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Abstract

Between-female variation in reproductive output provides a strong measure of individual

fitness and a quantifiable measure of the health of a population which may be highly infor-

mative to management. In the present study, we examined reproductive traits in female bot-

tlenose dolphins from the east coast of Scotland using longitudinal sightings data collected

over twenty years. From a total of 102 females identified between 1997 and 2016, 74 moth-

ers produced a collective total of 193 calves. Females gave birth from 6 to 13 years of age

with a mean age of 8. Calves were produced during all study months, May to October inclu-

sive, but showed a seasonal birth pulse corresponding to the regional peak in summer water

temperatures. Approximately 83% (n = 116) of the calves of established fate were success-

fully raised to year 2–3. Of the known mortalities, ~45% were first-born calves. Calf survival

rates were also lower in multiparous females who had previously lost calves. A mean inter-

birth interval (IBI) of 3.80 years (n = 110) and mean fecundity of 0.16 was estimated for the

population. Calf loss resulted in shortened IBIs, whilst longer IBIs were observed in females

assumed to be approaching reproductive senescence. Maternal age and size, breeding

experience, dominance, individual associations, group size and other social factors, were all

concluded to influence reproductive success (RS) in this population. Some females are

likely more important than others for the future viability of the population. Consequently, a

better knowledge of the demographic groups containing those females showing higher

reproductive success would be highly desirable for conservation efforts aimed at their

protection.
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Introduction

In long-lived mammals, such as dolphins, that produce just one infant at a time, age at first

birth and the spacing between births are the primary determinants for fecundity [1]. Female

reproductive success (RS) is subsequently determined by the product of a reproductive life-

span, the pace of parturition, and the survival rate of offspring (e.g. [2]). Thus, between-female

variation in reproductive output provides a strong measure of individual fitness and a quantifi-

able measure of population health [3,4] which may be highly informative to conservation and

management.

The Moray Firth (MF) in northeast Scotland (57˚410 N, 02˚200 W) contains the only year-

round, resident population of common bottlenose dolphins (Tursiops truncatus) in inshore

Scottish waters and the wider North Sea. Studies in this region have been conducted since the

late 1980s and have greatly enhanced our understanding of this population and assisted in its

management [5]. However, animals from the MF range widely beyond the designated Special

Area of Conservation (SAC) established for their protection in the inner Moray Firth in 2005

[5–10], making robust estimations of individual birth rates and calf survival difficult to resolve

for this population. Integrated datasets from multiple research sites have been used to provide

a best estimate of ~200 animals using the northeast coastline [11]. Both males and females are

seen to range widely along the east coast [12], but females are found to be more site-faithful

within the SAC and adjacent outer MF regions [7,13]. Indeed, the southern coastline of the

outer MF is thought to provide important summer calving / nursery areas for the population

[6,7,14], in addition to other key areas utilised within the SAC [15]. During the summer and

fall, large numbers of nursing females with calves use this region, with ~90% of the known

population having been recaptured over the course of a 20-year mark-recapture study [Robin-

son unpublished data, 14].

Using longitudinal sightings data of known mothers and their calves, it has been possible to

build a detailed description of the long-term reproductive histories of females from this popu-

lation, from which individual variation in calf production, inter-birth intervals (IBIs) and the

survival rates of calves could be investigated. In the following study, we explore the effects of

maternal age, breeding experience, mother identity and birth month upon reproductive suc-

cess and calf survival, and discuss the implication of these results for the future conservation of

this potentially vulnerable North Sea bottlenose dolphin population.

Methods

Survey methods and photo-identification

Mark-recapture data were collected during dedicated boat surveys in the outer southern MF

between May and October 1997 to 2016 inclusive. From 1997 to 2000, dedicated survey trips

were carried-out using a variety of vessels, with effort primarily concentrated in the west of the

study area between Spey Bay and Cullen (Fig 1). From 2001 onwards, boat surveys were con-

ducted between the coastal ports of Lossiemouth and Fraserburgh using rigid inflatable boats,

with selected routes chosen to maximise capture probabilities, whilst minimising sampling

heterogeneity, within the core areas used by the dolphins. Survey effort was recorded from

2001 onwards and was variable between years. Consequently, to ascertain whether a relation-

ship occurred between survey effort and the annual number of individuals, reproductive

females or newborn calves recorded, a Pearson’s product-moment correlation was used.

Standardised photo-identification procedures were employed to obtain high-quality photo-

graphs of encountered animals using an SLR camera equipped with a f2.8 300 mm fixed lens.

Transparency film was used from 1997 to 2006, after which digital imagery was used. All
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images were maintained within a purpose-designed photo-identification database (using

Microsoft Access), from which a detailed record of the long-term sightings and calving histo-

ries for all reproductively-active females identified in the study area could be extracted. All

boat-based research was carried-out under licence from Scottish Natural Heritage.

Identification of mothers and calves

All mothers were identified from repeated recaptures with dependent calves in tow (Fig 2). In

the absence of markings for photo-identification, calves were typically tracked from close asso-

ciation with their mothers until weaning. Nevertheless, temporary marks on the dorsal fin and

body (e.g. lesions or scars/scratches, typically acquired with age [16]) also assisted in the short-

term recapture of maturing infants. Furthermore, after maternal separation, from 2 to 4 years

of age, former calves often remained philopatric, allowing their continued recapture by associ-

ation through to maturity.

Inter-birth intervals (IBIs) and reproductive success (RS)

The long-term nature of this study allowed retrieval of demographic data for the large majority

of known females from this population, from which IBIs were determined for those producing

two or more calves between 1997 and 2016 inclusive. Two approaches were used for IBI deter-

mination. The first approach examined all known IBIs (including those with large gaps between

the weaning of one calf and the birth of the next), which potentially biased IBIs upwards due to

failure to detect some births. The second approach removed females with IBIs>5 years, unless

mothers remained in close association with the surviving calf until verification of a subsequent

birth; potentially resulting in a downward bias in IBIs. IBIs for females that had experienced a

calf loss, and IBIs between the first and the second born calves of primiparous females (of

known birth year themselves) were compared to all known IBIs using unpaired t-tests.

A female was assumed to have reproduced successfully if her calf survived from birth (year

0–1) to the minimum age at weaning (year 1–2) [17]. Using this criterion, and to reduce the

influence of small sample size on the estimated reproductive output, RS was only estimated for

those females with three or more documented births. For the small subset of females of known

age (i.e., individuals known since birth), the potential effects of the mother’s age on IBI’s and

RS were also examined qualitatively (there were insufficient data for quantitative analysis).

Fig 1. Map of northeast Scotland showing the position of the survey area along the southern coastline of the outer Moray

Firth, to the east of the Special Area of Conservation (SAC). Dedicated boat surveys for bottlenose dolphins were conducted

between May and October 1997 to 2016 using selected routes within the core study area, between the coastal ports of Lossiemouth

and Fraserburgh.

https://doi.org/10.1371/journal.pone.0185000.g001
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To determine the relationship between the likelihood of a calf being born and the preceding

IBI, a binomial generalised additive mixed model (GAMM) was fitted, with calf birth (0 or 1)

as the response variable, and IBI (in months) as the explanatory variable. Previous RS was

accounted for by including information on previous calves (survival of the previous calf, total

number of previous calves recorded for each female, the number of known calves surviving to

year 1–2, or the number not surviving to year 1–2). In addition, we investigated the effect of

calendar year and allowed for variation between individual females by including female ID as a

random factor. Effects of IBI, numbers of previous calves and year were fitted as smoothers.

The complexity of the fitted smoothers was limited using k = 4, due to most explanatory vari-

ables having too few unique values to allow an unconstrained smoother to be fitted. Since the

causal relationship between IBI and calf birth could operate in both directions, a further

GAMM was performed, with IBI (in months) as the (Poisson) response variable. The explana-

tory variables used were the same as for the probability of birth model (excluding IBI).

Calving rates and annual fecundity

The annual number of births was obtained from counts of the individual new-born calves

recorded during each year. Estimates of calving rates were calculated by dividing the annual

number of new-borns by the number of animals using the study area each year, obtained from

individual counts of identifiable dolphins. Calving rates for known individuals were calculated

as the number of known calves produced by the female as a proportion of the years in which

she was encountered since becoming reproductively-active (taken as the year before the

Fig 2. Photographs of female bottlenose dolphins from the Moray Firth with first-year calves: (A) one of the

highly successful mothers (ID#065) with a new-born calf; (B) and (C) cooperative female groups with calves of

similar ages in tow.

https://doi.org/10.1371/journal.pone.0185000.g002
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production of the first known calf, given that the period of pregnancy is approximately one

year (e.g. [18]).

Longitudinal photo-identification data were used to verify the minimum number of sexu-

ally mature females seen in the study area each year (including mature females that were no

longer reproductively-active), from which annual estimates of fecundity could then be deter-

mined (after Fruet et al. [19]):

F̂ i ¼
1

2n
�
Xn

i¼1

Nci

Nmi

where F̂ i is the estimated fecundity in year i; n is the total number of years sighted; Nci is the

number of calves born in year i; and Nmi is the number of mature females identified in year i.

Annual and seasonal trends in calf births and calf survivability

Throughout the study, the first and last sightings for all known calves were recorded. Using

the criteria proposed by Henderson et al. [20], birth months were subsequently assigned if one

of the following conditions was met: (i) the mother was seen without a calf in the month prior

to the first sighting of the calf; (ii) the mother was seen without a calf in the month of the first

sighting of the calf; or (iii) the photos of the calf suggested it was a neonate (small size,

indented foetal folds and/or floppy dorsal fin).

The seasonality of births and the peak birth period were examined for all assigned calves in

the population. The pooled number of births per month was then plotted against sea tempera-

ture measurements recorded in situ during encounters from a calibrated temperature sensor

within a transom-mounted transducer (Raymarine Inc. UK). Calf survival (by birth month)

was also examined using GAMMs, to assess whether new-borns were more likely to perish if

born late in the breeding season.

All GAMMs were fitted using R 3.1.2 [21] and Brodgar 2.7.4 (Highland Statistics Ltd., UK).

Models were initially fitted for single explanatory variables, followed by forwards and back-

wards selection to find the best combination of explanatory variables, based on Akaike infor-

mation criterion (AIC) values (where the model with the lowest AIC value was deemed to be

the most parsimonious). Model outputs were examined for patterns in residuals and the exis-

tence of influential data points.

Results

Between May and October 1997 to 2016, 530 encounters with bottlenose dolphins were

recorded in the southern outer MF study area over 415 survey days. Group sizes varied

between 2 and 70 animals, with a mean of 14.2. From a total of 102 females identified during

the study period, 74 were seen to be reproductively active during the study period, producing

at least one or more known calves. Approximately 33% of the reproductively active females

(n = 23) produced just one calf during the study period, of which eleven females were known,

first-time mothers. Thirty-two females produced three or more calves during the 20 years, and

the maximum number of calves produced by any known female was seven (S1 Appendix).

Calving rates, fecundity and the seasonality of births

A total of 193 new-borns were recorded during the study period. The annual number of new-

borns ranged from 4 to 17 per year (mean ± SE = 9 ± 4; median = 7) (Table 1) with the number

of annual births showing a general increase during the study period, coincident with an

increasing number of reproductively-active females and increasing number of individuals
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recorded in the study area respectively (Fig 3). These patterns were not attributable to survey

effort, as there was no significant correlation between annual survey effort and the number of

individuals (r = -0.11, t = -0.41, P = 0.69), adult females (r = -0.05, t = -0.18, P = 0.86) or new-

born calves (r = 0.15, t = 0.6, P = 0.56) recorded. Annual calving rates for the population ran-

ged from 0.05 to 0.21 with a mean of 0.12 ± 0.05 (12%), whilst the annual fecundity in females

ranged from 0.08 to 0.23 with a mean of 0.16 ± 0.04 (16%) (Table 1). Individual calving rates

also ranged widely between reproductive females, from 0.14 to 0.57.

Month of birth was successfully assigned for 126 calves from 57 known mothers. New-born

calves were produced during all months of the study period (May to October inclusive), but

the majority (94%) were born in July to September, with a peak in births (46%, n = 57) during

August, coinciding with the annual peak in regional sea temperatures (Fig 4). The binomial

GAMM investigating whether a female gave birth in a given year, included the IBI (P<0.0001,

showing a positive effect up to 3 years since the last birth) (Fig 5A), survival of the previous

calf (to year one) (P<0.0001, negative effect) and the calendar year (P<0.0001, positive effect)

(Fig 5B).

Inter-birth intervals (IBI)

Using the first approach for IBI determination, 110 IBIs were determined from 50 reproduc-

tive females, with IBIs ranging from 2 to 9 years with a mean (± SE) of 3.80 ± 1.40 years and

mode of 4 (Fig 6). Using the second approach, where long IBIs (>5 years) were excluded, simi-

lar results were obtained (mean IBI = 3.56 ± 1.19 years, mode = 4 (n = 96)).

IBIs were significantly lower in females experiencing a calf loss (mean 2.02 ± 0.26 years;

t = 10.86, P<0.05), with 87% of these females giving birth within two years following the loss

Fig 3. The total number of individuals, number of reproductive female bottlenose dolphins and the number of calves recorded in the outer

southern Moray Firth study area from 1997 to 2016 inclusive.

https://doi.org/10.1371/journal.pone.0185000.g003
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of their calf. Conversely, observed IBIs between first and second-born surviving calves were

seen to be much longer in duration (mean = 4.84 ± 1.27 years; t = -3.22, P = 0.004) than all sub-

sequent IBIs in multiparous females. Indeed, the results from the GAMMs confirmed that the

IBI preceding a calf birth was shorter if the previous calf did not survive to year 1 (P = 0.007)

and the IBIs also decreased as the number of calves the female produced increased (P
<0.0001). In known older females (n = 10), extended IBIs of 6 to 9 years were commonly

observed with approaching reproductive senescence.

Calf survival and reproductive success (RS)

The fate of 141 calves born to 54 females was tracked during the study period, of which 83%

(n = 116) were raised to year 2–3. Approximately 46% of all detected calf mortalities were of

calves of primiparous females, with only 13 of the 24 primiparous females identified in this

study raising their first-born calf to weaning.

Seventeen calves with a known birth month died pre-weaning (year 0–1), of which 88%

were born between August and October (Fig 4). A further five calf mortalities were recorded in

year 1–2. Calf survival was lower in females who had previous calves that had died, which was

the only explanatory variable found to have a significant effect on calf survival (P<0.0001).

Overall RS in this population varied from one year to the next, ranging from 0.50 to 1.0 (50

to 100% success) with a mean of 0.86 ± 0.14 (Table 1). Individual RS was also highly variable

between multiparous females producing three or more calves (n = 32), of which 18 successfully

raised all their offspring to weaning (n = 70 calves), whilst one mother (ID#567) only managed

to raise one out of three known calves during the study period (Fig 7).

Fig 4. The seasonality of bottlenose dolphin births in the outer southern Moray Firth and the average monthly sea temperatures

measured during encounters.

https://doi.org/10.1371/journal.pone.0185000.g004
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Age of females at first calf production

Sixteen of the reproductive females were tracked from birth. Eleven of these produced their

first known calves at ages 8 and 9, but two primiparous females gave birth at age 6, suggesting

that sexual maturity was attained as early as 5 years of age. One female known from birth pro-

duced her first known calf at age 13, although earlier calving attempts may have been unde-

tected. Excluding this individual, the estimated age at first calf production in this population

was between 6 and 10 years of age with a mean of 8.2 ± 1.1.

Discussion

Female bottlenose dolphins attained sexual maturity at a young age in this North Sea popula-

tion—from as early as five years with a minimum age of six at first reproduction. The esti-

mated IBI of 3.8 years was comparable to that recorded in other Tursiops populations (e.g. [20,

22–25]), although Fruet et al. [19] reported shorter IBIs (3.3 years, mode of 2) for animals

from the southwest Atlantic. Low IBIs between 2 and 2.25 years were also observed in three

females with surviving calves in the present study. One female (ID#065), for example, pro-

duced four successive calves in a row with just a two-year interval between each birth. In pri-

mate species, lowered IBIs are reported for females receiving supplementary care for their

offspring from other group members (e.g. [26–27]) which may also be relevant in group-living

Fig 5. GAMM results showing smoothers for effects of: (A) time since previous birth in years and (B) the calendar year, on the

likelihood of calf births. The strength and direction of the effect is shown by the y-axis. The dotted lines correspond to 95%

confidence intervals.

https://doi.org/10.1371/journal.pone.0185000.g005
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cetaceans (e.g. [28]). In the present study, however, the lowest IBIs were typically observed in

females experiencing early calf loss. Conversely, the longest intervals were observed in ageing

females presumed to be approaching reproductive senescence. In addition, significantly higher

IBIs were observed between surviving first and second-born calves in young mothers, presum-

ably reflecting the high energetic cost incurred in first calf production. Inevitably, a trade-off

must exist between growth and reproduction in young females [29], and as such the observed

intervals provided a comparative measure of the individual cost of reproduction and the level

of investment made between females.

At 83%, the survival rate of calves in the present study was similar to that observed in other

long-term bottlenose dolphin studies (e.g. 81% in Sarasota Bay, USA [30]; 86% in Doubtful

Sound, New Zealand [31]). Of all known mortalities, however, more than 45% were attributed

to primiparous females in the present study. In birth pulse communities (e.g. [19–20, 32]), the

timing of births is thought to be crucially important for the survival of calves. However, a

recent study by Cheney et al. [33] concluded that calf length, rather than birth month, was the

best predictor of first-year survival in the MF study population. Smaller females invariably pro-

duce smaller offspring (e.g. [34]) which might have implications for thermoregulatory-related

stress in undersized calves. On the other hand, larger females probably have greater resources

to invest in their young during embryonic and/or post-natal development (e.g. [35]) or may

simply be better at foraging. According to Krützen et al. (2004) [36], young females are also

more susceptible to paternal inbreeding, which may result in reduced genetic fitness [37],

whilst the calves of less experienced mothers are potentially most vulnerable to infanticidal

attack [38]. A disproportionately high maternal transfer of accumulated polychlorinated

Fig 6. The range of IBIs documented for female T. truncatus in the outer southern Moray Firth study area,

relative to previous calving success and possible gaps in reproductive histories.

https://doi.org/10.1371/journal.pone.0185000.g006
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hydrocarbons (PCBs) is also noted in primiparous females [39–40], with links having been

documented between perinatal PCB exposure and brain cell damage [41], thyroid inhibition

[42] and immunosuppression [43], which might further account for the low survival rate of

first-born calves recorded in the present study.

Whilst both age and breeding experience in female dolphins may be important for offspring

survival (e.g. [44]), reproductive output is also age-specific, such that the rate of calving in

older females identified in the present study showed a progressive decline over time. Fruet

et al. [19] proposed that maturing females changed their role from that of “breeding” to more

predominantly “nursing” individuals with ageing, which might effectively serve to increase calf

survival and achieve greater long-term population viability. Kinship may be important in such

allomaternal behaviour (e.g. [45–46]), but evidence increasingly suggests that helpers may be

entirely unrelated and cooperation is maintained by mutual reciprocity instead [47–48]. In

pregnant dolphins and in mothers with young calves, however, reproductive state is thought to

be the most influential determinant in the formation of preferred associations [48]. In the MF,

associations between animals of a similar age and reproductive state are commonly observed

(e.g. [49–50]), with bonds having been established since infancy, such that known female asso-

ciates include the daughters of their mother’s closest associates with whom they grew up with

or spent time with as juveniles.

Group living is evidently beneficial for collective reproductive fitness in social mammals

[46,51], and the formation of bonds by MF females may afford enhanced access to resources,

Fig 7. Individual variation in reproductive success observed in female bottlenose dolphins from the Moray Firth study population for

mothers with�3 documented births of known fate. Unless already deceased, any calves born towards the end of the sampling period (in

2016) were not included, as they had not reached the minimum weaning age.

https://doi.org/10.1371/journal.pone.0185000.g007
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mutual protection from sexually-coercive males, increased group vigilance and other social

benefits necessary for calving [7,15,52]. Comparative studies of several mammalian groups

have shown that larger group sizes inevitably produce larger numbers of surviving offspring

(e.g. [53,54]). However, ranking and dominance may also be significant for RS in social delphi-

nids, by helping females to establish and maintain access to optimal foraging areas, for example

(e.g. [15]). In chimpanzee (Pan troglodytes) societies, high-ranking females display higher rates

of offspring survival and more rapid production of young than lower-ranking females [55]. In

addition, daughters of low-ranking females may mature as much as four years later than those

of high-ranking females [56]. The age of sexual maturation in the 16 primiparous females iden-

tified in the present study varied widely, from 5 to 12 years, which might be explained by the

respective dominance ranking of their mothers. According to Samuels and Gifford [57], domi-

nance is age-ordered and stable amongst cooperating female T. truncatus. Thus, mother iden-

tity could be essential for calf survival in the MF, such that which females give birth and when
may be pivotal to the viability of this small, vulnerable resident population [20].

In conclusion, intra-specific variability in female RS in the MF could be attributed to many

factors, including maternal age, size and breeding experience, dominance and parity of the

mother, the survival of previous calves, individual associations and group size, social factors, and

resource availability. Clearly not all individuals within a population provide the same value or

function to its structure (e.g. [58–59]), and in the present study the individual heterogeneity in

female RS could be attributed to certain females being more successful, and consequently more

important, for the viability of the population than others. A small decrease in this population

could subsequently have an unpredictable effect on overall reproductive output if these impor-

tant breeders are lost. Thus, the present findings might be highly significant to management, as

the identification of demographic groups containing the most reproductively successful females,

i.e., “good” mothers, might be highly desirable to conservation efforts for their protection. One

precautionary approach, for example, would be to regularly assess which females are present,

where and when, thereby allowing evaluations of potential pressures (i.e. disturbance by wildlife

tour boat operators) negatively impacting these animals during calving or nursing phases.

Whilst the detrimental effects that demographic stochasticity plays in the dynamics of small

populations are well known (e.g. [60]), the mechanisms influencing variations at an individual

level are still poorly understood [61]. However, the present study suggests that RS in small

populations may invariably rely on just a small number of individuals, which dramatically

increases the susceptibility of small populations to environmental change and/or harmful

anthropogenic impacts. Continued monitoring of the MF population remains necessary to

provide robust estimates of life-history parameters, e.g. fecundity rates recently published by

Arso Civil et al. [62], which will not only improve our ability to revise and advance the conser-

vation of this potentially vulnerable population, but will also serve to further our ability to

inform regulators of the potential impacts of ongoing developments (i.e., offshore windfarm

installations, oil and gas activities) presently affecting these animals in northeast Scottish

coastal waters. More broadly, where regulators are under increasing pressure to ensure ade-

quate protection for protected species, such as the bottlenose dolphin, at a time when a grow-

ing number of cumulative detrimental impacts are imposed on the marine environment [63–

64], the need for appropriate long-term monitoring of long-lived species with expansive home

ranges becomes increasingly evident.

Supporting information

S1 Appendix. Sightings and calving histories of reproductively active females listed by

their unique identification number (ID#) as recorded by CRRU in the southern Moray

Female reproductive success and calf survival in a North Sea bottlenose population

PLOS ONE | https://doi.org/10.1371/journal.pone.0185000 September 20, 2017 12 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185000.s001
https://doi.org/10.1371/journal.pone.0185000


Firth study area from 1997 to 2016 inclusive.

(DOCX)

Acknowledgments

We would like to thank our CRRU colleagues, volunteers, supporters and funders who have

made this long-term monitoring study possible. There are too many individuals to list here,

but we would very much like to thank the following past and present co-workers for field and

logistical support: Michael Tetley, Marina Costa, Alessandro Ponzo, Joanne Weare, Nina

Baumgartner, Benjamin Williams, Kathryn Dick, Konstantinos Margaris, Jamie Vaughan,

Lilian Lieber, Helen Mitcheson, Nick Duthie, Connor Bamford, Andreas Fahlman, Elizabeth

Pelonzi, Allan Whaley, Jenny Armstrong, Livia Zapponi. Jenny Spinou, Jack Borrett, Alejan-

dro Herreo Palacio, Rebecca Hall, Grace Russell, Theofilos Sidiropoulos and Beatriz Gimenez-

Reguera. We also acknowledge the Born Free Foundation (formerly Care for the Wild Interna-

tional) for their ongoing support, and our co-workers and colleagues at Aberdeen University,

the Sea Mammal Research Unit, Scottish Agricultural College, Hebridean Whale & Dolphin

Trust and Whale & Dolphin Conservation. The present examination forms part of a wider,

long-term monitoring project of the coastally-occurring cetacean species in northeast Scot-

land. All survey work was carried-out under licence from Scottish Natural Heritage.

Author Contributions

Conceptualization: Kevin P. Robinson.

Data curation: Gary N. Haskins.

Formal analysis: Texa M. C. Sim, Graham J. Pierce.

Investigation: Kevin P. Robinson, Thomas S. Bean, Isabel Cordoba Aguilar, Sonja M. Eisfeld,

Gary N. Haskins, Genevieve Williams.

Methodology: Kevin P. Robinson, Gary N. Haskins, Graham J. Pierce.

Validation: Texa M. C. Sim, Ross M. Culloch, Thomas S. Bean, Isabel Cordoba Aguilar, Sonja

M. Eisfeld, Miranda Filan, Gary N. Haskins, Genevieve Williams, Graham J. Pierce.

Visualization: Kevin P. Robinson.

Writing – original draft: Kevin P. Robinson, Texa M. C. Sim.

Writing – review & editing: Kevin P. Robinson, Texa M. C. Sim, Ross M. Culloch, Isabel Cor-

doba Aguilar, Gary N. Haskins, Graham J. Pierce.

References
1. Clutton-Brock TH. Reproductive success: studies of individual variation in contrasting breeding sys-

tems. University of Chicago Press: Chicago. 1988.

2. Fedigan LM, Rose LM. Interbirth interval variation in three sympatric species of neotropical monkey.

Am J Primatol. 1995; 37:9–24.

3. Cheney D, Seyfarth R, Smuts B. Social relationships and social cognition in nonhuman primates. Sci-

ence. 1986; 234:1361–1367. PMID: 3538419

4. Pomeroy PP, Fedak MA, Rothery P, Anderson S. Consequences of maternal size for reproductive

expenditure and pupping success of grey seals at North Rona, Scotland. J Anim Ecol. 1999; 68:235–

253.

5. Thompson PM, Cheney B, Ingram S, Stevick PT, Wilson B, Hammond PS. Distribution, abundance and

population structure of bottlenose dolphins in Scottish waters, Report to the Scottish Government and

Scottish Natural Heritage. SNH Report 354; 2011.

Female reproductive success and calf survival in a North Sea bottlenose population

PLOS ONE | https://doi.org/10.1371/journal.pone.0185000 September 20, 2017 13 / 16

http://www.ncbi.nlm.nih.gov/pubmed/3538419
https://doi.org/10.1371/journal.pone.0185000


6. Robinson KP, Baumgartner N, Eisfield SM, Clark NM, Culloch RM, Haskins GN et al. The summer dis-

tribution and occurrence of cetaceans in the coastal waters of the outer southern Moray Firth in north-

east Scotland (UK). Lutra. 2007; 50:19–30.

7. Culloch RM, Robinson KP. Bottlenose dolphins using coastal regions adjacent to a Special Area of Con-

servation (SAC) in north-east Scotland. J Mar Biol Assoc UK. 2008; 88:1237–1243.

8. Wilson B, Reid RJ, Grellier K, Thompson PM, Hammond PS. Considering the temporal when managing

the spatial: population range expansion impacts protected areas-based management for bottlenose dol-

phins. Anim Conserv. 2004; 7:331–338.

9. Stockin KA, Weir CR, Pierce GJ. Examining the importance of Aberdeenshire (UK) coastal waters for

North Sea bottlenose dolphins (Tursiops truncatus). J Mar Biol Assoc UK 2006; 86:201–207.

10. Robinson KP, O’Brien JM, Berrow SD, Cheney B, Costa M, Eisfield SM et al. Discrete or not so discrete:

Long distance movements by coastal bottlenose dolphins in UK and Irish waters. J Cetacean Res Man-

age. 2012; 12:365–371.

11. Cheney B, Thompson PM, Ingram SN, Hammond PS, Stevick PT, Durban JW et al. Integrating multiple

data sources to assess the distribution and abundance of bottlenose dolphins in Scottish waters.

Mamm Rev. 2013; 43:71–88.

12. Quick N, Arso Civil M, Cheney B, Islas-Villanueva V, Janik VM, Thompson PM. The east coast of Scot-

land bottlenose dolphin population: improving understanding of ecology outside the Moray Firth SAC.

Report to the UK Department of Energy and Climate Change’s Offshore Energy Strategic Environmen-

tal Assessment Programme. Report No.14D/086; 2014.

13. Cheney B, Corkrey R, Durban JW, Grellier K, Hammond PS, Islas-Villanueva V et al. Long-term trends

in the use of a protected area by small cetaceans in relation to changes in population status. Global

Ecol Conserv. 2014; 2:118–128.

14. Filan M. Mark recapture abundance estimates and distribution of bottlenose dolphins using the southern

coastline of the outer southern Moray Firth. M.Sc. Thesis, University of Edinburgh. 2015.

15. Wilson B, Thompson PM, Hammond PS. Habitat use by bottlenose dolphins: seasonal distribution and

stratified movement patterns in the Moray Firth, Scotland. J Applied Ecol. 1997; 34:1365–1374.

16. Wilson B, Hammond PS, Thompson PM. Estimating size and assessing trends in a coastal bottlenose

dolphin population. Ecol Appl. 1999; 9:288–300.

17. Grellier K, Hammond PS, Wilson B, Sanders-Reed CA, Thompson PM. Use of photo-identification data

to quantify mother-calf association patterns in bottlenose dolphins. Canadian J Zool. 2003; 81:1421–

1427.

18. Scott MD, Wells RS, Irvine AB. A long-term study of bottlenose dolphins on the West Coast of Florida.

In: Leatherwood S, Reeves RR, editors. The Bottlenose Dolphin. Academic Press: San Diego;

1990. pp. 235–243.
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