishivardhan et al.21

applied four transformer models—BERT, RoBERTa, Electra, and

XLNet—to predict ICD10-PCS codes and showed the highest

precision of 0.025, the highest recall of 0.049, and the highest

F1 score of 0.033. Second, language models are complex

models that require a large corpus for training, which can be diffi-

cult in the clinical text-mining setting due to patient information

protection protocols. Third, transformer models are not easily

interpretable. In the future,more studies that use context-depen-

dent sentence embeddings, including transformer-based

models, to improve their performance in clinical applications

are needed.

In this study, after the first step of data processing, 63.2%

of notes were removed because they either did not have a

diagnostic code or were shorter than 60 words. We used

these dropped notes in training the D2V embedding models.

Part of the unlabeled notes might still contain meaningful in-

formation related to classification. Methods such as semi-su-

pervised learning22 and conformal predictions23,24 might hold

potential to make use of these unlabeled data, which could

potentially further improve the prediction performance. In

addition, due to the class imbalance and low prevalence of

certain diagnostic codes in the Stanford EHR dataset, the

model performance could be further improved with more



A1

A5 A6 A7 A8

A2 A3 A4

B1

B5 B6 B7 B8

B2 B3 B4

Figure 5. Predictive performance for eight cardiovascular diseases on an external dataset

The Receiver-operating characteristic curves and precision recall curves in the classification of eight corresponding ICD-9 codes on the discharge summary in

MIMIC-III dataset

A1–A8, the classification AUROC; B1–B8, the classification AUPRC.
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data collected across different institutes or via federated

learning.

Furthermore, in this study we used the simple BOWword vec-

torization as the baseline model. Other baselines can be devel-

oped: for example, MedTagger25,26 can be used to tag medical

concepts specific to each disease, such as indicators for nega-

tion, family medical history, and personal medical history, after

which classifiers or rule-based diagnostic code-labeling models

can be developed based on the tagging.
Finally, this work focused on the prediction of ICD-10 codes for

structuring the free-text clinical notes, and the structured codes

were not tested in downstream tasks such as phenotyping or

outcome prediction with machine learning. This work might help

subsequent prediction tasks. For example, the structured diag-

nostic codes based on the information from clinical notes can

be combined with other data sources in data-fusion tasks

including imaging data, genomics data, and laboratory test data

topredict prognosis, patient outcome, anddisease subtypes.27–30
Patterns 2, 100289, July 9, 2021 9



Figure 6. Area under the precision recall

curves for TF-IDF, W2V, and D2V models on

cohort 2 and the MIMIC-III dataset

Each marker shape denotes one vectorization

method and each color denotes one dataset.
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for data should be directed to the lead con-

tact, Olivier Gevaert (ogevaert@stanford.edu).

Materials availability

This study did not use any reagents.

Data and code availability

The data and code used in this study are not shareable, as the data concern

patient information. Please contact the corresponding author to discuss

remote access to the data in a de-identified manner.

Data description

We used outpatient progress notes of 133,644 patients diagnosed with car-

diovascular diseases at Stanford Health Care. The patients were partitioned

into a training set (60%), a validation set (20%), and a test set (20%). All notes

belonging to the same patient were partitioned into the same dataset to avoid

information leakage across datasets. The dataset included 5,604,539 notes

from 31,502 encounters dated from April 2000 to October 2016. The encoun-

ters link different structured data, such as age, demographics, and diagnostic

codes, and unstructured data such as free-text clinical notes. Multiple

different notes and diagnostic codes can be associated with a single

encounter. The free-text clinical notes and diagnostic codes were both ex-

tracted from the encounters. The data were retrospectively collected and

de-identified in accordance with approved IRB guidelines (Protocol: IRB-

50033: Machine Learning of Electronic Medical Records for Precision Medi-

cine) (Figures 1 and S6).

We focused on the following eight common cardiovascular diseases from

clinical notes: acute myocardial infarction (I21), chronic ischemic heart dis-

ease (I25), pulmonary heart disease (I27), cardiomyopathy (I42), atrial fibrilla-

tion flutter (I48), heart failure (I50), atherosclerosis (I70), and esophageal

varices (I85). As ICD-10 codes have a hierarchy to organize the more than

69,000 diagnostic codes, we aimed at predicting the three-letter prefixes of

the ICD-10 diagnosis codes. The relationship between free-text clinical notes

and ICD codes is a one-to-multiple relationship. Therefore, we designed eight

binary classification tasks for each of the eight ICD codes independently. The

positive/negative labeling was independently extracted and coded for each

ICD code from the encounter. Furthermore, the eight selected diseases

represent different levels of imbalance in the dataset with the largest preva-

lence (5.37%) being more than 50 times the lowest prevalence (0.10%),

which could be used to evaluate the model performance over a high variance

of prevalence (Table 3).

Data processing

Notes with fewer than 60 words (after checking the notes, we found that the

descriptions of procedures which were irrelevant to diagnosis were generally

shorter than 60 words, therefore we chose a threshold of 60 words to balance

notes for modeling and removal of uninformative notes) and notes without any
10 Patterns 2, 100289, July 9, 2021
labeled ICD-10 code were excluded, resulting in the

removal of 63.2% notes defining cohort 2. For pro-

totyping and testing the scalability of the models,

a smaller cohort, cohort 1, was built with randomly

selected notes from cohort 2 (Figure 1 and Ta-

ble S1).

Next, we processed the clinical notes by chang-

ing them to uncapitalized text and removing any

special characters, punctuation, mathematical

symbols, and URLs. Stop-words such as conjunc-
tions were removed with Gensim,31 and the words were tokenized. Stemming

was then used to reduce inflected words to word stems with the Porter stem-

ming algorithm32 with the Natural Language Toolkit library.33

Word vectorization

Weused four different vectorization algorithms to convert the free-text notes to

numerical features (i.e., word vectors): BOW, TF-IDF, W2V, and D2V (supple-

mental experimental procedures). In addition,W2V_batch was introduced as a

modified model based on W2V.

BOW34 and TF-IDF16 are word-count-based word vectorization algorithms.

In this study, after applying BOW and TF-IDF to cohort 1 and cohort 2, the

feature dimensions were 88,815 and 414,391, respectively.

W2V35 is another vectorization algorithm to obtain word embeddings based

on shallow neural networks. In this work, a pre-trainedW2Vmodel was used: a

biomedical W2V model trained on a corpus collected from PubMed and

MIMIC-III36 with 16,545,452 terms and an embedding dimension of 200. After

converting each term in a text into a 200-dimension embedding, an average of

all the term embeddings was taken as the embedding for a note.

The progress notes we used can be divided into three general sections,

describing patient history, description at presentation, and plan/billing. In

addition to taking the average as a note embedding, a batched form of W2V

was introduced in this study by splitting a note into several batches (n = 1,

3, 5) as an attempt to extract section-related contents. For instance, a note

with a length of 1,000 words could be split into five batches and the first 200

word embeddings were averaged as the feature of the first batch. In this modi-

fied batch-word2vecmodel (W2V_batch), the embedding dimensionwas 200n

where n was the number of batches. The n was chosen to be 3 based on the

average area under receiver-operating characteristic curve (AUROC) on the

validation set in cohort 1.

D2V is based on W2V but further inputs the tagged document ID in the

training of word vectors.37 In the training process, a word vector is trained

for each term, and a document vector is generated for each document. In

the inference process for prediction, all weights are fixed to calculate the docu-

ment vector for a new document. In this study, to avoid overfitting we used the

63.2% dropped notes (neither in cohort 1 nor in cohort 2 because the notes

were either shorter than 60 words or without any ICD-10 codes) to train our

D2V model with 40 epochs and an embedding dimension of 200. The number

of terms modeled was 327,113.

To visualize the data, we used the non-linear dimensionality reduction

method, t-SNE.38 We used t-SNE to visualize the 400k feature vectors of

BOW and TF-IDF motivated based on the successful use of t-SNE in a wide

range of previous applications in capturing nonlinearities during dimensionality

reduction analysis.39–41

Classification algorithm

Once we obtain the word vectors of the notes, the vectors become the input of

a classification model to predict the diagnostic code. We used LR for ICD-10

code prediction considering model interpretability. LR42 applies the sigmoid

function in combination with least squares regression for classification. In

mailto:ogevaert@stanford.edu


Table 3. Prevalence and prediction performance (AUROC and AUPRC) on test sets of Stanford cohorts andMIMIC-III dataset based on

TF-IDF, W2V, and D2V

Method Code

Cohort 1 Cohort 2 MIMIC-III

Prevalence AUROC AUPRC Prevalence AUROC AUPRC Prevalence AUROC AUPRC

TF-IDF I21 0.25% 0.8977 0.0865 0.28% 0.9499 0.2956 10.36% 0.8648 0.6229

I25 5.62% 0.9509 0.6797 4.55% 0.9690 0.7369 26.64% 0.9027 0.7945

I27 1.26% 0.9560 0.5391 0.82% 0.9698 0.5432 4.95% 0.7952 0.2666

I42 2.20% 0.9790 0.6163 2.01% 0.9810 0.6305 3.92% 0.8507 0.4326

I48 5.79% 0.9759 0.7941 5.37% 0.9793 0.8072 32.16% 0.8563 0.8084

I50 2.96% 0.9567 0.5082 2.75% 0.9732 0.6195 25.98% 0.8684 0.7479

I70 0.15% 0.9282 0.2014 0.24% 0.9520 0.3144 3.61% 0.7982 0.2353

I85 0.02% 0.9975 0.1315 0.10% 0.9915 0.3759 1.77% 0.9790 0.7298

W2V I21 0.25% 0.8731 0.0273 0.28% 0.9170 0.0965 10.36% 0.8630 0.5681

I25 5.62% 0.9315 0.5602 4.55% 0.9405 0.5535 26.64% 0.8659 0.7548

I27 1.26% 0.9268 0.3785 0.82% 0.9407 0.2858 4.95% 0.7361 0.1563

I42 2.20% 0.9418 0.3836 2.01% 0.9467 0.3718 3.92% 0.7335 0.1193

I48 5.79% 0.9493 0.6278 5.37% 0.9524 0.6271 32.16% 0.8103 0.7158

I50 2.96% 0.9214 0.3355 2.75% 0.9441 0.3871 25.98% 0.8075 0.6200

I70 0.15% 0.8804 0.0512 0.24% 0.9306 0.1189 3.61% 0.7512 0.1331

I85 0.02% 0.9969 0.0628 0.10% 0.9805 0.1823 1.77% 0.9545 0.5180

D2V I21 0.25% 0.8040 0.0167 0.28% 0.8980 0.0613 10.36% 0.8171 0.4533

I25 5.62% 0.9209 0.5301 4.55% 0.9163 0.4415 26.64% 0.8494 0.6795

I27 1.26% 0.9033 0.3423 0.82% 0.9307 0.3149 4.95% 0.6911 0.1001

I42 2.20% 0.9468 0.4451 2.01% 0.9530 0.4298 3.92% 0.7731 0.1699

I48 5.79% 0.9395 0.5566 5.37% 0.9455 0.5943 32.16% 0.7914 0.6378

I50 2.96% 0.9185 0.2700 2.75% 0.9271 0.3067 25.98% 0.7660 0.5125

I70 0.15% 0.8079 0.0150 0.24% 0.9238 0.0872 3.61% 0.7637 0.1561

I85 0.02% 0.9673 0.0033 0.10% 0.9822 0.2102 1.77% 0.9591 0.4543
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this study, we used a Python implementation of LR in the scikit-learn pack-

age.43 We used regularized LR based on model interpretability. LR is a linear

classifier that usually does not suffer from overfitting to specific datasets

and regularized LR involves fewer hyperparameters that require tuning. L2 reg-

ularization was used in this study and the penalty strength C was tuned based

on the average AUROC on the validation set in cohort 1 (Figure S3). A 1:50

class weight was added to deal with the imbalanced cases, since the average

prevalence of the eight I-codes was approximately 2%. In this study, eight LR

classification models were built for the eight ICD codes independently.

Model assessment and interpretation

To assess the performances of different word vectorization methods, we used

AUROC and AUPRC as the metrics to evaluate the word vectorization and the

LRmodels in eight diagnostic code classification tasks. AUROC is the area un-

der the curve with the x axis denoting the false-positive rate and y axis denot-

ing the true-positive rate. AUPRC is the area under the curve with the x axis

denoting the recall and y axis denoting the precision. AUROC has been a

widely used metric in evaluating binary classifiers without dependence on

the decision threshold on predicted class probability. The AUPRC was also

used in this study because it is more sensitive to prevalence and can better

reflect model performance in an imbalanced dataset.44 For cohort 1, boot-

strapping45 was done on the training set 30 times to test the model’s

robustness.

As BOW and TF-IDF are directly interpretable word-based vectorization al-

gorithms, to interpret the models, we analyzed the LR coefficients to identify

the important words in classification. The top tenmost important words for de-

cision were extracted after bootstrapping the training samples in 30 repeats. In

each of the bootstrapping experiments, the 30 most important words were ex-

tracted as the candidates, and the final top ten most important words were

selected based on two metrics: (1) the ranking metric: the sum of rankings
of the important words over all bootstrapping results (smaller ranking sums

mean higher importance); (2) the coefficient metric: the sum of LR coefficients

of the important words over all bootstrapping results (larger coefficient sums

mean higher importance).

Because the recorded diagnostic codes can be missing and inaccurate in

clinical practice, to test whether it was possible to impute missing ICD-10 co-

des based on the model predictions, we randomly selected several false-pos-

itive cases and analyzed the corresponding notes.

External validation

Next, the model transferability was tested on the MIMIC-III dataset of de-iden-

tified health-related data of 40,000 intensive care unit stays at Beth Israel

Deaconess Medical Center.46 The MIMIC-III dataset has been regarded as

the benchmark dataset in many NLP tasks including time-of-stay prediction

and diagnostic code prediction.9,47,48 We directly applied the word vectoriza-

tionmodels (BOW, TF-IDF,W2V,W2V_batch, andD2V) and the corresponding

LR classifiers trained on the training set of the larger cohort 2 of Stanford notes

to predict the diagnostic codes of the discharge summary in MIMIC-III dataset

(59,652 notes and 41,127 patients). The MIMIC-III dataset was only involved in

model testing, and nomodel fine-tuning on theMIMIC-III dataset was done. As

MIMIC-III uses the ICD-9 as diagnostic codes, the ground truth was set to the

corresponding ICD-9 codes of the eight cardiovascular diseases. In this study,

wematched the ICD-10 codes to the corresponding ICD-9 codes by matching

the three-letter prefix and the highest hierarchy of the ICD-9 code that

describes a specific disease. The matched ICD-9-ICD-10 codes49 of the

diseases and the prevalence in the MIMIC-III discharge summary are: 410

(I21, acute myocardial infarction), 10.36%; 414 (I25, chronic ischemic heart

disease), 26.64%; 416 (I27, pulmonary heart disease), 4.95%; 425 (I42, cardio-

myopathy), 3.92%; 427 (I48, atrial fibrillation flutter), 32.16%; 428 (I50, heart

failure), 25.98%; 440 (I70, atherosclerosis), 3.61%; 456 (I85, esophageal
Patterns 2, 100289, July 9, 2021 11
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varices), 1.77%. Proportional Z tests showed statistically significant difference

in the prevalence of the eight codes between the cohort 2 training set of Stan-

ford data and the MIMIC-III data.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100289.
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