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The incidence of hepatocellular carcinoma (HCC) is increasing worldwide. Extracellular
vesicles (EVs) contain sufficient bioactive substances and are carriers of intercellular
information exchange, as well as delivery vehicles for nucleic acids, proteins and drugs.
Although EVs show great potential for the treatment of HCC and their role in HCC
progression has been extensively studied, there are still many challenges such as time-
consuming extraction, difficult storage, easy contamination, and low drug loading rate. We
focus on the biogenesis, morphological characteristics, isolation and extraction of EVs
and their significance in the progression of HCC, tumor invasion, immune escape and
cancer therapy for a review. EVs may be effective biomarkers for molecular diagnosis of
HCC and new targets for tumor-targeted therapy.

Keywords: hepatocellular carcinoma, tumor microenvironment, hypoxia, vesicle drug delivery, extracellular vesicles
1 INTRODUCTION

China is the world’s top liver cancer country, and the 2020 Global Oncology Report showed that
906,000 patients of liver cancer occurred worldwide, of which 410,000 new cases occurred in China,
accounting for >45% (1, 2). HCC is a common and fatal cancer, accounting for approximately 90%
of all liver cancer cases (3). Although much progress has been made in diagnostic and treatment of
HCC, such as liver excision, chemotherapy embolism and Sorafenib, it remains a health problem
worldwide, with the incidence expected to exceed one million cases in a few years, due to its
metastatic nature, high recurrence rate and low long-term survival (4, 5). EVs exist in tissues,
various body fluids and supernatant, such as saliva (6), pleural effusion (7, 8), plasma (9, 10), urine
(11), breast milk (12, 13), cerebrospinal fluid (14) and ascites (15, 16), which are greatly released by a
variety of cells in a constitutive or inducible manner. EVs can regulate many biological processes,
such as migration and extracellular matrix remodeling (17). Recently, some studies have shown that
EVs play an important part in regulating cell signaling. Particularly, HCC cell-derived EVs may lead
to local spread, distant metastasis and multifocal growth (18). HCC cell can secrete more EVs and
promote tumor metastasis. After exposure to anti-tumor drugs, the release of EVs from hepatoma
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cell also increased, which activate natural killer cells and induce
anti-tumor immunity. Besides, tumor cell-derived EVs can
produce direct immune effects to stimulate target cells. It has
been reported that EVs-mediated intercellular transfer may
promote the invasion of HCC by affecting the tumor
microenvironment (TME) (18, 19). EVs-mediated signaling in
liver disease makes them a unique therapeutic tool that can
provide targeted delivery of tissue siRNAs, miRNAs and
circRNAs to affect gene expression (20). Notably, EVs are
natural nanomaterials. Compared with drugs, modified EVs
have many advantages, which significantly improve the
specificity, efficacy, and safety of EVs-based cancer therapies
and become ideal candidates for drug development and delivery
(20). Nowadays, the use of biogenic EVs as drug delivery has
become a research hotspot, and its complex phospholipid
membrane structure may be conducive to immune escape, site-
specific transmission, cell uptake and intracellular transport (21).
In addition, some microRNAs in EVs have also been introduced
as potential biomarkers, and their expression level is related to
the invasiveness of HCC (22). It has been reported that EVs play
a key role in biological functions, including intercellular transfer,
angiogenesis, immune response, tumor growth and metastasis of
HCC (23–25).
2 INTRODUCTION OF EVS

2.1 Biogenesis and Morphological
Characteristics of EVs
It is known that EVs can be a key role in human physiological
and pathological diseases with various subtypes of cell-released
membrane structures. EVs of particle diameters <200 nm are
referred to as small EVs (sEVs) and medium-to-larger particles
of diameters >200 nm are referred to as m/lEVs (26). Depending
on the description of conditions or cell of origin, EVs can also be
classified as apoptotic body, large oncosome, hypoxic EV,
podocyte EV, etc, which are showed as follows (22, 26–
28) (Table 1).

The sEVs (<200nm) originate from the inward outgrowth of
endosomal membranes, are one of subpopulations of EVs (30),
which can be produced from different cells such as hepatocytes
(40), NK cells (41), T cells (42), and B cells (43), and surface
markers of sEVs include CD9, CD63, CD81, and CD82 (44).
sEVs are formed by the endonuclear body system and transmit
information to the recipient cell through three main processes:
First, the cytoplasmic membrane is initially invaginated by lipid
raft-mediated endocytosis to form endocytic vesicles, which fuse
with each other to form early endosomes (Endocytosis) (45);
Second, early intranuclear bodies regenerate and invaginate, and
intracellular material forms multiple intraluminal vesicles
(ILVs), which are further transformed into late intranuclear
bodies and multivesicular bodies (MVBs). This process also
involves the inversion of cytoplasmic contents, transmembrane
proteins, and peripheral proteins (Receptor-ligand Interaction)
(46). Finally, MVBs fuse with the cytoplasmic membrane to form
sEVs (Fusion With the Plasma Membrane) (5, 23, 47). In
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addition, MVBs have also been reported to fuse with
lysosomes and promote the degradation of vesicle contents (27,
44, 48). The formation, release and sorting of sEVs are a series of
regulated processes, which mainly require the endosomal sorting
complex required for transport (ESCRT), members of the
ESCRT family [apoptosis contiguous gene 2-interacting protein
X (ALIX), also called PDCD6IP (49), tumor susceptibility gene
101 (TSG101)] (50, 51), four transmembrane proteins family (49,
52) and lipid raft-associated proteins (53, 54) and many
substances are involved. As we all know, ESCRT is composed
of ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III (55), and is
associated with delivery of ubiquitinated proteins, degradation of
lysosomes and recycling of proteins (20). Moreover, ESCRT
plays an important part in luminal vesicle biogenesis and cargo
aggregation (49). ESCRT-independent processes also seem to be
involved in the formation and secretion of sEVs in an
intertwined manner (56). Intracellular transport of sEVs
involves many molecular switches, such as RAB GTpase
proteins, membrane linked proteins, actin and microtubulin
(23). Besides, Rab family proteins,including Rab7, Rab11,
Rab27, and Rab35, also play a crucial role in the process of
sEVs secretion (25). The secretion of sEVs also requires the
involvement of the SNARE complex and the synaptic binding
protein family (30). Furthermore, the involvement of
sphingomyelinase in vesicle release was confirmed by the
elevated ceramide levels in sEVs and less release of sEVs after
sphingomyelinase inhibition (20, 56). Overall, sEVs regulate
signaling pathways in receptor cells, coordinate TME and
communication between different cells.

The m/lEVs (>200nm) are released by the plasma membrane
to the outgoing buds, so the membrane composition of the m/
lEVs is extremely close to the plasma membrane. The cell
membrane surface is full of phosphatidylserine and most of the
membrane-associated proteins, which can regulate the
intercellular information exchange and affect the functions of
target cells (30). The mechanism of m/lEVs formation is related
to intracellular calcium signaling stimulation (23, 57), membrane
bending proteins and the asymmetric distribution of
phospholipids. The inward flow of calcium ions in the
cytoplasm activates phospholipid crawling enzymes to disrupt
phospholipid asymmetry, leading to redistribution of
phospholipids in the cell membrane bilayer (58). The
junctional protein ARRDC1 recruits ESCRT proteins and
VPS4 (an ATPase) to the cell membrane (59); ESCRT-1
protein interacts directly with inhibitory proteins; pro-caspase3
stimulates Rho-related protein kinase 1 to promote
apoptogenesis and induces myocardin contract ion,
contributing to the release of m/lEVs.

Apoptotic body (50-2000 nm), also known as apoptotic
vesicles, are produced by debris cells that undergo apoptosis
(60, 61). When cells undergo apoptosis, the cell membrane folds
inward and wraps around the cytoplasm, organelles and nuclear
fragments to form vesicles, which are the largest subpopulation
of EVs. Apoptotic vesicles have surface markers and are enriched
in caspases-3 and caspases-7, caspases-3 and Rho/Rock pathway
taking part in membrane blistering (30, 32, 62). Moreover,
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apoptotic vesicles play a key role in attracting phagocytes,
promoting the clearance of apoptotic cell debris, and regulating
antigen presentation and immune cell responses (30). Apoptotic
cells have been reported that can facilitate the encapsulation of
chemotherapeutic drugs or nanoparticles into EVs (22). In
addition, apoptotic vesicles from apoptotic cells can be
preferentially taken up by macrophages and produce antitumor
effects (22). Thus, apoptotic vesicles may also be an ideal delivery
system, but the use of apoptotic vesicles as therapeutic
nanovesicles (NVs) has been less studied, which may be related
to their large cell size and uneven distribution.

Large oncosomes(1-10 mm) are released by cancer cells and
may play a role in the tumor microenvironment. It has been
shown that CK18 is a marker of large oncosomes and can be
identified in circulation and tissues (63).

The mechanism of production of hypoxic EVs may depend
on hypoxia-inducible factors and RAB22A, which in a hypoxic
environment relies on the mediating action of the small GTPase
RAB22A to dislodge hypoxic EVs from the cells (38). Hypoxic
EVs are influenced by the environment and containing
biomarkers such as mRNA and proteins, among which
proteins include MMPs, IL-8, PDGFs, caveolin 1, and lysyl
oxidase (37).

Podocyte EVs (100-200 nm) derived from the tip vesicles of
podocyte microvilli (39). It can be expressed before other
markers of nephropathy and therefore may serve as a new
marker of glomerular and tubular injury.Medeiros et al. have
shown that EVs can be produced by podocyte cells after exposure
to high glucose and expressed before proteinuria (64). It remains
to be proven about the biomarkers contained in EVs produced
by podocytes.

2.2 Contents of EVs
EVs are usually secreted under physiological conditions and rich
in nucleic acids, proteins, lipids, and metabolites (31) (Figure 1).
In response to stimuli such as differentiation, neuronal signaling
Frontiers in Oncology | www.frontiersin.org 3
or immune response, the secretory content varies depending on
the cells of EVs origin and their function. Surface proteins were
abundant, with high enrichment of tetraspanins (CD9, CD63)
and lysosome-associated membrane protein 2b (Lamp2b) (20).
Besides, RNA is presented in EVs, including miRNA, long non-
coding RNA (lncRNA), transfer RNA (tRNA), etc, which range
from approximately 25 to 700 nucleotides in length and vary in
content depending on the different origin of EVs (5). To be
interest, EVs from tumor cells are particularly rich in RNA.
According to the Vesiclepedia database, 213 unique proteins
were identified in HCC cell-derived EVs. The sEVs proteins
include cargo proteins and membrane proteins, the latter being
associated with exocytosis of recipient cells and target organ
selection (65, 66). The composition of cargo proteins in sEVs
varies across tumor cells (5). Studies have found that the
ultraconserved lncRNA (ucRNA) expression is dramatically
altered within EVs as compared to donor cells. For example,
HCC cell-derived EVs transfer ultraconserved lncRNA TUC339
enrichment to neighboring cells in the microenvironment, which
is transcribed in host cells and promotes HCC proliferation and
diffusion (66). In addition, Yang, B et al. suggested that EVs
promote hepatocellular carcinoma metastasis because some
substances in EVs are involved in epithelial mesenchymal
transition (EMT) (40).

Moreover, many studies have reported that mitochondrial
proteins are also cargoes of EVs (67–70). EVs can carry
mitochondria, mitochondrial proteins, or mitochondrial DNA
to travel between organelles (67, 71). Kiran Todka et al. found
that mitochondrial proteins are selectively enriched in EVs and
that delivery of mitochondrial proteins to EVs requires sorting
nexin 9(SNX9)-dependent mitochondria-derived vesicles
(MDVs). MDVs are responsible for carrying mitochondrial
proteins between mitochondria and other organelles (72).
Intercellular transfer of mitochondria (including mtDNA)
results in altered mitochondrial function. If mitochondria are
localized within the mitochondrial network of the recipient cell,
TABLE 1 | The types of EVs.

Classification Subtypes Diameter Source Marker Ref

Physical
characteristics/
Size

sEV < 200nm Originates from the inward outgrowth of
multivesicular bodies (MVB), endosomal
system

Transmembrane proteins CD9, CD63 and CD81;
ALIX; TSG101

(5, 22, 29)

Derived from hepatocytes, macrophages, NK
cells, T cells, B cells

m/lEV > 200nm Plasma membrane outward budding
production

Integrin; Selectin; CD40; Most membrane-associated
proteins in source cells

(30, 31)

Derived from almost all healthy living cells.
Descriptions of
conditions/Cell of
origin

Apoptotic
body

1-5mm generated from cell fragments undergoing
apoptosis

Phosphatidylserine; Genomic DNA; It is similar to the
surface markers of its derived cells and rich in caspases-3
and caspases-7

(30, 32)

Large
oncosome

1-10mm originates from the shedding of the membrane
bubbles

CK18 (33–36)

released by Invasive prostate cancer cells,
urinary bladder, and glioblastoma

Hypoxic
EV

– Hypoxic cell include mRNA and proteins (MMPs, IL-8, PDGFs,
caveolin 1, and lysyl oxidase, etc)

(37, 38)

Podocyte
EV

– from the tip of the microvilli of the podocytes — (39)
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it may elevate the intracellular ATP levels, further generate
metabolic stress and ROS to regulate innate immunity, which
may have a significant impact on the tumor microenvironment
(73–75). For example, it has been found that mitochondrial DNA
(12S rRNA (RNR1) G709A) play an important role in the
development of HCC (76). However, whether the process of
mitochondrial can influence the hepatocellular carcinoma
progression associated with EVs needs to be further explored.

2.3 Specific Mechanisms of Uptake and
Internalization Between EVs and the
Target Cells
Since our current knowledge about the physiology, diversity,
internalization, and cargo delivery of EVs is still somewhat
limited, it remains impossible to derive a clear mechanism
about how EVs interact with and modify receptor cells.
However, determining the intracellular pathways and
mechanisms of their cargo delivery could help us to utilize EVs
as therapeutic agents appropriately (77).

The uptake pathways of EVs are known to be greatly diverse
by cells and EVs type, which may be more dependent on the
receptor cell type than EVs itself (22, 78, 79). EVs can translocate
their contents to recipient cells by different mechanisms such as
Frontiers in Oncology | www.frontiersin.org 4
direct fusion, direct binding, endocytosis or phagocytosis (22).
Although the mechanism of EVs uptake and cargo translocation
into the cytoplasm of the receptor cell is still not fully defined, it
mainly occurs in three steps: targeting the receptor cell, entering
point into the receptor cell, and delivering the contents to the
receptor cell. However, the end point of EVs internalization is
still uncertain, and the function of EVs-mediated cargo transfer
cannot being well defined (78).

The pathway of EVs internalization determines the functional
response and efficiency of cargo delivery, while the
internalization of EVs is mediated by a variety of mechanisms
(80), including grid protein dependence and endocytosis of grid
protein non-dependent pathways (78). In general, endocytosis is
usually divided into two main subgroups: phagocytosis and
cytokinesis. Phagocytosis is a type of endocytosis of relatively
large (>1µm) particles and is usually restricted to specialized
professional phagocytes. In contrast, all cells are capable of
cytokinesis (81–83). Grid protein-mediated endocytosis is a
recognized pathway for extracellular substance uptake (84).
Meanwhile, studies have shown that EVs enter cells mainly
through grid protein-independent endocytosis and
macrocytosis (83). Non-dependent endocytosis of grid
proteins, including the formation of inverted influxes of
FIGURE 1 | Biological origin of electric vehicles: ① m/lEV formation is the result of mass membrane foaming. Calcium relies on the cellular scale of protein hydrolysis
degrading membrane binding, which can help cell membranes germinate and promote their secretion. ② Formation of sEV includes endocytosis, the formation of
nucleosomes and MVBs, and the release of sEVs. The vesicles contained in MVBs fuse with the plasma membrane, causing their release. ③ Refactoring is related to
the Rho/Rock pathway. ④ Composition of ESCRT is related to the biological occurrence of sEV and MVB. Rab protein facilitates the transport and docking of MVBs
over the plasma membrane, leading to cytoplasmic vomiting and the release of sEVs. ⑤ Extensive membrane vesicles occur on the membrane of apoptotic cells to
form apoptotic body.
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vesicle-coated cells on cell membranes (77, 84, 85). Alternatively,
fusing with the exoplasmic membrane, EVs can enter cell
directly, thereby release their contents into the cytoplasm (80).
3 SEPARATION METHODS OF EVS

The isolation and collection of EVs is a necessary condition for
biomedical research and clinical transformation. Researchers
have developed many methods to separate EVs, and it is
particularly significant to use the proper isolation method
under different conditions. For better clinical applications,
improving existing technologies for the isolation and storage of
EVs are facing great challenges (20). Efficient access to EVs is
extremely important for research, and in addition to the use of
suitable isolation techniques, promoting the production and
release of EVs is also of great value. Upon increased release of
EVs, cargo and surface marker proteins may cause altered
biological functions (86, 87). Notably, EVs induced by tapping
membrane complexes have been reported to play important
physiological roles in enhancing immunity, promoting
coagulation, wound healing and growth (88, 89). Hirsova, P
found that toxic lipids induce the release of EVs from
hepatocytes and can activate the pro-inflammatory response of
macrophages, which also suggests that inhibiting the release of
EVs could be a therapeutic strategy for patients with NASH (90).
Based on the therapeutic potential of EVs, we believe that it is of
great interest to select suitable methods to facilitate or inhibit the
release of EVs depending on the purpose. Thus, some approaches
to promote the release of EVs are summarized in Figure 2.
3.1 Traditional Methods
3.1.1 Ultracentrifugation
Ultracentrifugation is considered as the “gold standard” for the
separation of EVs (102). Due to the different particle size and
density, its settling speed is also different, using gradually
increasing centrifugal speed or low speed and high speed
alternate centrifugation, can be separated in batches at different
separation speeds and centrifugal time (30). Cellular impurities
were removed with a low speed of 300 g, and high centrifugal
force of 16,000 g can be used to separate apoptotic bodies, 20,000
g to separate m/lEVs, and 100,000 g to precipitate and
concentrate sEVs (103, 104). This method is widely used, but
the purity of sample is not satisfied for the supernatant will
contain 40% EVs, which leads to protein contamination and
lower yield. There is an overlap in the size of sEVs and m/lEVs,
and slightly larger sEVs and smaller microvesicles are difficult to
isolate (105). In addition, it generally requires multiple
centrifugation processes to achieve better separation, but it is
prone to vesicle destruction and also has many disadvantages
such as the large size of the instrument, high cost, lengthy and
laborious processing, and few samples (106).

3.1.2 Gradient Ultracentrifugation
The requirements of gradient ultracentrifugation are more
stringent, when there is a small difference in settling velocity
Frontiers in Oncology | www.frontiersin.org 5
between different particles, they are placed on the top of a
medium with different density gradient. Under the action of a
certain centrifugal force, the particles are separated by
aggregating into the layer of the medium with a similar density
to theirs, and the commonly used medium is sucrose (107).
Sucrose gradient centrifugation can be used to isolate sEVs (108,
109). This method is popular because of good separation effect,
high purity, no extrusion and deformation of the particles, and
the ability to maintain the activity of the particles. However, it
needs to prepare inert gradient media solution, be complicated to
operate, not easy to master, time-consuming and labor-intensive
(20-24 h), and high cost. What’s more, the density of EVs and
high-density lipoprotein particles (HDL) is similar and they can
be separated out together, so the samples are prone to
contamination (110). Besides, the use of newer isotonic
gradients contribute to better maintenance of the physical
properties of the vesicles (111).

3.1.3 Precipitation Method
The precipitation method mainly includes polymer precipitation
and organic solvent precipitation. Commercial kits that rely on
polymer co-precipitation have been reported being used for the
isolation and purification of EVs, decreasing solubility and
promoting precipitation. The precipitated EVs can be easily and
reproducibly separated and avoid prolonged ultracentrifugation
(112, 113). Unfortunately, the main problems with this method
are that co-precipitation is susceptible to contamination by non-EVs
substances and that mechanical forces or chemical additives can
damage EVs (114). In addition, the method relies more on manual
manipulation with low throughput and recovery, and purification of
polymers from EVs may interfere with downstream analysis.
Therefore, co-precipitation is not suitable for most research and
clinical applications.

3.1.4 Molecular Exclusion Chromatography
The principle of molecular exclusion chromatography is that
different solute molecules, such as EVs and protein impurities,
are separated from each other as they pass through porous
packings due to differences in size resulting in different rates of
passing through the pores (115, 116). This approach yields
purified EVs from complex biological media (117–119),
removed soluble plasma proteins and HDLs effectively,
preserved the biological activity and integrity of EVs and also
reduced aggregation (115). A variety of influencing factors such
as media type, pore size, column size, and flow rate should be
considered for EVs separation (20, 116). This method is efficient
and inexpensive, and it is more suitable for small volumes of
blood samples because of the upper sample volume limitation.

3.1.5 Asymmetric Flow Field Flow
Classification Method
Asymmetric flow field flow fractionation (AF4) is a technique in
which a force field is applied to achieve the separation of EVs with
different sizes andmolecular weights (120). AF4 contains permeable
plates and when a vertical force field is applied, the analytes in the
sample will be moved to the boundary by the force and smaller
particles will undergo Brownian motion to reach a new equilibrium
May 2022 | Volume 12 | Article 884369
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position (121). The advantages of this method are rapid (<1 h), high
resolution, gentle, label-free, and reproducible. It can be applied to a
variety of eluates, contributing to the successful separation of
different subpopulations of EVs.

3.2 New Methods
3.2.1 Immunoaffinity Capture
Obviously, EVs are rich in proteins. Immunoaffinity capture is the
specific binding of antibodies to the corresponding antigens on the
surface of EVs such as adhesion proteins, tetra-transmembrane
proteins and integrins, achieving the separation of EVs by immune
reactions (122, 123). Magnetic beads provide a large surface area to
capture EVs, targeting antigens on the surface of EVs to select
specific subgroups, improving separation efficiency, specificity and
purity, making it more suitable for marker detection of EVs and
clinical diagnostic studies (124). However, the expensive antibody
reagents, stringent reaction conditions, reduction of isolation yields,
and the vulnerability of the biological activity of the EVs contents to
PH and salt concentration have made it inappropriate to isolate
large volume samples (125).

3.2.2 Microfluidics
Based on different molecular size, microfluidics can isolate EVs
from large cellular debris (126). Compared to conventional
Frontiers in Oncology | www.frontiersin.org 6
separation methods, with smaller sample volumes (50µL -
500µL), microfluidic techniques are faster (30 min-2 h),
portable, cost effective and automated, resulting in high purity
of EVs. However, some microfluidic technologies allow only
small sample input, lack method validation and standardization,
which may influence the application of downstream analysis.

3.2.3 Contactless Classification
The use of acoustic waves for contactless separation of EVs has
recently been proposed by some researchers. This separation
method applies forces based on the size and density of vesicles
(127). Particles in the acoustic region migrate toward the
pressure nodes after the force is applied. Acoustic interaction
forces are proportional to vesicle volume, with larger vesicles
moving more rapidly. This method can separate EVs very
quickly and without contact.
4 QUANTIFICATION METHODS OF EVs

Currently, the quantification of EVs has been challengig. It is
suggested that for conditioned medium, the number of cells at
the time of initiation and collection should be clearly indicated.
FIGURE 2 | Methods to facilitate the release of EVs. ① Acute Hypoxia: Catabolism of HIF-1a is inhibited by acute hypoxia, which stabilizes the P53 gene and
activates the P21 gene, leading to apoptosis and promoting the release of EVs (91–93). ② UV: After UV irradiation, a large number of free radicals are generated to
attack nucleic acids and proteins, causing apoptosis and increasing the release of EVs (94). ③ Photodynamic Treatment: Laser irradiation at a specific wavelength
excites the tissue-absorbing photosensitizer, and the excited state of the photosensitizer transmits energy to the surrounding oxygen, generating strongly reactive
monomorphic oxygen, which may reacts oxidatively with the surrounding neighboring biomolecules, resulting in a cytotoxic effect that causes apoptosis and also
promoting the release of EVs (95). ④ Complement Proteins: The membrane attack complex (MAC) is composed of complement proteins (C5b, C6, C7, C8 and C9).
MAC is cleared from the cell surface by cytosolic or cytocytic action to help release EVs (96, 97). ⑤ Chemotherapy: The use of chemotherapeutic agents (e.g.,
doxorubicin, methotrexate, and cisplatin) causes cellular damage and EVs release (95, 98). ⑥ Toxic Lipids: Toxic lipids activates the DR5 pro-apoptotic signaling
cascade, which in turn activates ROCK1 and promotes the release of EVs from hepatocytes (90). ⑦ Nutritional Deficiency: Activation of Caspase 3, ROCK1 signaling
pathway and promotion the release of EVs (99). ⑧ Infection factors (100) and ⑨ focused ultrasound (101) can also promote the release of EVs.
May 2022 | Volume 12 | Article 884369
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In addition, proper characterization of EVs at the time of
separation helps to understand their properties. Several
techniques for measuring the size of EVs are being
investigated, including lateral-flow immunochromatographic
assay (LFIA), nanoparticle tracking analysis (NTA), and
nanopore tunable resistive pulse sensing techniques(TRPS),
high resolution flow cytometry, multi-angle light scattering
coupled to asymmetric flow field-flow fractionation (AF4),
fluorescence correlation spectroscopy (FCS), enzyme linked
immunosorbent assay (ELISA) and Raman spectroscopy, etc.
Here, we talk about some advantages and disadvantages of some
techniques. LFIA, with its high degree of flexibility, is a good tool
for cost-effective field detection, but the assay lacks sensitivity
(128). The AF4 system is highly repeatable (120), however, it
requires skilled operators. NTA and TRPS can be used for
particle size analysis of EVs, and their detection sensitivity is
70-90 nm and 70-100 nm, respectively. NTA technology allows
one-time measurement and quantification of EVs, but the
equipment is expensive and difficult to operate (129, 130). The
ELISA technique is greatly flexible and can be modified
appropriately for the analyte, but it is also time-consuming.

In addition, EVs are rich in proteins, lipids, nucleic acids and
other biomolecules, and it can be quantified by quantifying these
specific molecules. For example, total protein amounts were
determined by using Bradford, micro-bicinchonic acid (BCA),
fluorimetric assays, global protein stainon sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE), etc.
However, due to the possible presence of protein contaminants,
the measurements are on the high side. The amount of total lipids
can be measured by sulfofphosphovanilin assay (131) and total
reflection fourier-transform infraredspectroscopy (132). RNA can
be quantified by global RNA assays (133). In conclusion, the
quantification of EVs is a critical topic that still lacks consensus
and standardization both domestically and internationally, and we
expect more studies to be reported in the future.
5 INTERACTIONS BETWEEN HCC AND
HCC CELL-DERIVED EVs

In the microenvironment where tumor cells and normal cells are
located, HCC cell-derived EVs build a bridge to communicate
with each other and promote HCC proliferation, invasion and
distant metastasis, etc. EVs origined from HCC often regulate
tumor progression through autocrine and/or paracrine cellular
communication. HCC cell-derived EVs stimulate recipient cells to
produce cytokines and promote the migration of HCC, such as
matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase
9 (MMP9) (134). Meanwhile, HCC is a typical hyperangiogenic
tumor. HCC cells secrete EVs loaded with different miRNAs,
LncRNAs, circRNAs that can activate signaling pathways in the
recipient cells, thus causing the recipient cells to respond,
promoting HCC migration or inhibiting HCC proliferation,
which have an impact on tumor angiogenesis (47). For example,
HCC cell-derived EVs carry oncogenic RNAs and proteins, which
Frontiers in Oncology | www.frontiersin.org 7
allows EVs to activate the PI3K/AKT and MAPK signaling
pathways and promote distant tumor metastasis (46).

EVs secreted by HCC cells containing some specific miRNAs
will play a specific role in HCC. For example, hypomethylation
causes increased expression of mir -429 in HCC cells, and these
large EVs mediated by mir -429 are shed and bind to Rb-binding
protein 4 (RBBP4) in surrounding target cells, promoting the
transcriptional activity of E2F1 and ultimately upregulating the
expression of POU class 5 homeobox 1 (POU5F1) in target cells,
thereby promoting HCC development (46). Meanwhile, EVs-
loaded miR-221 binds to the 3’-UTR target site of the p27/Kip1
oncogene and promotes HCC proliferation and migration (135).
EVs containing protein CD147 released by HCC cells activate the
NF-kB pathway of surrounding fibroblasts, induce MMP-9
expression, and stimulate the ERK1/2 and p38 MAPK pathways,
leading to extracellular matrix degradation and tumor invasion
(136, 137). In addition, EVs containing miR-25 released from HCC
cells inhibited p53 expression in surrounding HCC cells, thereby
restoring FOXM1 (a key regulator of cell cycle progression)
expression, activating the HGF/Ras pathway, reversing the
expression of sorafenib-induced apoptotic markers BCL2 and
BAX, making HCC cells resistant to sorafenib (138). miR-34a is
reduced in the large EVs released by CHB or HCC cells, resulting in
increased levels of mRNA and protein in c-Mets in surrounding
cells, promoting phosphorylation of c-Met-induced extracellular
signal- regulated kinases 1 and 2 (ERK1/2), thereby facilitating CHB
conversion to HCC (139, 140). Intracellular TLR4 signaling in HCC
cells is transduced to the actin cytoskeleton via theMyD88 pathway,
leading to the release of large EVs. Peripheral tumor macrophages
take up large EVs containing microRNA let-7b, which attenuates
tumor inflammation by targeting the pro-inflammatory cytokine
IL-6 (141). Upregulation of ANXA2 expression in HCC cells
promotes the shedding of CD147-containing large EVs and the
production of MMP-2 in surrounding fibroblasts, thereby
promoting HCC development (142). Thus, HCC cell-derived EVs
can also act as a bridge between surrounding tumor cells or other
cells, and their loaded cargo can have an impact on HCC
progression when taken up by target cells.

5.1 HCC Cell-Derived EVs Promote HCC
Migration by Directly Activating or
Inhibiting Signaling Pathways
HCC cell-derived EVs-loaded cargoes can promote cancer cell
migration by directly activating or inhibiting signaling pathways.
For example, EVs-miR-1247-3p secreted by HCC cells directly
transferred to lung pre-metastasisniche fibroblasts, decreased the
expression of b-1,4-galactosyltransferases III (B4GALT3, a
protein mediating glycosylation), thereby converting them into
CAFs, and then activated the b1-integrin-NF-kB signaling
pathway to promote EMT, thereby promoting the metastasis of
hepatocellular carcinoma to the lung, and IL-6 and IL-8 secreted
by CAFs to promote the development of HCC (Figure 3.①)
(143). Meanwhile, EVs-miR92a-3p can promote HCC metastasis
and EMT by inhibiting PTEN activation of the Akt/Snail
signaling pathway (Figure 3.②) (40). Besides, HCC cells can
also secrete EVs-miRNA-21 that directly targets PTEN and
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activates the PDK1/AKT signaling pathway. Moreover, it
transforms hepatic stellate cells (HSC) into activated cancer-
associated fibroblasts(CAF), which can further promote HCC
growth by secreting vascular growth factors(VEGF, MMP2,
MMP9 and TGF-b) (Figure 3.③) (144). Under endoplasmic
reticulum stress, HCC cells inhibit PTEN and activate the
PI3K-AKT pathway by delivering EVs-miR-23a-3p to
macrophages, increasing macrophage PD-L1 expression and
inhibiting T-cell function, promoting immune escape
(Figure 3.④) (145). In addition, EVs-lncRNA TUC339 can be
taken up by THP-1 cells, resulting in reduced production of pro-
inflammatory cytokines, reduced expression of costimulatory
molecules, impaired phagocytosis, and promotion of
macrophage M (IL-4) polarization (Figure 3.⑤) (146). EVs-
miR-93 promotes HCC tumorigenesis by affecting CDKN1A,
TP53INP1, and TIMP2, and sEVs-miR-93 overexpression
predicts poor prognosis (Figure 3.⑥) (147). It has been
reported that lncRNA FAL1 are taken up by surrounding HCC
cells and promote HCC cell proliferation and migration by
competitively binding miR-1236 in recipient cells, which in
turn upregulates the expression of their target genes AFP and
ZEB1 (Figure 3.⑦) (148). sEVs-CircFBLIM1 can promote HCC
progression through the miR-338/LRP6 axis (Figure 3.⑧) (149).
The sEVs-circ-PTGR1 downregulates miR449a-MET
expression, disrupts tumor microenvironment homeostasis,
and promotes HCC migration and invasion (Figure 3.⑨)
(150). EVs complement factor H (CFH) elevates C3a and C5a
levels, exacerbating inflammatory responses and tumor growth
(Figure 3.⑩) (151).
5.2 The Role of HCC Cell-Derived EVs
on Angiogenesis
HCC is typically a highly angiogenic tumor and therefore
angiogenesis is closely related to the prognosis. We have
known that EVs-loaded cargo is able to promote angiogenesis
and increase vascular permeability. Altered vascular
permeability implies altered endothelial continuity, allowing
cancer cells to infiltrate and attach to the microvascular
endothelial lining and form tumor metastases. For example,
Lin, XJ et al. found that delivery of EVs-miR-210 to endothelial
cells to target SMAD4 and STAT6 for pro-angiogenesis
(Figure 3.⑪) (152). Besides, EVs-miR-103 inhibits the
expression of VE-Cad, p120 and ZO-1 and reduces
endothelial integrity to promote tumor invasion (Figure 3.
⑫) (153). EVs-LncRNA H19 induces the production of the
pro-angiogenic cytokine (VEGF) and its receptor VEGF-r1 in
HUVECs and stimulates angiogenesis (Figure 3. ⑬) (154).
Interestingly, Y Zhou et al. found that ovarian cancer-derived
EVs carry NID1 through ERK/MAPK to promote EMT,
accelerate angiogenesis, and promote tumor invasion (155),
but the role of NID1 in HCC is still unclear (156). In addition,
HCC cell-derived EVs can promote angiogenesis in HUVECs,
and the amount of HepG2-derived EVs determines the amount
of angiogenesis, lumen formation. The sEVs may influence
human umbilical vein lumen formation via the VEGF receptor
Frontiers in Oncology | www.frontiersin.org 8
and the angiogenesis-associated heat shock protein
HSP70 (157).

HCC cells-derived EVs carrying proteins were found to
inhibit angiogenesis by reducing VEGF through activation of
AMPK signaling iynamic network microenvironment consisting
of hepatocytes and their surroundings, suchn HCC (158). At the
genetic level, CLEC3B-related genes are closely associated with
angiogenic genes. In experiments, cells with high levels of
CLEC3B formed fewer vessels than those with low levels.
Likewise, in animal studies, immunohistochemical detection of
tumor tissue from in situ tumor-implanted mice showed a
significant reduction in CD31-positive and CD34-positive
endothelium (EC) in CLEC3B high-isogenic grafts. Thus, high
levels of CLEC3B EVs significantly reduce the expression of
endothel ia l growth factor (EGF) in HCC, thereby
reducing angiogenesis.
5.3 Inhibition of HCC Growth by EVs-
Loaded Cargo of Different Cellular Origin
When certain signaling pathways are blocked by EVs-loaded
cargo, the growth and distant metastasis of HCC may also be
inhibited. For example, when Vps4A is overexpressed in HCC
cell-derived EVs, it inhibits the PI3K-Akt pathway and thereby
inhibits the metastasis of HCC (159). When normal cells
secrete sEVs containing SENP3-EIF4A1, SENP3-EIF4A1
inhibits HCC cell proliferation by suppressing miR-9-5p in
HCC cells and activating the expression of ZFP36 (160). In
contrast, EVs-circ-0051443 promotes HCC cell apoptosis and
inhibits tumor growth by competing with miR-331-3p in HCC
cells and upregulating BAK1 expression (161). Interestingly,
Huang, X et al. proposed that IncRNA 85 regulates the
invasion of cancer cell by targeting miR-324-5p and through
ceRNA mechanisms, and more importantly, miR-324-5p
overexpressed can reducing migration by regulating the
expression of MMPs, ETS1 and SP1 genes in HCC (162,
163). When tumor-associated fibroblasts (CAFs) secrete EVs
containing miR-320a, miR-320a inhibits HCC growth by
suppressing the PBX3/ERK1/2/CDK2 pathway in HCC cells
(164). For example, EVs enriched in LncRNA H19 were
secreted by CD90+ cancer cells to promote angiogenesis,
inducing the production and secretion of the pro-angiogenic
cytokine VEGF and its receptor in HUVECs (154). What’s
more, it has been shown that co-culture of Huh7 cells with
HepG2 cells, where Huh7 secretes EVs containing miR-122,
has an inhibitory effect on tumor growth, when co-cultured
HepG2 cells attenuate this inhibitory effect by secreting
IGF1 (165).

Alteration of original physiological functions between HCC
cells through the delivery of cargo molecules in EVs. Some goods
are markers to diagnose HCC from other liver diseases; Some can
determine the effectiveness of HCC treatment and predict the
recurrence rate of HCC; Some can be used as vehicles for
delivering drugs for the treatment of HCC. In conclusion, EVs
loaded with cargo play different roles in the migration of HCC,
regulating the talks between HCC and cells (Table 2).
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6 REGULATION OF HCC BY DIFFERENT
CELL-DERIVED EVs IN THE
MICROENVIRONMENT
There is growing evidence that the dynamic network
microenvironment consisting ofhepatocytes and their
surroundings, such as cancer cells, immune cells, cytokines
andextracellular matrix is also a key factor in tumor metastasis.
Liver is rich in immune cells, which can greatly produce EVs, and
has a unique immune-tolerant microenvironment, which is a
huge challenge for HCC immunotherapy (170). Among them,
various immunosuppressive cell subsets and signaling pathway-
mediated pre-tumor immune responses play a key role in “tumor
immune escape”. EVs are not restricted by space and material
and can interact with cancer cells anywhere in the body. EVs
produced by cancer cells can also interact with nearby immune
cells (171, 172). The interaction between tumor and the immune
system determines the progression of the tumor at the early
stage. In conclusion, HCC occurs not only because hepatocytes
contain sufficient genetic mutations, but multiple interrelated
factors in the hepatic microenvironment influence the
progression of HCC, and the mechanistic features of these new
factors have prompted the search for new therapeutic approaches
to treat not only the tumor itself but also the hepatic
microenvironment to prevent recurrence and treatment
resistance, some of which have yet to be fully elucidated.
Frontiers in Oncology | www.frontiersin.org 9
6.1 Mesenchymal Stem Cells-Derived EVs
MSCs are present in bone marrow, umbilical cord blood and
adipose tissue and are adult stem cells with multidirectional
differentiation potential (173). MSCs attenuate fibrosis by
upregulating hepatocyte growth factor (HGF) (174, 175), insulin
growth factor (176), and MSCs-derived EVs improve hepatocyte
regeneration and modulate immune activity, demonstrating
therapeutic benefits in various liver diseases (173). Meanwhile, the
role of MSCs-derived EVs cannot be ignored. Experiments have
shown that ADMSC (adipose-derived mesenchymal stem cells)-
derived EVs promote anti-tumor responses of NKT cells, leading to
early ADC increase and low-grade tumor differentiation (177). In
addition, an anti-tumorigenic effect of MSC-EVs was also observed
in a CCl4-induced mouse liver tumor model. After treatment with
EVs, the growth of liver tumor was significantly inhibited by
inhibiting oxidative stress (178). Bruno, S et al. have
demonstrated that EVs in human BM-MSCs can induce HepG2
cell cycle blockers and apoptosis necrosis in vitro, which inhibit
tumor growth in the body. However, EVs secreted by fibroblasts
formed by differentiation of human derived MSCs lack antitumor
effects (179). In addition, miR-122 delivered viaAMSC-derived EVs
may provide new therapeutic options for HCC (Figure 4. ①) (180).
It remains unclear that whether MSCs-derived EVs can inhibit
HCC progression by carrying cargo, and it provides a new direction
for the possibility of using MSCs-derived EVs as carriers to exert
anti-tumor effects.
FIGURE 3 | HCC cell-derived EVs carry cargo and regulate different receptor cells.
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6.2 Cancer Stem Cells-Derived EVs
Cancer Stem Cells (CSCs), with proliferative and differentiation
potential, is more easily contributing to tumor recurrence (181–
184). It is reported that EVs derived from CSCs can induce
tumor growth, metastasis, participating in angiogenesis and
maintaining the stem cell phenotypes (185–188). EVs released
from CSCs containing multiple cargoes, including proteins and
multiple RNA (189). EVs can make the microenvironment to
change in the direction of promoting tumor occurrence and
metastasis. For example, Domenis, R et al. found that CSC-
derived EVs inhibits T cells through monocyte-specific secretion
of IL-10 (190). In addition, fibroblasts can be converted into
cancer-associated fibroblasts (CAF) through the uptake of CSC-
derived EVs, promoting tumor progression and metastasis (191).
It was also found that CSCs-like CD90+ hepatocytes regulate the
endothelial phenotype by releasing EVs containing H19 lncRNA,
significantly increase VEGF expression, and promote
intercellular adhesion, induce angiogenesis, and affect the
tumor microenvironment (154). What’s more, Alzahrani FA
et al. showed that hepatic CSCs-derived EVs were able to
increase the expression of Bcl2, TGFb1, NFkB, MMP9, VEGF,
13K, ERK and decrease the levels of Bax, p53, TIMP1 mRNA in
Frontiers in Oncology | www.frontiersin.org 10
the liver of mice, suggesting that CSCs-derived EVs promote
hepatocellular carcinoma cell invasion while upregulating
TGFb1-induced EMT (Figure 4. ②) (192). However, it is of
interest that CSCs-derived EVs and MSCs derived EVs had
opposite effects on HCC growth and progression in vivo, and
neither involved promotion or inhibition of HCC-induced
oxidative stress or antioxidant activity. As can be seen, these
studies have showed new insights into the treatment of HCC, and
more research is needed to clarify the mechanisms involved.

6.3 Macrophages-Derived EVs
Depending on the state and functional status of macrophages
after activation, they can be divided into M1 and M2
macrophages, with M1 macrophages playing a tumoricidal role
and M2 macrophages promoting tumorigenesis (193). M1
macrophages are involved in the polarization of Th1 and high
expression of IL-6, IL-12, TNF-a, iNOS, ROS to promote the
occurrence of inflammation (194). EVs from M1 macrophages
induce stronger antigen-specific cytotoxic T-cell responses in
lymph nodes, enhance immune responses to cancer vaccines,
and are used as effective vaccine adjuvants (195). In the TME,
tumor-associated macrophage (TAM)-derived EVs significantly
TABLE 2 | The cargos and functions of EVs related with HCC.

Name of the
Cargo in EVs

Cargo
Type

Mechanism of the Cargo Function of the Cargo Vivo or
vitro

Cell lines Refs

miR-429 miRNA Targeting the RBBP4/E2F1/OCT4 axis in recipient cells,
promote liver T-ICs properties

Facilitate HCC Vitro T-ICs (46)

miR-142-3p miRNA Down-regulation of RAC1 Suppressed migration of HCC Vivo Hepa1-6 (166)
miR-221 miRNA Binding to the target sites in the 3’-UTR of p27/Kip1

tumor suppressor gene
Promote proliferation of HCC Vitro SMMC-

7721
(135)

miR-25 miRNA Attenuating p53 and enhancing FOXM1 expression Mediate sorafenib resistance in HCC Vitro HepG2 (138)
miRNA let7b miRNA Targeting proinflammatory cytokine IL-6 Attenuates tumor inflammation Vivo,

Vitro
H22 (136,

141)
miR-34a miRNA miR-34a was down-expressed in HCC, promoted the

translation of antiapoptotic factors
Promote the conversion of CHB to HCC Vitro – (139)

CD147 protein Induce upregulation of MMPs in fibroblasts, leading to
extracellular matrix degradation

Promote tumoral invasion Vitro – (136)

miR-1247-3p miRNA Targets B4GALT3, activate b1-integrin–NF-kB signaling,
activated CAFs secrete pro-inflammatory cytokines

Promote lung migration of liver cancer Vivo,
Vitro

CSQT-2 (143)

miR-103 miRNA Inhibiting the expression of VE-Cad, p120 and ZO-1,
attenuated the endothelial junction integrity

Promote vascular permeability and
metastasis

Vivo MHCC97H (153,
167)

miR-638 miRNA Attenuate endothelial junction integrity Promote vascular permeability and
metastasis

Vivo HuH-7M (168)

miR-93 miRNA Directly inhibiting the expression of TIMP2/TP53INP1/
CDKN1A

Promote proliferation and metastasis of HCC Vitro SKHEP1 (147)

miR-23a-3p miRNA Promotes PD-L1 expression in macrophages and
inhibits T-cell function through miR-23a–PTEN–AKT
signaling pathway

Promote proliferation and metastasis of HCC Vivo,
Vitro

HepG2 (145)

lncRNAFAL1 lncRNA Competitively binding to miR-1236, indirectly up-
regulated the expression of AFP and ZEB1

Promote proliferation of HCC Vitro Huh7 (5,
148)

IncRNA 85 lncRNA Targeted miR-324-5p and regulated its expression
through a ceRNA mechanism

Promote proliferation and metastasis of HCC Vitro HepG2 (163)

lncRNATUC339 lncRNA Excess lncTUC339 expression in macrophages
promoted M(IL-4) polarization

Suppress the immune response to tumor
cells

Vitro HL-7702 (147)

circUHRF1 circRNA Upregulate TIM-3 expression and suppress the
production of IFN-g and TNF-a

Inhibit NK cell function Vivo SMMC-
7721

(169)

Vps4A protein PI3K/Akt pathway was inactivated by Vps4A-
overexpression

Inhibit the growth and metastasis of HCC Vivo Hep3B (159)

CFH protein Increase the production of C3a and C5a Promote proliferation and metastasis of HCC Vivo,
Vitro

Huh7 (151)
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downregulate miRNA-125a and miRNA-125b (miRNA-125a/b
targets CD90, a stem cell marker for HCC) and promote the
progression of HCC (196). The macrophages were treated with
propofol to help secrete more EVs with miRNA-142-3p, which
can be absorbed by HCC cells, and furtherly, RAC1 inhibited the
migration and tumor growth in mice (Figure 4. ③) (166). M2
macrophages are involved in Th2 polarization and highly express
IL-4, IL-10, TGF-b, CD206, CD163, CCL22, etc., while reduce
the expressing of IL-12,downregulate the immune response and
promote tumor progression (197). In an experiment by Jian Pu
et al. in which EVs were injected into a mouse model of liver
cancer, M2 macrophage-derived EVs were found to promote
CD8+ T cell failure via the miR-21-5p/YOD1/YAP/b-catenin
axis (Figure 4. ⑧) (198). Thus, it seems that M2 macrophages are
closely associated with the malignant development of
HCC (199).

6.4 Adipocytes-Derived EVs
Adipocytes mainly play a role in providing metabolic substrates
for tumor cells. There is evidence that adipose-derived EVs can
promote tumor growth in HCC by downregulating VHL,
delivery of miR-23a/b. Studies in vivo have shown that
increasing levels of EVs-miR-23a/b, VEGF, GLUT1 and HIF1a
accelerated tumor growth and rate in high fat diet mice
(Figure 4. ④) (200). Visceral adipocyte exocytosis induces
dysregulation of the TGF-b pathway in HepG2 cells in high
body fat individuals, but not in low body fat individuals (201).
Zhang, H et al. suggested that EVs-circ-DB was upregulated in
Frontiers in Oncology | www.frontiersin.org 11
HCC patients with high body fat and its positively correlated
USP7 was also increased (202). Mature adipocyte-derived EVs
and HCC cellular effects lead to a decrease in miRNA-34a (tumor
suppressor), while an increase in the USP7/Cyclin A2 signaling
pathway (pro-cancer), a promotion of HCC cell growth, and a
reduction in DNA damage (Figure 4.⑤). Nevertheless, once circ-
DB is knocked out, these effects will disappear. Furthermore,
adiponectin is an abnormally abundant adipocytokine that
regulates sEVs biogenesis by binding to T-cadherin and
reduces cytosolic ceramide levels by releasing EVs (203, 204).
sEVs are formed through the non-dependent mechanism of
ESCRT, a process in which ceramide is essential and
accordingly lipocalin is crucial in regulating their exocytosis.
sEVs as a biological delivery vehicle for cancer treatment has
been a hot research topic recently, but the role of adipocyte-
derived EVs in HCC still requires further investigation.

6.5 Fibroblasts-Derived EVs
The connective tissue is rich in fibroblasts. Understanding the
regulation of CAF in HCC is critical. CAFs-derived EVs are low
in miR-320a, which binds to its direct downstream target PBX3
and inhibits HCC by suppressing MAPK pathway activation
(Figure 4. ⑥) (164). The expression of CAFs-derived EVs-MiR-
150-3p is reduced, which can inhibit the migration and invasion
of hepatocellular carcinoma cells (Figure 4.⑦) (205), suggesting
it may be a new therapeutic option. Meanwhile, studies have
reported that miR-195 in HCC has been downgraded to VEGF,
CDC42, CDK1, CDK4, CDK6, and CDC25 (206, 207). As
FIGURE 4 | Regulation of HCC by different cell-derived EVs.
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described, understanding the mechanism of fibroblasts-derived
EVs on HCC can help design new therapeutic approaches.
7 HYPOXIA-INDUCED
MICROENVIRONMENT AFFECTS THE
REGULATION OF HCC BY EVs

Many solid tumors live in the hypoxic microenvironment. Hypoxia
promotes the production and release of EVs from cancer cells.
Studies have showed that the number of sEVs in breast cancer cells
and oral squamous carcinoma cells was significantly increased
under hypoxic conditions (208). Hypoxia-inducible factor-a1 is a
regulator of cells under hypoxic conditions and can facilitate the
release of EVs (209). The proteins and nucleic acids of sEVs are also
altered in the hypoxic environment (210). Under hypoxic
conditions, miR-1273f carried by sEVs could accelerate the
progression of HCC, targeting LHX6, which further inhibits HCC
tumorigenesis or malignant transformation by targeting theWnt/b-
catenin signaling pathway (211). Hypoxia-generated sEVs can
Frontiers in Oncology | www.frontiersin.org 12
inhibit the expression of E-cadherin, thereby promoting EMT
(212). EVs derived from HCC cells could affect angiogenic
endothelial cells under the hypoxic conditions through
upregulation of miR-155, thereby affecting tumor angiogenesis
(213). Furthermore, EVs released from epithelial ovarian cancer
(EOC) cells can express more miR-21-3p, miR-125b-5p and miR-
181d-5p under the hypoxic conditions, thus facilitating M2
macrophage polarization (214). Additionally, DLX6-AS1 carried
by HCC is in competition with miR-155 to regulate CXCL17. M2
macrophage polarization is induced, and migration, invasion, and
EMT of HCC will be accelerated (215). Unfortunately, the authors
did not investigate whether hypoxia accelerates this process. Rong, L
et al. saying that hypoxia enhanced the secretion of sEVs in breast
cancer cells, thereby inhibiting the proliferation of T cells (216).
Moreover, hypoxia induced a significant increase in TGF-b1
content in cancer cell-derived EVs, decreased the expression of
the activation receptor NKG2D, and inhibited the cytotoxicity of
NK cells and also reduced the production of IFN-g (217). Therefore,
the tumor hypoxic microenvironment is closely related to tumor
development, treatment and prognosis, which has become a
research hotspot to find new treatments for HCC (Figure 5).
FIGURE 5 | Hypoxia-induced microenvironment affects the regulation of HCC by EVs : The role of EVs derived from HCC on immune cells in the hypoxic
environment. ① Suppressing the proliferation of T cells or rendering them incompetent. ② Whether the inhibitory effect on IFN-b production by NK cells and the
process of inducing macrophage polarization are enhanced remains to be verified. The role of HCC-derived EVs facilitates EMT. ③ In the hypoxic environments,
miR-1273f is upregulated in HCC-derived EVs, acting on LHX6 to activate Wnt/b-catenin to promote EMT. ④ In the normoxic environment, HCC-derived EVs contain
N1D1, which may activate the ERK/MAPK pathway in recipient HCC cells to promote EMT. Regulation of angiogenesis by HCC-derived EVs. ⑤ In the hypoxic
environments, miR-155 is upregulated in HCC-derived EVs and promotes angiogenesis. ⑥ In the normoxic environment, HCC-derived EVs are enriched in N1D1 and
HSP1, which promote angiogenesis.
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TABLE 3 | EVs as biomarkers for the diagnosis of HCC.

Classification Biomarkers Expression Species Type of biolo-
gical fluid

AUROC Clinical significance Refs

m/lEvs AnnexinV+EpCAM+ASPGR1+CD133+taMPs ↑ Human serum 0.7439 Diagnosis of HCC/CCA from LC
(225)

EpCAM+AnnexinV +ASGPR1+taMPs ↑ Human serum 0.7322 Diagnosis of HCC/CCA from LC
(225)

Total m/lEVs of peripheral blood ↑ Human serum 0.83 Diagnosis of E-HCC from LC (TNM
stage I) (226)

sEVs microRNA miR-148a ↑ Human serum 0.871 Diagnosis of HCC from NC Diagnosis
of E-HCC from LC (227)0.860

miR-122 ↑ Human serum 0.990 Diagnosis of HCC from NC Diagnosis
of E-HCC from LC (227)0.795

miR-1246 ↑ Human serum 0.825 Diagnosis of HCC from NC Diagnosis
of E-HCC from LC (227)0.761

miR-638 ↑ Human serum —— Associated with tumor recurrence, As
a prognostic marker (228)

miR-125b ↑ Human serum 0.739 Prediction of recurrence and survival
(229)

miR-93 ↑ Human serum 0.825 The prognosis and diagnosis of HCC
(147)

miR-665 ↑ Human, serum —— Diagnosis and prognosis of HCC
(230)Mice

miR-92b ↑ Human, serum 0.702 Prediction of E-HCC relapse after
LDLT (231)Rats

miR-21 ↑ Human serum —— Detection of E-HCC, Prognostic
marker (232)

miR-718 ↑ Human serum —— Prediction of HCC relapse after LDLT
(233)

miR-21-5p ↑ Human serum 0.71 Diagnosis of HCC from LC
(234)

miR-21, miR-10b ↑ Human, serum —— Prognostic markers of E-HCC
(235)Mice

miR-18a, miR221, miR-222, miR224 ↑ Human serum —— Diagnosis of HCC from LC/CHB
(223)

miR-101, miR106b, miR-122, miR-195 ↑ Human serum —— Diagnosis of HCC from CHB
(223)

miR-122, miR148a, miR-1246 ↑ Human serum —— Diagnosis of HCC from LC
(227)

miRNA-519d, miR-595, miR-939 ↑ Human serum —— Diagnosis of HCC from LC
(222)

miR-10b-5p, miR-221-3p, miR-223-3p, miR-
21-5p

↑ Human plasma 0.86 Diagnosis of HCC from CH or LC
(234)

lncRNA lncRNA-HEIH ↑ Human serum —— Diagnosis of HCV-associated HCC
from CHC (236)

LINC02394 ↑ Human serum 0.719 Diagnosis of HCC from CHB
(237)

LINC00635 ↑ Human serum 0.750 Diagnosis of HCC from CHB
(237)

LINC00161 ↑ Human serum 0.794 Prediction of HCC growth and
metastasis (238)

IncRNA-ATB ↑ Human serum —— The prognosis of HCC
(239)

Lnc85 ↑ Human plasma 0.869 Diagnosis of AFP-negative HCC from
healthy controls and LC (163)

SENP3-EIF4A1 ↑ Human,
Mice

plasma 0.8028 The diagnosis of HCC
(160)

circRNA circFBLIM1 ↑ Human,
Mice

serum —— The therapeutic target of HCC
(149)

circ-0051443 ↑ Human,
Mice

plasma 0.8089 The diagnosis and therapeutic target
of HCC (161)

circRNA-100338 ↑ Human,
Mice

serum —— The diagnosis and therapeutic target
of HCC (240)

circUHRF1 ↑ Human,
Mice

plasma —— The therapeutic target of HCC
(169)

(Continued)
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8 BIOMARKERS

EVs are providing important links for intercellular information
transfer (218), and specific proteins and nucleic acids in EVs are
important biomarkers for clinical diagnosis of various liver
diseases.At present, the clinical assessment of liver damage is
mainly based on liver enzyme profiles, such as aspartate
aminotransferase (AST), alanine aminotransferase (ALT) (219–
221). However, these enzyme markers lack specificity for liver
diseases. Traditional tumor markers such as AFP, AFP-L3 are
susceptible to other liver diseases and cannot analyze HCC for
etiology, which has certain limitations. Therefore, to find new
specific markers for patients with liver disease is significant.
Much research mentioned that the proteins and nucleic acids
carried by EVs can serve as markers to predict the prognosis of
patients with liver disease (222–224).
8.1 EVs-Associated Nucleic Acids as
Biomarkers for HCC Diagnosis
8.1.1 miRNAs
miRNAs in serum EVs hold great potential as novel diagnostic
biomarkers, and some of which have been reported worldwide
(Table 3). Elevated levels of miRNA-21 and lncRNA-ATB
Frontiers in Oncology | www.frontiersin.org 14
expression were found to have higher specificity and sensitivity
for HCC (232, 239). Patients with postoperative recurrence of
HCC have significantly reduced the expression of miRNA-718,
which was associated with the highly aggressive nature of HCC
(233). Interestingly, Wang, Y et al. proposed that EVs-miR-122,
EVs-miR-148a and EVs-miR-1246 in HCC patients serum were
apparently higher than those in the LC and the NC group, and
that these miRNAs combined with AFP could effectively reduce
the rate of misdiagnosis (227). However, for HCC patients with
low AFP expression, whether or not with hepatitis virus
infection, sEVs’ miRNAs are more indicative of being markers
of HCC when they are expressed as miR-10b-5p+ miR-221-3p+
miR-223-3p and miR-10b-5p+ miR-221-3p+ miR-223-3p+ miR-
21-5p (234). Tian X et al. indicated that an acidic environment
triggers HIF-1a and HIF-2a activation and facilitates the
expression of EVs-miR-21 and EVs-miR-10b, significantly
promoting the progression of HCC both in vivo and vitro
(235, 249). We also find that several miRNAs are studied at
high frequency, such as miR-21 and miR-122, and the results
may differ in different study contexts. Besides, we read that some
serum miRNAs are biomarkers of HCC (250–256), but it is not
explicitly stated that these miRNAs are associated with EVs, and
their roles in the progression and recurrence of HCC need to be
further explored.
TABLE 3 | Continued

Classification Biomarkers Expression Species Type of biolo-
gical fluid

AUROC Clinical significance Refs

circ-DB ↑ Human,
Mice

adipocyte —— The prognosis of HCC
(202)

proteins LAPTM4B-35 ↑ Human serum —— Prediction of recurrence and
diagnosis of HCC (241)

SMAD3 ↑ Human,
Mice

peripheral
blood

0.70 The diagnosis of HCC
(242)

RAB5A ↑ Human serum —— The diagnosis and therapeutic target
of HCC (243)

ENO1 ↑ Human,
Mice

serum —— The prognosis of HCC
(244)

Other
combinations

miR-122, miR-148a, AFP ↑ Human serum 0.931 Diagnosis of HCC from LC
(227)

SMAD3+ATP ↑ Human,
Mice

peripheral
blood

0.90 The diagnosis of HCC
(242)

lncRNA-RP11-513I15.6, miR-1262/RAB11A ↑ Human serum —— Diagnosis of E-HCC from CHB
(245)

miRNA-21, lncRNA-ATB ↑ Human serum —— The prognosis of HCC, overall
survival (239)

ENSG00000258332.1, LINC00635, AFP ↑ Human serum 0.894 The diagnosis and prognosis of HCC
(237)

AFP、ENST00000248932.1,
ENST00000440688.1, ENST00000457302.2

↑ Human plasma 0.905
0.879

Predict the probability of HCC in the
cancer‐free groups
Predict the probability of HCC in the
CH groups

(246)

Total EVs Total EV ↑ Human serum 0.83 Detection of HCC
(225)

AFP, GPC3, ALB, APOH, FABP1, FGB, FGG,
AHSG, RBP4, TF

↑ Human plasma 0.93 Diagnosis of E-HCC from LC
(247)

LINC00853 ↑ Human serum 0.956 Diagnosis of E-HCC from CH、LC
(248)
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8.1.2 lncRNAs
In recent years, the potential of EVs-derived lncRNAs in the
prognosis of HCC has also attracted growing research interest.
lncRNAs alter lncRNA expression can contribute to the cancer
phenotype by stimulating cell proliferation, angiogenesis, immune
evasion, and inhibition of apoptosis. Among them, linc-VLDLR was
identified as a lncRNA enriched in EVs that contributes to the
cellular stress response (257). ENSG00000248932.1,
ENST00000440688.1 and ENST00000457302.2 were significantly
increased in HCC patients, suggesting that lncRNAs may predict
tumorigenesis and can be used to dynamically monitor HCC
metastases (246). The expression of lncRNA-HEIH was higher in
patients with HCV (hepatitis C virus)-associated HCC than that of
CHC (chronic hepatitis C) patients (236, 258). Some indicated that
sEVs levels of ENSG00000258332.1 and LINC00635 in serum were
significantly high and it would be more specific and sensitive when
they combined with serum AFP to detect HCC (237). Huang X and
Kim S et al. suggested that EVs-derived Lnc85 and LINC00853
showed high positivity in AFP-negative patients with early HCC
and were significantly better than AFP, respectively, which is
particularly relevant to patients with AFP-negative tumors (163,
248). The potential of EVs containing lncRNAs as biomarkers in the
process of HCC diagnosis cannot be ignored, and to find more
specific markers for HCC is the next research direction.

8.1.3 CircRNA
There is growing evidence that circRNA in EVs has certain
advantages in terms of abundance and stability, indicating that
they are promising therapeutic targets for HCC. Similar to
miRNA and lncRNA, changes in circRNA expression can also
affect the occurrence and progression of HCC (259). In addition,
circFBLIM1 was significantly expressed in HCC serum sEVs and
promoted HCC progression by affecting the miR-338/LRP6 axis
(149). Similarly, Bai N et al. found that circFBLIM1 acts as
ceRNA to facilitate HCC by sponging miR-346 (260). In
contrast, sEVs-circ-0051443 inhibits HCC progression by
regulating miR-331-3p/BAK1 (161). Moreover, Huang XY
et al. indicated that HUVECs receiving the circRNA-100,338
could boost the metastatic capacity of HCC cells, which may be
Frontiers in Oncology | www.frontiersin.org 15
related to the regulation of angiogenesis (209). Furthermore,
serum EVs-circrna-100, 338 in patients with radical hepatic
resection HCC are persistently hyperexpressed, dedicating lung
metastases and low survival (240). Ultimately, circMTO1 (261),
circSETD3 (262), cSMARCA5 (263), and hsa_circ_0068669
(264) also play key roles in HCC and are potential therapeutic
targets, but it remains unclear whether these circRNAs and EVs
are related.
8.2 EVs-Associated Proteins as
Biomarkers of Liver Disease
EVs proteins change with the environment and state of liver cells,
it can be used directly or indirectly as a biomarker in different
liver diseases (265, 266) to predict the progression of the
corresponding liver disease (Table 4). CYP450-2E1 (227) and
protein tyrosine phosphatase receptor (sPTPRG) isoforms
associated with EVs are biomarkers of liver injury, and
sPTPRG in plasma reflects the extent of liver injury (274, 278).
If CD8, CD14, and connective tissue growth factor (CCN2) are
highly expressed in EVs, they can be used to assess the degree of
liver fibrosis (272, 273, 279). High expression of Apolipoprotein
A-1 by EVs elevates liver-specific proteins such as FGB, causing
toxic acute liver injury (269). Studies have shown that EVs
containing Carboxylesterase-1 and Carboxylesterase-3 can be
evaluated for hepatotoxicity (269, 270). JH H et al. indicated that
EVs highly express AnnexinV+EpCAM+ASGPR1+CD133+
taMPs, which can be a novel biomarker for HCC and CCA
liquid biopsies (225). If MMP-7 is highly expressed in EVs, it
could be a marker for the differential diagnosis of CCA (271).
Hepatocytes secrete EVs if ASGPR1+, which can be an
alternative non-invasive biomarker of portal hypertension in
NASH patients (267).

High CD4+ expression in EVs can be a biomarker to
diagnosis nonalcoholic fatty liver (NASH) from chronic
hepatitis C (CHC) (268). Positive CD34+ with ASGPR (heavy
alcoholic hepatitis) or CK18 (alcoholic hepatitis) in EVs can be
used as biomarkers (276, 277), among them, CD34 can also be
used as a biomarker to determine heavy alcoholic hepatitis (276).
TABLE 4 | EVs-associated proteins as biomarkers of liver disease.

Liver disease Biomarkers Types Function References

Non-alcoholic
steatohepatitis(NASH)

ASGPR1+ Protein A surrogate noninvasive biomarker of portal hypertension in patients
with cirrhotic NASH.

(267)

CD4+ Protein Biomarkers of nonalcoholic fatty liver(NAFL)and CHC (268)
Toxic acute liver injury Apolipoprotein A-1 Protein Tentative hepatotoxic markers during hepatic damage (269)

Carboxylesterase-1 Protein Hepatotoxic markers during hepatic damage (269)
Carboxylesterase-3 Protein Non-invasive indicator of drug toxicity (270)

CCA AnnexinV+EpCAM+ASGPR1
+CD133+ taMPs

– A novel biomarker of HCC and CCA liquid biopsy (225)

MMP-7 Protein Biomarkers for the diagnosis of CCA (271)
Liver fibrosis CD8+ Protein A biomarker for liver fibrosis (272)

CD14+ Protein A tamps biomarker for liver fibrosis (273)
Alcoholic steatohepatitis
(ASH)

CYP450-2E1 Cytochrome A potential biomarker for liver injury (274)
CD40L Protein A potential biomarker for ASH (275)

Alcoholic hepatitis CD34+ ASGPR Protein Biomarkers of alcoholic hepatitis (276)
CK18 Protein Biomarkers of alcoholic hepatitis (277)
May 2022 | Volume 12 | A
rticle 884369

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Extracellular Vesicles and Hepatocellular Carcinoma
ENO1 upregulates the expression of integrin a6b4 and activates
the FAK/Src-p38MAPK pathway (244). Gorji-Bahri G et al.
suggested that RAB5A knockdown could be used as a
therapeutic target to control the progression of HCC (243).
Pang Y et al. saying that LAPTM4B-35 is associated with the
HCC relapse, drug resistance, and it is expected to be a new
diagnostic marker for HCC (241).

Many studies have shown that EVs affect the progression of
various liver diseases by regulating cellular functions and
activating key signaling pathways in receptor cells, obviously,
which are newly discovered potential biomarkers, to open up
new ways to clinically distinguish different kinds of liver disease.
Unfortunately, the role of EVs in the diagnosis, prognosis
determination and predictive value of liver diseases is still
lacking sufficient clinical evidence. Studies on the sensitivity
and specificity of these markers in liver disease have also been
reported relatively rarely, and relevant applications remain to be
further investigated.
9 VESICLE-LOADED DRUGS

9.1 EVs are Natural Nanocarriers
EVs are endogenous cell-derived membranous structures,
natural nanocarriers with very low cytotoxicity and
immunogenicity, protecting the transported RNA from
disassembly and phagocytosis by ribonucleases, with inherent
activity targeting and ability to cross biological barriers (30). EVs
can transport a wide variety of bioactive molecules, thus altering
the physiological functions of the recipient cells and reducing the
accumulation of chemotherapeutic drugs in non-target organs,
thereby reducing off-target toxicity. Additionally, EVs can bind
to each other through various ligand receptors, especially
cytokinesis (280). EVs are efficient as synthetic nanocarriers.
EVs as nucleic acid and drug delivery vehicles has been
extensively studied (281, 282). Notably, EVs as drug carriers
need to find an efficient method as cargo loading. Different
techniques such as electroporation (283), incubation (284),
sonication (285), and freeze-thawing have been applied for the
EVs loading (286). What’s more, EVs can also be loaded with
specific cargoes with endogenous mechanisms such as direct
transfection or co-incubation to deliver the cargo to the
cytoplasm (287, 288). However, these loading techniques may
lead to some changes in the morphological characteristics and
physicochemical properties of EVs, as well as aggregation of
themselves or of the cargo they carry (289, 290). A more accurate
understanding of the proteomic profile of EVs and the factors
influencing protein composition will facilitate the development
of protein-based therapeutic strategies for EVs in the future
(291, 292).

9.2 Application of Drug-Carrying EVs
in HCC
We review emerging strategies for targeted delivery using EVs
and explore the use of them for the treatment of hepatocellular
carcinoma. Treatment of H22 cells with the chemotherapeutic
Frontiers in Oncology | www.frontiersin.org 16
drug methotrexate (MTX) and irradiation with UV light, which
could secrete Microparticles (MPs) when co-incubate with the
remaining H22 cells, effectively kill tumor cells and reduce
adverse effects, while impeding drug efflux (98). We read that
RBC-EVs loaded with doxorubicin or sorafenib showed
enhanced therapeutic effects in mouse models of in situ HCC
through a macrophage-dependent mechanism compared with
conventional doses of doxorubicin and sorafenib (293). More
importantly, drug-loaded RBC-EVs did not show systemic
toxicity, whereas conventional doses of doxorubicin and
sorafenib did. The main challenges in the current clinical
application of EVs are the limited yield and the susceptibility
to contamination of EVs with various centrifugation methods
(105, 114), which affects the purity and biological properties of
EVs. In addition, although EVs are good natural carriers, how
to load substances efficiently such as antitumor drugs or genes
into EVs is still an urgent technical problem to be solved. Drug-
carrying EVs are promising for clinical applications in the
treatment of liver diseases, and careful selection of cells of
origin for EVs, the creation of appropriate methods for loading
the molecules they carry, overcoming low yields, etc. are
current research hotspots.
10 DISCUSSION

EVs are sensory molecules for information exchange between
tumor cells in the microenvironment, activating different
signaling pathways and influencing the development,
progression and metastasis of tumors (294–297). In recent
years, EVs have become promising vehicles in liver disease for
their low toxicity, high stability and preferential absorption
(298). Today, the application of EVs is still in its early stages.
Although there have been clinical trials choosing miRNAs for
liver disease, they are still not available for clinical use (298),
lacking a number of clinical trials to demonstrate the
effectiveness of EVs. The mechanisms and clinical applications
of EVs in liver disease need to be studied in more depth. EVs may
be an effective intervention in the future, showing a new light for
oncology patients. What’s more, EVs can also alter the function
of recipient cells and is crucial in the genesis, development and
pathogenesis of HCC. Circulating EVs, as a novel signaling
modality, which are involved in multiple processes including
tumor development and metastatic drug resistance, are
promising biomarkers for diagnosing liver disease and
monitoring treatment response (46).

Notably, our current understanding of EVs is still inadequate
and standard methods for isolating and tracking EVs are lacking.
EVs are nearly released by all cells in the body, and many
mechanisms involved in their production, transport, uptake
and involvement in cancer development have not been fully
explored (299), and challenges remain in the extraction,
identification and processing of EVs biomarkers for analysis.
In addition, the complexity of the immune response and
microenvironment in the liver poses a significant challenge to
the routine treatment of patients with HCC (300). Therefore, it is
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important to improve isolation techniques, tracking methods,
screening for tissue-specific markers of EVs or the identifying
EVs of tissue-specific origin in lesions. Making full use of the
different extraction techniques available and optimising them is
an important next step in research. In addition, experiments in
vitro and in vivo on EVs still have many limitations, so there is an
urgent need to establish well-developed experimental models to
further explore their properties and mechanisms of action, and
to explore the potential of using this intercellular communication
modality in the TME for molecular diagnosis and targeted
therapy of tumors. In conclusion, current studies indicate that
EVs is crucial in mediating the progression of liver disease and
therefore can be thought as a potential therapy for HCC. With a
more comprehensive understanding of EVs, more valuable
references will be provided for the prevention, diagnosis and
prognosis of HCC.
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ADC apparent diffusion coefficient
ADMSC adipose-derived mesenchymal stem cells
AF4 Asymmetrical flow field-flow fractionation
AHSG alpha 2-HS glycoprotein
ALB albumin
ALT alanine aminotransferase
APOH apolipoprotein H
ASGPR1 asialoglycoprotein receptor
ASH Alcoholic steatohepatitis
AST aspartate aminotransferase
AUROC Area under Receiver Operating Characteristics
BCA bicinchonic acid
BM-MSCs Bone marrow mesenchymal stem cells
CAFs Cancer-associated fibroblasts
CCA Cholangiocarcinoma
CCN2 Connective tissue growth factor
ceRNA competing endogenous RNA
CFH Complement Factor H
CH chronic hepatitis
CHB chronic hepatitis B
CHC chronic Hepatitis C
CHOP enhancer-binding protein homologous protein
CK18 Cytokeratin-18
CLEC3B C-Type Lectin Domain Family 3 Member B
CSCs Cancer stem cells
CTGF connective tissue growth factor
DCP des-gamma-carboxy prothrombin
DDS drug delivery system
EVs Extracellular vesicles
EC endothelial cells
EGF endothelial growth factor
E-HCC early-stage hepatocellular carcinoma
EMT Epithelial–mesenchymal transition
ENO1 Alpha-enolase
EpCAM epithelial cell adhesion molecule
ESCRT endosomal sorting complex required for transport
ELISA enzyme linked immunosorbent assay
FCS fluorescence correlation spectroscopy
FABP1 fatty acid binding protein 1
FGB fibrinogen beta chain
FUS focused ultrasound
GEVs Glioma-derived EVs
GGT glutamyl aminotransferase
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GPC3 glypican3
HCC hepatocellular carcinoma
HCV Hepatitis C Virus
HDL High-density lipoprotein particles
HEMs Adult human epidermal melanocytes
HGF Hepatocyte growth factor
HIF-1a Hypoxia Inducible factor 1 a
HIF-2a Hypoxia Inducible factor 2 a
HSCs Hepatic stellate cells
HUVECs Human umbilical vein endothelial cells
IL nterleukin
ILVs intraluminal vesicles
iNOS Inducible nitric oxide synthase
LAMP2B lysosomal associated membrane protein 2B
LC liver cirrhosis
LDLT living donor liver transplantation
LG3BP galectin-3-binding protein
LFIA Lateral-Flow Immunochromatographic Assay
MMP Matrix metalloproteinase
MPs Microparticles
MSC mesenchymal stem cells
MVBs multivesicular bodies
m/lEVs medium/large EVs
MDVs Mitochondria-Derived Vesicles
MAC membrane attack complex
NTA nanoparticle tracking analysis
NAFL Nonalcoholic fatty liver
NASH non-alcoholic steatohepatitis
NC normal control
NVs Nanovesicles
PIGR polymeric immunoglobulin receptor
RBP4 retinol binding protein 4
ROS reactive oxygen species
sEVs small EVs
SNX9 sorting nexin 9
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
SAH Severe alcoholic hepatitis
SMAD3 SMAD Family Member 3
sPTPRG Protein tyrosine phosphatase receptor Gamma
TAMs Tumor-associated macrophages
TF transferrin
TGF-b Transforming growth factor
TME Tumor microenvironment
TNFa Tumor necrosis factor alpha
TSG101 tumor susceptibility gene 101 protein
TRPS tunable resistive pulse sensing
VEGF Vascular endothelial growth factor
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