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Abstract

Site-specific investigations of the role of radiomics in cancer diagnosis and therapy

are emerging. We evaluated the reproducibility of radiomic features extracted from
18Flourine–fluorodeoxyglucose (18F-FDG) PET images for three parameters: manual

versus computer-aided segmentation methods, gray-level discretization, and PET

image reconstruction algorithms. Our cohort consisted of pretreatment PET/CT

scans from 88 cervical cancer patients. Two board-certified radiation oncologists

manually segmented the metabolic tumor volume (MTV1 and MTV2) for each

patient. For comparison, we used a graphical-based method to generate semiauto-

mated segmented volumes (GBSV). To address any perturbations in radiomic feature

values, we down-sampled the tumor volumes into three gray-levels: 32, 64, and 128

from the original gray-level of 256. Finally, we analyzed the effect on radiomic fea-

tures on PET images of eight patients due to four PET 3D-reconstruction algo-

rithms: maximum likelihood-ordered subset expectation maximization (OSEM)

iterative reconstruction (IR) method, fourier rebinning-ML-OSEM (FOREIR), FORE-

filtered back projection (FOREFBP), and 3D-Reprojection (3DRP) analytical method.

We extracted 79 features from all segmentation method, gray-levels of down-

sampled volumes, and PET reconstruction algorithms. The features were extracted

using gray-level co-occurrence matrices (GLCM), gray-level size zone matrices

(GLSZM), gray-level run-length matrices (GLRLM), neighborhood gray-tone differ-

ence matrices (NGTDM), shape-based features (SF), and intensity histogram features

(IHF). We computed the Dice coefficient between each MTV and GBSV to measure

segmentation accuracy. Coefficient values close to one indicate high agreement, and

values close to zero indicate low agreement. We evaluated the effect on radiomic

features by calculating the mean percentage differences (d) between feature values

measured from each pair of parameter elements (i.e. segmentation methods: MTV1-

MTV2, MTV1-GBSV, MTV2-GBSV; gray-levels: 64-32, 64-128, and 64-256; recon-

struction algorithms: OSEM-FORE-OSEM, OSEM-FOREFBP, and OSEM-3DRP). We
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used jdj as a measure of radiomic feature reproducibility level, where any feature

scored jdj �SD ≤ |25|% � 35% was considered reproducible. We used Bland–Alt-

man analysis to evaluate the mean, standard deviation (SD), and upper/lower repro-

ducibility limits (U/LRL) for radiomic features in response to variation in each testing

parameter. Furthermore, we proposed U/LRL as a method to classify the level of

reproducibility: High— �1% ≤ U/LRL ≤ �30%; Intermediate— �30% < U/LRL ≤

�45%; Low— �45 < U/LRL ≤ �50%. We considered any feature below the low

level as nonreproducible (NR). Finally, we calculated the interclass correlation coeffi-

cient (ICC) to evaluate the reliability of radiomic feature measurements for each

parameter. The segmented volumes of 65 patients (81.3%) scored Dice coefficient

>0.75 for all three volumes. The result outcomes revealed a tendency of higher

radiomic feature reproducibility among segmentation pair MTV1-GBSV than MTV2-

GBSV, gray-level pairs of 64-32 and 64-128 than 64-256, and reconstruction algo-

rithm pairs of OSEM-FOREIR and OSEM-FOREFBP than OSEM-3DRP. Although

the choice of cervical tumor segmentation method, gray-level value, and reconstruc-

tion algorithm may affect radiomic features, some features were characterized by

high reproducibility through all testing parameters. The number of radiomic features

that showed insensitivity to variations in segmentation methods, gray-level dis-

cretization, and reconstruction algorithms was 10 (13%), 4 (5%), and 1 (1%), respec-

tively. These results suggest that a careful analysis of the effects of these

parameters is essential prior to any radiomics clinical application.
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1 | INTRODUCTION

Radiological imaging in oncology is becoming essential in daily clini-

cal practice. Therefore, the focus has shifted toward comprehensive

quantification of radiological image data. This process would allow

for the extraction of more useful underlying information based on

quantitatively derived features: Radiomics. Several institutes have

reported quantitative analysis studies, with a focus on radiomic fea-

tures, for different imaging modalities such as computed tomography

(CT),1–3 and magnetic resonance imaging (MRI).4–6 The investigation

of positron emission tomography (PET) radiomics was first reported

in 2009.7–9 In recent years, fluorine-18-labeled fluoro-2-deoxy-

D-glucose positron emission tomography–computed tomography,
18F–FDG (PET/CT) has become a major functional imaging technique

in oncology due to its ability to evaluate tumor stage and metabolic

characteristics with high specificity and sensitivity.10,11

Since the start of 18F–FDG PET clinical application, there has

been a rapid growth in the number of studies that employed stan-

dardized uptake value (SUV) as a primary imaging biomarker for

uptake heterogeneity quantification. Such studies employed maxi-

mum, mean and peak SUVs (SUVMax, SUVMean, and SUVPeak, respec-

tively) as biomarkers for prediction,12 diagnosis, and monitoring of

treatment response.13 While SUVMax and SUVMean have been widely

studied, SUVPeak has recently been reported by Sher et al14 The lat-

ter is defined as the maximum of all the mean values computed from

placing a spherical kernel of approximately 1.2 cm in diameter to

yield a ~1 cm3 sphere centered at each voxel within the tumor vol-

ume.15 In addition to SUV measurements, metabolic tumor volume

(MTV) is another biomarker that has been reportedly shown to have

prognostic significance for clinical outcomes such as the develop-

ment of distant metastasis and loco-regional recurrence.16 Some

studies have demonstrated the ability of MTV to quantify hetero-

geneity of PET uptake in the detection of pelvic lymph nodes in cer-

vical cancer17,18 as well as in the association with treatment

response within the same site.19 Other studies focused on investi-

gating the performance of SUV to predict for survival endpoints or

treatment outcomes of cervical cancer, and head-and-neck tumors.20

However, relying solely on semiquantitative measurements, SUV or

MTV, as biomarkers have been shown to run into several pitfalls.

For example, in addition to radiotracer dose sensitivity, SUV mea-

surements are highly influenced by the distribution of radiotracer

uptake, delayed time of injection, and imaging acquisition and recon-

struction parameters.21 These factors can potentially reflect in

substantial treatment assessment uncertainty.
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As an alternative, several studies22 proposed quantitative imaging

features, such as radiomic features, as a surrogate to overcome such

pitfalls. Textural features, a type of radiomic features, are extracted

from statistical matrices based on local intensity spatial distribution

relationships. They are thought to be independent of tumor size,

position, and time of imaging.23 These characteristics made textural

features superior to SUV measurements regarding tumor hetero-

geneity characterization. Also, shape features (SF), which describe

geometrical characteristics of tumors, have shown to provide a mor-

phological characterization of PET uptake heterogeneity within a

specified volume of interest.24,25 Recent studies have emphasized on

the higher discriminatory power of several radiomic features in com-

parison to SUV measurements regarding classification of tumor ver-

sus benign regions in lung, and head-and-neck patients,26 as well as

for the prediction of cervical cancer treatment outcomes.27 Radiomic

features were also reported as a significant tool to stage cervical

cancer based on tumor heterogeneity information.28 Along the same

line, Cheng et al29 reported that uniformity, a GLCM feature, might

serve as an independent prognostic predictor as well as risk stratifi-

cation descriptor for patients with oropharyngeal squamous cell car-

cinoma. Another study investigated the physiologic reproducibility of

textural features by characterizing the tumor F18-FDG uptake

heterogeneity in the PET scans of 41 esophageal cancer patients.30

All the findings mentioned above indicates that quantitative

assessment of tumor uptake heterogeneity based on PET 18F–FDG

images is a promising method to investigate intra- and inter-tumor

characteristics. With such encouraging results, the focus is shifting

toward examining the reproducibility of radiomic features due to

various factors that might potentially affect their performance. The

most challenging of these factors is the definition of tumor volume.

An extensive review study by Foster et al31 identified five

sophisticated procedures of PET tumor segmentation, namely manual

segmentation, thresholding-based methods, learning methods and

stochastic modeling-based techniques, region-based (graphical-based)

segmentation methods, and boundary-based methods. The study

concluded that there is no notion of one acceptable PET image seg-

mentation method over the other. Also, it was suggested that further

research is needed to come to a conclusion of an optimal method

for PET segmentation. For more studies with efforts to enhance

methods of tumor segmentation on PET scans, the reader is encour-

aged to review these articles.32–35 In this study, we explored the dif-

ferences between using graphical- and boundary-based methods in

comparison to the manual method for segmenting the cervical tumor

volumes on PET scans.

Since the introduction of tomographic reconstruction application

to medical imaging in late 1960s, research work has progressed to

enhance image formation. In recent years, varying reconstruction

methods have evolved into sophisticated algorithms with various

image qualities due to modern computing. A study by Galavis et al36

showed that different acquisition modes and image reconstruction

settings might cause variation in radiomic features. Similarly, the

gray-level discretization of PET/CT images has shown to have a

great impact on some radiomic features.37

All the mentioned studies investigated the reproducibly of radio-

mic features in different body sites. To our knowledge, the repro-

ducibility of radiomic features in cervical cancer tumors has not been

widely reported. Thus, the purpose of this work was to investigate

the sensitivity of radiomic features with regard to three critical

parameters: segmentation methods, gray-levels discretization, and

PET reconstruction algorithms. The rationale was to develop a group

of radiomic features that might serve as robust biomarkers for cervi-

cal cancer outcome assessment.

2 | METHODS

2.A | Patient demographics and scanner
specifications

Our dataset consisted of pretreatment PET/CT scans from a cohort

of 88 patients diagnosed with cervical cancer (age range: 31–76 yr).

We used 80 patients for segmentation methods, and gray-level test-

ing and 8 for reconstruction algorithm testing. All patients were trea-

ted with external beam radiation therapy to a dose ranging between

45 and 50.4 Gy (median dose of 45 Gy), concurrent cisplatin

chemotherapy and MRI-planned brachytherapy to a dose of 20–

30 Gy (median total dose of 28 Gy). The patients’ disease was

staged according to the International Federation of Gynecology and

Obstetrics (FIGO) classification.38,39 The number of patients with

FIGO stages IB, IIA, IIB, IIIA, and IIIB were 24, 37, 12, and 15,

respectively.

This research study acquired the approval of our institutional

review board (IRB) at the University of South Florida. All of the

patients’ pretreatment PET/CT scans were performed in the Radiol-

ogy Department of Moffitt Cancer Center on the same Discovery

STE� hybrid PET/CT scanner (General Electric Medical Systems, Mil-

waukee, WI, USA)40 and under the same institutional F18-FDG

administration protocol. PET images had a slice thickness of

3.30 mm and spatial resolution of 5.49 9 5.49 mm/pixel and were

acquired after 60 min of injection with 6 MBq/kg of 18F-FDG. The

PET images were reconstructed using 3D maximum likelihood-

ordered subsets expectation maximization (ML–OSEM) with two

iterations and 28 subsets. All of PET images were corrected for

attenuation and then converted to SUV units (g/ml).

2.B | Method of tumor segmentation

In a measurement error study, we often consider the observers as a

random sample from a larger population of potential observers who

may be used in future studies or clinical practice.41 In the present

study, we treated each segmentation method as a different observer

of the tumor volume. In this case, we were not interested in drawing

conclusions about the performance of a particular segmentation

method, the observer, but only in the information provided by the

effect of their variation on radiomic features.

For the purpose of segmentation methods and gray-level effect

analysis, two board-certified radiation oncologists manually
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delineated the metabolic tumor volume (MTV1, MTV2) in the uterus

and cervix regions based on the F–18 FDG uptake in pretreatment

PET scans. The oncologists utilized CT scans and patient-specific

histopathological reports for guidance to differentiate between cer-

vix, bladder, and other surrounding organs. Both MTVs were gener-

ated using Mirada Medical DBx�, Oxford, UK. Due to the lack of a

ground truth for tumors, we chose MTV1 to be the reference, gold

standard, tumor volume due to the physician’s experience. Subse-

quently, we generated semiautomated graphical-based volumes

(GBSV) based on the method reported by Beichel et al42 For further

information about this method, the reader is encouraged to review

the cited article. This approach is implemented as an extension for

3D Slicer software (https://www.slicer.org/), an open source soft-

ware package to visualize and analyze medical images. We studied

the effects of RA variation on radiomic features extracted from the

GBSVs.

2.C | Method of gray intensity level discretization

This preprocessing step is essential as the value of the extracted

radiomic features varies widely from each other. Also, it helps to

reduce image noise by normalizing intensities across all patients’

images or tumor volumes. Therefore, it allows for a direct compar-

ison of all calculated radiomic features among patients. To investi-

gate the effect of gray-level, image intensity values, discretization on

radiomic features, we down-sampled the tumor volumes for each

patient into three gray-levels, 32, 64, and 128, in addition to the

original 256. Using such fixed numbers of discrete resampled values,

number of bins, divides the image SUV range into equally spaced

intervals. Therefore, the bin sizes, intensity resolutions, of the dis-

cretized volumes depended on the SUV range (i.e., four bin sizes for

each gray-level) as indicated by Eq. 1:

Bin Size ¼ SUVmax � SUVmin

Ng
(1)

where Ng: the number of gray-level bins.

2.D | PET reconstruction algorithms

One of the goals of this study was to focus on the effect of com-

mon PET reconstruction algorithms on radiomic features, but not to

discuss the difference between them. For references on medical

image reconstruction, the interested reader is encouraged to

read.43,44 In addition to ML-OSEM, the conventional iterative recon-

struction (IR) algorithm in GE Discovery STE scanners, we explored

the impact of three additional reconstruction settings (Fig. 1) on

radiomic features: Fourier rebinned FOREIR, FORE-filtered backpro-

jection reconstruction (FOREFBP), and three-dimensional reprojec-

tion algorithm (3DRP).

2.E | Radiomics analysis

In a recent study, Kumar et al defined radiomics as45 “the extraction

and analysis of large amounts of advanced high throughput of

(a)

(b)

(c)

(d)

F I G . 1 . PET image variations due to
different reconstruction algorithms (RA): (a)
Maximum Likelihood-Ordered Subset
Expectation Maximization Iterative (IR)
Method (ML-OSEM), (b) Fourier Rebinning-
ML-OSEM (FOREIR), (c) FORE-Filtered Back
Projection (FORE FBP), and (d) Three-
Dimensional Reprojection (3DRP).
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imaging features with high throughput from medical images obtained

with computed tomography, positron emission tomography or mag-

netic resonance imaging. Importantly, these data are designed to be

extracted from standard-of-care images, leading to a considerable

potential subject pool”. Radiomic features can be divided into differ-

ent categories according to their method of feature extraction. The

most common ones are textural and shape features. The intensity

arrangements found in a region of interest (ROI) within an image can

have various patterns, which can hold valuable information about

the ROI (e.g., tumor volume). These patterns are often called a tex-

ture. A textural feature of a radiological image describes the spatial

relationships among the gray intensity levels of voxels; textural analy-

sis is, therefore, the mathematical extraction of textural features and

their subsequent correlation of biological or clinical variables. On the

other hand, shape-based features are calculated to describe the mor-

phological characteristics of ROIs. Recently, all the mentioned quan-

titative imaging features are referred to as radiomic features. We

developed in-house software to process and quantify PET scans, and

also to calculate the five commonly implemented methods of feature

extraction. In total, we extracted 79 radiomic features according to

the following methods.

2.E.1 | Feature extraction using gray-level
co-occurrence matrix

The gray-level co-occurrence matrix (GLCM) (also known as spatial

gray-level sensitivity matrix) is a second-order statistical method that

characterizes the local information of gray-levels between pairs of

voxels; hence, the extracted features are considered local features.

In our implementation, the relationships between consecutive neigh-

boring voxels in 13 directions in a three-dimensional space were

quantified using a one-voxel displacement vector between a voxel

and its neighbor (i.e., voxel offest is one in all directions). Twenty-six

features were calculated using this method.23 GLCM features have

become one of the most well-known and widely used texture fea-

tures. Examples of this approach are Second-order Entropy, Difference

Entropy, Inverse Difference (ID), Inverse Difference Moment (IDM), and

Information Measure of Correlation (IMC).

2.E.2 | Feature extraction using gray-level
run-length matrix

Gray-level run-length matrix (GLRLM) were used to extract 11

regional features, which captures the coarseness characteristics of

image textures in specific directions within the predefined seg-

mented volume.46 A run is defined as the length of consecutive vox-

els that share the same gray-level intensity along a specific linear

direction. This method was mainly applied to generate features

based on fine textures that tend to contain more short runs with

similar gray-level intensities; and coarse textures, which tend to have

more long runs with significantly different gray intensities level.

Examples of this method are: Short Run Emphasis SRE (measures the

distribution of short runs in the image), Long Run Emphasis LRE

(measures the distribution of long runs in the image), and Run Per-

centage RPC (measures the homogeneity and the distribution of runs

of an image in a specific direction).

2.E.3 | Feature extraction using gray-level size zone
matrix

Gray-level size zone matrix (GLSZM) also extract 11 regional fea-

tures. However, the method of extraction takes place by quantifying

the clusters of homogenous intensity regions within the tumor.47

Examples of this approach are High-Intensity Emphasis (HIE), Low-

Intensity Emphasis (LIE), Size Zone Variability (SZV), Small Area Empha-

sis (SAE), and Large Area Emphasis (LAE).

2.E.4 | Feature extraction using neighborhood gray-
tone difference matrix method

We calculated this set of features according to the method initially

proposed by Amadasun and King.48 The five neighborhood gray-tone

difference matrix method (NGTDM) features are thought to mimic

human visual impressions. Note that the original NGTDM feature

equations were defined only for square ROIs. However, the calcula-

tions were modified slightly to apply them to irregularly shaped, and

multiple slice ROIs in 3D space. We used a neighborhood of 7 9 7

pixels for all PET images in this study. The five higher order features

were coarseness, contrast, complexity, busyness, and texture strength.

2.E.5 | Feature extraction using shape aspects

We extracted six shape-based features (SF) to describe morphologi-

cal and geometrical aspects of tumor volumes. Examples of this

method are convexity (a measure of tumors solidity), eccentricity

(a measure of noncircularity of tumors), and the ratio of tumor surface

area to tumor volume (Surf/Vol).10,49

2.E.6 | Feature extraction using intensity–volume
histogram

Tumor volume was plotted as a function of the image intensity to

generate global features. We calculated twenty common first-order

metrics such as the mean, standard deviation, maximum and minimum

intensities, skewness, and kurtosis. We also studied other intensity–

volume histogram (IVH)-based features reported by El Naqa et al27

Examples of such features are V90 (volume percentage having at

least intensity of 90%) and I90 (minimum intensity of 90% of the

highest intensity volume).

2.F | Statistical analysis

As previously mentioned, MTV1 was chosen as the reference vol-

ume. To assess segmentation accuracy, we computed the Dice coef-

ficient between the semiautomatic and manual segmentations. For

the segmented volumes MTV1, MTV2, and GBSV, the Dice
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coefficient is given by the following equation:

DC ¼ 2jMTV1 OR 2 \ GBSVjð Þ = jMTV1 OR 2j þ jGBSVjð Þ (2)

To assess the level of agreement between both experts; we

reported the Dice coefficient based on their observation for the

same tumor.

We generated matrices of inter-item correlation coefficients

(IIC)50–52 to determine the reference gray-level. As gray-level 64

demonstrated the highest IIC in comparison with all gray-levels

(Fig. 2). We investigated the reproducibility of each feature through

the first parameter by pairing the reference tumor volume with the

other two volumes (MTV1–MTV2 and MTV1-GBSV). For the second

parameter, we paired each of the three distinct gray-levels with the

reference (64-32, 64-128, and 64-256) and for the third, we paired

ML-OSEM with FORE-OSEM, FOREFBP, and 3DRP. We studied and

reported each test separately. We expressed the difference between

radiomic feature values measured from each element of the testing

parameters by the mean percentage difference jdj (Eq. 3):

jdj ¼ fm � fn
ðfm þ fnÞ=2� 100%

�
�
�
�

�
�
�
�

(3)

where fm and fn represent features extracted from first and second

segmentation methods, gray-level or reconstruction algorithms. Bland–

Altman analysis is a graphical method to quantify the agreement

between two quantitative measurements by studying the mean differ-

ence within which 95% of the difference between the second measure

in comparison to the first measure fall.53 We used the Bland–Altman

analysis to evaluate the mean, standard deviation (SD), and upper/

lower reproducibility limits (URL/LRL), Eqs. 4 and 5, for radiomic fea-

tures in response to variation in each testing parameter.54–56

URL ¼ Meanþ ð1:96� SDÞ (4)

LRL ¼ Mean� ð1:96� SDÞ (5)

The bias between measurements is often estimated by the

mean difference (d) and its associated standard deviation (SD). In

this study, we used jdj as an indicator for radiomic feature repro-

ducibility level, where any feature scored jdj � SD ≤ |25|% � 35%

was considered reproducible. Furthermore, we proposed the use of

U/LRL as criteria to classify the level of reproducibility: High—

�1% ≤ U/LRL ≤ �30%; Intermediate— �30% < U/LRL ≤ �45%;

Low— �45 < U/LRL ≤ �50%. We considered any feature below

the low level as nonreproducible (NR). We based this approach on

methods reported in several clinical studies.41,53–55 Also, Galavis

et al36 used a similar scale to categorize the features based on

their variation, and Tixier et al37 indicated that such limits were

referenced to previously defined reproducibility limits for standard

uptake values.

Finally, we calculated the interclass correlation coefficient (ICC)

to evaluate the reliability of radiomic feature measurements from

each parameter. A perfect agreement is indicated by an ICC value of

1.0. The 95% confidence intervals were also calculated. The preci-

sion of ICC (Eq. 6) served as a basis for evaluating the reproducibility

of measurements in each case.50

Precision ¼ half width of CI� 100

¼ ð95%CIUB� 95%CILBÞ=2½ � � 100 (6)

where CI represents confidence interval; UB and LB represent upper

and lower bounds, respectively. We considered a P-value of less

than 0.05 as statistically significant for all the tests in this study.

Finally, we explored the method used in Shafiq et al57 to correct for

the dependency of radiomic features on voxel size (volume) and

gray-level discretization. All statistical analyses were performed using

SPSS (Version 22; IBM Corporation; Armonk, New York, USA) and

MedCalc Statistical Software version 17.6 (MedCalc Software,

Ostend, Belgium; http://www.medcalc.org; 2017).

GL (64-32) GL (64-128) GL (64-256)
IDM (GLCM) 0.997 0.996 0.822
Diff. Entropy(GLCM) 0.956 0.910 0.838
SRE (GLRLM) 0.948 0.920 0.892
RPC (GLRLM) 0.951 0.945 0.884
SAE (GLSZM) 0.799 0.695 0.638

0.00
0.09
0.18
0.27
0.36
0.45
0.54
0.63
0.72
0.81
0.90
0.99
1.08

II
C

F I G . 2 . Inter-item correlation coefficient
(IIC) among Reference gray-level 64
(GL-64) relative to GL-32,128,256. The
plots show IIC of several radiomic features
extracted from the metabolic tumor
volume (MTV) after down-sampling. It is
noticed that IIC is minimum between GL
64 and GL 256. GLCM, Gray Level Co-
occurrence Matrix; GLRLM, Gray Level
Run Length Matrix; GLSZM, Gray Level
Size Zone Matrix; IDM, Inverse Difference
Moment; Diff. Entropy, Difference
Entropy; SRE, Short Run Emphasis; RPC,
Run Percentage; SAE, Size Area Emphasis.
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TAB L E 1 Bland–Altman table for the highest reproducible radiomic features as a function of segmentation methods (SM).

Feature

MTV1 – GBSV MTV2 – GBSV

|d|% � SD% LRL URL |d|% � SD% LRL URL

IDM 0.03 � 2.11 �2.76 2.69 1.20 � 2.18 �2.89 1.57

ID 0.10 � 2.49 �5.17 4.97 2.20 � 5.41 �5.29 2.89

Summation Entropya 0.54 � 25.15 �23.16 21.56 1.08 � 14.52 �11.01 9.92

Entropya (second order) 0.03 � 18.43 �24.14 22.93 0.79 � 15.01 �10.87 10.41

Meanb (second order) 2.08 � 3.57 �13.35 9.18 3.85 � 2.54 �17.45 9.75

IMC2 3.37 � 6.61 18.31 16.91 3.02 � 10.21 �20.06 14.03

SRE 0.17 � 2.89 �1.45 1.79 0.42 � 2.24 �1.33 2.18

RPC 1.16 � 10.43 �10.01 7.69 1.84 � 8.09 �9.14 10.96

Sph. D 6.31 � 3.89 �13.53 26.15 5.01 � 3.50 �15.80 25.81

LRL and URL, lower and upper reproducibility limits, respectively; ID, IDM: Inverse Difference, and Inverse Difference Moment; IMC.1,2, Information

Correlation Method 1, and 2 (GLCM); SRE, Short Run Emphasis (GLRLM); RPC, Run Percentage (GLRLM); Sph. D., Spherical Disproportionality (SBF).
aCorrected for volume and gray-level dependence.
bCorrected for volume and gray-level dependence.

(c)
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-5

-4

-3

-2

-1

0

1

2

3

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

Mean
-0.7

-1.96 SD
-2.9

+1.96 SD
1.6

-6

-4

-2

0

2

4

0.92 0.94 0.96 0.98 1.00

0.94 0.95 0.96 0.98 0.990.97 1.00 0.94 0.95 0.96 0.98 0.990.97 1.00

Mean

-0.0

-1.96 SD
-2.8

+1.96 SD
2.7

(b)
[I

D
M

 (
M

TV
2)

 -
 I

D
M

 (
G

B
SV

)]
/ 

A
ve

ra
ge

 %

-2

-1

0

1

2

3

4

5

6

Mean

0.4

-1.96 SD
-1.3

+1.96 SD
2.2

[I
D

M
 (

M
TV

1)
 -

 I
D

M
 (

G
B

S
V

)]
/ 

A
ve

ra
ge

 %

(a)

Average of SRE (MTV2 and GBSV)Average of SRE (MTV1 and GBSV)

[S
R

E 
(M

TV
1)

 –
 S

R
E 

(G
B

SV
)]

/ 
A

ve
ra

ge
 %

[S
R

E 
(M

TV
1)

 –
 S

R
E 

(G
B

SV
)]

/ 
A

ve
ra

ge
 %

(d)

Average of IDM (MTV2 and GBSV)Average of IDM (MTV1 and GBSV)
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graphical-based methods (GBSV). Bland–Altman plots for: (a-b) Inverse Difference Moment IDM (MTV1 – GBSV) and (MTV2 – GBSV). (c–d)
Short Run Emphasis SRE (MTV1 – GBSV) and (MTV2 – GBSV).
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3 | RESULTS

The GBSVs of 65 patients (81.25% of the cohort) scored Dice coeffi-

cients >0.75 when associated with both manual segmentations, yet

the association with MTV1 was slightly higher (4% higher on aver-

age). Table S1 shows the detailed segmentation accuracies catego-

rized based on increasing values of MTV1. As noticed from the table,

Dice coefficients were low for both small (volume ≤~15 cm3) and

large tumors (volume ≥160 cm3). For a fair comparison, we only

included highly accurate tumor volumes (DC >0.75, n = 65). Finally,

we reported the results of gray-level discretization based on resam-

pling the GBSVs. The following subsections, we will report the

reproducibility of radiomic features through each testing parameter

separately.

3.A | Reproducibility of radiomic features through
segmentation methods

Among the 26 local heterogeneity features extracted using GLCM

(Table S2a), eight features (31%) showed high reproducibility, two

(7%) showed intermediate reproducibility, and two (7%) showed low

reproducibility. The rest of GLCM features (55%) were not repro-

ducible. We also found that IDM holds the highest reproducibility

among all methods (Table 1, Figs. 3a and 3b). IDM scored an ICC of

0.90 (Table 2) with a precision of 5%. The ICCs, associated 95% CIs,

and precision are summarized in Table 2.

Out of the 11 regional features extracted using GLRLM (Table

S2b), only three features (27%) were reproducible. Short run empha-

sis (SRE) (Figs. 3c and 3d) had the highest reproducibility and ICC

(Table 2) of 0.89 with a precision 6.5%.

Among the seven shape-based Radiomic features (Table S2e), four

(57%) had high reproducibility, while one (14%) showed low repro-

ducibility. Tumor volume sphericity showed high reproducibility

through segmentation methods. Spherical disproportionality was also

reproducible with test outputs close to the one for tumor volume

sphericity.

All the 11 regional features extracted using GLSZM showed high

sensitivity to variation in segmentation methods. However, High-

Intensity Emphasis HIE and Zone Percentage ZP (Table S2c) were the

only features to show intermediate reproducibility after correction

for gray-level dependence. Only one IVH features (Tables S2f and

S2g), Intensity entropy, showed high reproducibility. Finally, all the

NGTDM features showed high sensitivity to segmentation methods.

The highly reproducible features are summarized in Table 1.

3.B | Reproducibility of radiomic features for
different numbers of gray-levels

The goal of this part of the study was to measure reproducibility lim-

its and absolute agreement between radiomic features extracted

from multiple gray-levels of the down-sampled GBSVs. Following the

same approach in the previous subsection, fewer features passed

this testing parameter in contrast to the first one.

Among GLCM features, two (18%) were highly reproducible

through all gray intensity levels. IDM (Table 3, Figs. 4a–4c) was

the highest reproducible GLCM feature with a mean differ-

ence � SD of 0.1 � 2.7 and L/URL range below 6% (ICC 0.98;

precision <6%). Entropy, difference entropy, and summation

entropy (Table S3a) showed high reproducible levels among gray-

level pairs of 64-32 and 64-128 but intermediate reproducibility

for gray-level pair 64-256. Second-order mean showed intermedi-

ate reproducibility after correction for volume and gray-level

dependence. Dissimilarity scored was the only feature to show

low reproducibility. The rest of GLCM features (69%) were not

reproducible. The ICCs, associated 95% CIs, and precision are

summarized in Table 4.

Among GLRLM features, two (18%) were highly reproducible. In

concordance with the result from the previous test, SRE and RPC

(Table S3b) were the highest reproducible GLRLM features. The rest

of GLRLM features (54.5%) were not reproducible.

None of the GLSZM or NGTDM features showed reproducibility

limits range compared to other calculation methods. Hence, all of

them were considered sensitive to gray-level discretization.

We did not test shape-based features or intensity histogram fea-

tures for gray-level dependence as the down-sampled tumor volume

was fixed and, therefore, the shape and geometrical aspects were

not affected. In general, radiomic features have small mean

TAB L E 2 Reliability of radiomic features through segmentation
methods SM using ICC.

Type Feature ICC
95%
UCI

95%
LCI Precision

Local Entropya 0.97 0.95 0.98 �1.5%

Summation

entropya
0.81 0.70 0.88 �9%

IMC 2 0.73 0.67 0.82 �7.5%

Meanb 0.91 0.86 0.94 �4%

IDM 0.90 0.84 0.94 �5%

ID 0.85 0.72 0.92 �10%

Difference

entropya
0.84 0.75 0.89 �7%

Regional RPC 0.92 0.84 0.92 �4%

SRE 0.93 0.80 0.93 �6.5%

LRE 0.89 0.78 0.89 �5.5%

HIE 0.73 0.58 0.81 �11.5%

Shape &

intensity

Sph. D. 0.92 0.86 0.95 �4.5%

Sphericity 0.91 0.85 0.94 �4.5%

Intensity

entropy

0.85 0.79 0.92 �6.5%

Convexity 0.70 0.59 0.82 �11.5%

ID, IDM, Inverse Difference, and Inverse Difference Moment; IMC1, 2:

Information Correlation Method 1 and 2; RPC, Run Percentage; SRE,

Short Run Emphasis; HIE, High-Intensity Emphasis; Sph. D., Spherical

Disproportionality.
aCorrected for GL dependence.
bCorrected for GL and volume dependence.
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percentage difference (Fig. 5), SD, and L/URL among gray-level pairs

64-32 and 64-128 in contrast to 64-256.

3.C | Reproducibility of radiomic features through
different PET reconstruction algorithms

In comparison to the segmentation methods and gray-levels, radio-

mic features showed highest variations as a function of reconstruc-

tion settings. Following the same evaluation approach used for the

previous parameters, some of the features that presented small vari-

ations for this parameter (Tables S4a–S4d) are the entropy, second-

order mean, exclude coarseness, complexity, and contrast. Figure 6

shows second-order mean as an example of such performance. More

than twenty features showed a large range of variations, some of

these include HIE, GLNU, texture strength and busyness, which have

been commonly used in previous clinical studies. Most of the radio-

mic feature within the scope of this study showed high sensitivity to

3DRP reconstruction algorithm, the highest reproducible features are

listed in Table 5. The reliability of radiomic features through recon-

struction algorithms using ICC are found in Table 6. The nine repro-

ducible radiomic features through all parameters are summarized in

the colored-coded map in Fig. 7a. In addition, the six-reproducible

shape feature through segmentation methods and reconstruction

algorithms are summarized in Fig. 7b.

4 | DISCUSSION

The promise of radiomics, as with other -omics, is the provision of

robust markers for personalized medicine applications. One of its

potential applications might be in predicting and tracking clinical out-

comes for various therapy modalities. Mu et al28 observed a high

association between textural features on baseline 18F–FDG PET and

tumor staging in cervical cancer. The study focused on primary

tumor volumes because of the limited resolution of PET images,

which did not reproduce significant heterogeneity in small lymph

TAB L E 3 Bland–Altman table for the highest radiomic features as a function of gray intensity levels (GL) for the graph-based segmented
volume (GBSV).

Feature GL pairs jdj% � SD% LRL URL Level of reproducibility

IDM 64-32 0.01 � 0.04 �1.22 1.23 High

64-128 0.12 � 0.29 �1.92 2.15

64-256 0.15 � 0.02 �1.78 1.94

ID 64-32 0.04 � 0.230 �1.22 1.23 High

64-128 0.2 � 0.144 �1.92 2.15

64-256 0.15 � 0.07 �1.78 1.94

SRE 64-32 2.38 � 4.03 �0.01 4.78 High

64-128 1.19 � 3.32 �2.67 0.29

64-256 1.87 � 4.40 �3.53 �0.22

Meanb 64-32 0.93 � 15.35 �34.58 36.45 Intermediate

64-128 3.58 � 6.50 �39.32 41.48

64-256 6.08 � 10.73 �42.00 45.06

RPC 64-32 3.62 � 7.14 0.09 7.14 High

64-128 1.49 � 7.01 �5.02 2.02

64-256 2.30 � 10.20 �6.92 2.31

Entropya 64-32 0.63 � 0.08 �10.57 11.82 High

64-128 9.82 � 0.03 �9.19 28.84

64-256 5.78 � 1.81 �30.62 42.17 Intermediate

Summation entropya 64-32 18.43 � 5.50 7.84 29.44 High

64-128 13.50 � 8.57 �30.44 3.43

64-256 21.97 � 10.74 �43.16 �0.80 Intermediate

Difference entropya 64-32 0.69 � 6.03 �8.87 7.48 High

64-128 9.82 � 8.76 9.19 28.84

64-256 5.80 � 12.20 �30.97 42.58 Intermediate

LRL and URL, lower and upper reproducibility limits, respectively; ID, IDM, Inverse Difference, and Inverse Difference Moment; RPC, Run Percentage;

SRE, Short Run Emphasis.
aCorrected for GL dependence.
bCorrected for volume and gray-level dependence.
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nodes. On a similar note, El Naqa et al27 reported several logistic

regression models of radiomic features, with good prediction power,

for cervical cancer treatment outcomes. However, it was suggested

that further testing and validation using large datasets is required.

Although the use of radiomic features as markers for prediction of

treatment outcomes, tumor staging or monitoring response is a rising

application of F18-FDG PET; investigating the reproducibility, relia-

bility, and robustness of such markers through physiological or physi-

cal parameters have shown to be a step of great importance. Several

image parameters pose unique challenges in the process of quantify-

ing and extracting useful information from the tumor’s FDG

uptake.58 In the present study, we explored the effect of three of

these challenging parameters, segmentation methods, gray intensity

levels, and reconstruction algorithms, on radiomic features extracted

from pretreatment 18F-FDG PET scans of cervical cancer patients.

According to our results, we found that segmentation of cervical

tumors revealed challenges due to difficulty in isolating the tumor

from adjacent organs, such as bladder and rectum, with similar signal

intensities on PET and CT scans. This finding is concordant with

another study by Wei et al59 To examine the impact of cervical

tumor volume variations on radiomic features, we employed two

manual volumes segmented by two expert radiation oncologists and

one semiautomatic segmented volume. The just-enough-interaction

(JEI) graphical-based semiautomatic segmentation approach offered

minimal operator interaction and a high degree of automation. To

measure the accuracy of tumor segmentation, we overlapped the

voxel intensity maps of each tumor pair and calculated the Dice

coefficient as a measure of segmentation similarity. As MTV1 was

closer to GBSV in most cases, the majority of radiomic features

showed slightly higher (4%) reproducibility between MTV1-GBSV

than MTV2-GBSV. The detailed comparison is found in Table S1.

In addition to graphical-based methods, we also explored the

performance of a boundary-based method called the geodesic active

contours, which was first introduced by Caselles et al60 We imple-

mented this approach using an open source software called

ITK-SNAP.61 A major challenge of such method is to set several

equation parameters, especially the speed function. We tested all

four methods available for forming speed functions, which are
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thresholding, classification, clustering, and edge detection methods.

Threshold-based method, as the name implies, utilize the intensities

probabilities based on the intensity histogram of the image. For

more information calculating the probabilities for this method, the

reader is encouraged to read Zhu et al62 and Yushkevich et al61 A

major disadvantage of thresholding method is that the intensity his-

togram does not provide spatial information about the ROIs. Also,

there is no consensus on the selection of an optimum threshold level

because of the large variability of pathologies, low resolution, inher-

ent noise, and high uncertainties in fuzzy object boundaries.31 More-

over, defining tumor volumes based on SUV thresholds has been

widely challenged.63,64 As a requirement for the supervised classifi-

cation-based method, we trained three labels based on image inten-

sity (1: tumor volume, 2: bladder, and 3: other surrounding tissue) on

a training set and applied the resulted classifier on a test set. A dis-

advantage of using supervised methods is that they do not incorpo-

rate spatial information into the decision of label generation. Also,

this method required much manual interaction to obtain a training

data. Therefore, it is both labor-intensive and time-consuming.

Nonetheless, the segmentation using this speed function for patients

with volumes between 49 to 100 cm3 was acceptable (DC>0.75).

Otherwise, the volumes highly varied when compared with manual

volumes. In contrast to classification method, the clustering method

is an unsupervised method that does not require training labels

(classes). Edge detection speed functions are given by the image

grayscale gradient, where the volume of interest is separated from

the surround object in the image by edges, i.e., strong intensity dis-

continuities. The main limitations of the edge-based contours are its

leakage past weak edges in proximity with surrounding organs and

its long processing time. The tumor volumes generated using cluster-

ing and edge methods captured intensities from both bladder and

rectum, which resulted in highly variant tumor volumes. Within the

framework of this study, the only method with just enough interac-

tion that showed high accuracy in comparison to the manual seg-

mented volume was the graphical-based method. In addition, it was

the only method to show full separation between the tumor and the

adjacent organ with minimum, if any, operator involvement (Fig. 8).

TAB L E 4 Reliability of radiomic features through gray intensity
levels GL using ICC.

Type Feature ICC 95% UCI 95% LCI Precision

Local IDM 0.96 0.93 0.98 �2.5%

ID 0.92 0.90 0.94 �2%

IMC 2 0.72 0.65 0.90 �12.5%

Meanb 0.85 0.82 0.94 �6%

Entropya 0.72 0.75 0.83 �4%

Summation

entropya
0.70 0.67 0.79 �6%

Difference

entropya
0.81 0.67 0.86 �9.5%

Regional RPC 0.89 0.73 0.91 �9%

LRE 0.72 0.64 0.87 �11.5%

SRE 0.80 0.70 0.83 �6.5%

ID, IDM, Inverse Difference, and Inverse Difference Moment; IMC1, 2,

Information Correlation Method 1 and 2; RPC, Run Percentage; SRE,

Short Run Emphasis; LRE, Long Run Emphasis.
aCorrected for GL dependence.
bCorrected for GL and volume dependence.

GL64-32 GL64-128 GL64-256
IDM 0.04 0.14 0.01
ID 0.05 0.29 0.02
SRE 0.44 0.36 0.48
RPC 0.77 0.76 1.10
Entropy 0.56 0.93 1.19
Summation Entropy 0.49 2.16 0.60
Difference Entropy 0.67 0.98 1.36
LRE 1.63 2.10 2.12
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F I G . 5 . A plot of the standard deviation
(SD) of the mean percentage difference (d)
for the top seven reproducible radiomic
features as a function of discretization.
IDM, Inverse Difference Moment; ID,
Inverse Difference; SRE, Short Run
Emphasis; RPC, Run Percentage; LRE, Long
Run Emphasis.
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However, this method might need improvement for small tumor vol-

ume (≤16 cm3) with low uptake, and large volume (≥160 cm3) with

very high uptake with proximity to surrounding organs.

Inverse difference moment IDM (Figs. 3a and 3b, 4a–4c) and

Inverse Difference ID were the most reproducible through all testing

parameters. ID and IDM measure the level of local homogeneity

within the tumor volume. Their methods of calculation are based on

assuming larger values for smaller gray-tone differences in pair ele-

ments within the gray-level co-occurrence matrices (GLCM).23,66

Also, they are formulated to have a maximum value when all ele-

ments in the image are of equal values. Therefore, these features are

characterized by high sensitivity to the presence of adjacent diagonal

elements in the GLCM.65,66 These characteristics might lead to their

remarkable insensitivity toward variation of the studied parameters.

We noticed that the tumor heterogeneity patterns could be pro-

foundly affected by choice of gray-level. We found higher repro-

ducibility among small gray intensity level pairs (64-32 and 64-128)

in contrast to lower reproducibility for gray-level pair 64-256

(Table S2) in local features (GLCM) and regional features (GLRLM

and GLSZM). We noticed that excluding GL-256 would increase the

precision of ICC by ~35%. Also, when resampling the voxel values

within the segmented tumor volume to a high gray-level value, the

elements on the GLCM, GLRLM, GLSZM, and NTGDM would read

small voxel intensity values relative to the values measured from the

reference gray-level. This trend is consistent with the one reported

by Sassi et al67 Consequently, this trend yields large mean percent-

age differences between feature values measured based on different

gray-levels, which, in turn, will translate into sensitivity toward this

parameter (Fig. 6).

We investigated the reproducibility of several subtypes of GLCM

entropy feature as they were reported as one the highest repro-

ducible and predictive radiomic features.21,27,30 We included:

Entropy, Summation Entropy, Difference Entropy in addition to first-

order Entropy (Intensity Histogram Entropy). GLCM entropy-based
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features were strongly affected by the high heterogeneity of cervical

cancer tumors as they measure the degree of nonuniformity within a

given region of interest.

SRE and RPC, GLRLM regional features, showed the highest

reproducibility through all testing parameters. This result can be

explained by the fact that SRE only measures the distribution of

short runs in the image (region) texture without taking into account

gray-level intensity.46 The high reproducibility of RPC (measures the

homogeneity and the distribution of runs of an image in a specific

direction) can be explained by the fact that gray-level discretization

does not highly impact the homogeneity of the run.

On the contrary, most of the regional features calculated based

on GLSZM showed sensitivity to all testing parameters. These fea-

tures may be categorized into different subsets. Features that focus

on small homogenous and low-intensity areas within the tumor vol-

ume, SAE, LIE, and LISAE, showed high sensitivity to variation in

gray-levels. This subset was the lowest reproducible among all fea-

tures within the scope of this study (L/URL: �100%–200%).

On the other hand, GLSZM features subset that characterizes

large homogeneous and high-intensity areas had a slightly better

reproducibility range (L/URL: �55%–90%). However, it was still

lower than our proposed acceptable reproducibility limits. As previ-

ously mentioned, cervical tumors are associated with high regional

FDG uptake, which might be the reason they perform slightly better

than the other subset. Also, Tixier et al37 reported that high-intensity

areas correspond to aggressive tumor regions associated with high
18F-FDG uptake while the large homogeneous area is thought to be

less likely affected by statistical noise or partial-volume effects.

TAB L E 5 Bland–Altman table for the highest radiomic features as a function of PET image reconstruction algorithms (RA).

Feature RA pairs Mean � SD LRL URL Level of reproducibility

IDM OSEM-FOREIR �0.04 � 15.67 �0.34 0.37 High

OSEM-FOREFBP �0.31 � 10.34 �0.26 0.26

OSEM-3DRP �1.02 � 10.17 �0.14 0.014 Intermediate

ID OSEM-FOREIR 0.15 � 0.99 �0.44 0.76 High

OSEM-FOREFBP �0.31 � 0.97 �0.54 0.52

OSEM-3DRP 4.33 � 1.42 �0.49 0.21 Intermediate

SRE OSEM-FOREIR �0.09 � 0.48 �4.25 11.46 High

OSEM-FOREFBP 0.83 � 3.37 �8.76 4.10

OSEM-3DRP �23.04 � 8.18 �12.42 4.82 NR

RPC OSEM-FOREIR �0.30 � 8.24 �7.88 19.94 High

OSEM-FOREFBP �0.22 � 20.25 �17.77 9.70

OSEM-3DRP �25.61 � 31.60 �26.45 13.56 Intermediate

Meanb OSEM-FOREIR �0.29 + 8.87 �1.30 0.73 High

OSEM-FOREFBP �4.92 + 8.45 �15.36 5.52

OSEM-3DRP 1.96 + 8.08 �28.55 32.47 Intermediate

Entropya OSEM-FOREIR �1.44 � 16.66 8.90 28.65 High

OSEM-FOREFBP �0.39 � 17.22 �30.28 3.19

OSEM-3DRP �29.47 � 17.99 �43.05 �1.17 NR

Summation entropy OSEM-FOREIR �9.06 � 14.29 7.84 29.44 High

OSEM-FOREFBP �10.61 � 14.55 �30.44 3.43

OSEM-3DRP �19.35 � 10.74 �43.16 �0.80 Intermediate

Difference entropya OSEM-FOREIR 5.31 � 10.01 6.00 30.06 High

OSEM-FOREFBP 8.93 � 10.62 �30.72 4.42

OSEM-3DRP 10.72 � 19.07 �45.84 2.75 Intermediate

IMC2 OSEM-FOREIR �1.41 � 2.01 �5.44 32.48 High

OSEM-FOREFBP �1.29 � 2.47 �31.98 3.31

OSEM-3DRP 4.96 � 3.82 �51.87 3.15 Intermediate

LRE OSEM-FOREIR 1.21 � 0.48 �54.19 21.87 High

OSEM-FOREFBP 0.83 � 3.37 �19.52 39.58

OSEM-3DRP �23.04 � 8.18 �22.01 54.70 NR

LRL and URL, lower and upper reproducibility limits, respectively; ID, IDM, Inverse Difference, and Inverse Difference Moment; IMC, Information Corre-

lation; RPC, Run Percentage; SRE, Short Run Emphasis; LRE, Long Run Emphasis.
aEntropy and difference entropy are corrected for GL dependence.
bCorrected for volume and gray-level dependence.

44 | ALTAZI ET AL.



NGDTM features performed similarly to GLSZM features even after

correction for volume and gray-level dependency.

On a similar note, all of the IVH global features tested in this

study (e.g., mean, SD, and kurtosis) showed a sensitivity toward all

testing parameters. This outcome was expected because, on the one

hand, they have large variations due to their lack of measuring sig-

nificant information of uptake heterogeneity within the given tumor

volume, and on the other hand, because of the delicate method used

to calculate such features. We extracted shape-based features (SF)

to illustrate the morphological characteristics describing the voxel

intensity distribution within the segmented tumor volumes without

taking into consideration spatial relationships between neighboring

voxels. As we fixed the volume tested for discretization, all SF

showed insensitivity toward gray-level discretization. Finally, the

method described by Shafiq et al did not reflect similar results on

PET images for most of the corrected radiomic features. However,

GLCM features showed higher reproducibility after correction for

volume and gray-level dependence (Table S2a).

Variations introduced by reconstruction algorithms are different

for each scanner vendor. These differences add difficulties in

TAB L E 6 Reliability of radiomic features through reconstruction
algorithms RA using ICC (3DRP is excluded).

Type Feature ICC 95% UCI 95% LCI Precision

Local IDM 0.94 0.80 0.98 �9%

ID 0.97 0.90 0.99 �4.5%

IMC 2 0.77 0.45 0.89 �22%

Meanb 0.83 0.79 0.94 �6.5%

Entropya 0.84 0.68 0.96 �14%

Summation

entropya
0.84 0.70 0.96 �13%

Difference

entropya
0.78 0.76 0.95 �9.5%

Regional RPC 0.90 0.74 0.97 �11.5%

LRE 0.73 0.65 0.80 �7.5%

SRE 0.82 0.73 0.94 �10.5%

ID, IDM, Inverse Difference, and Inverse Difference Moment; IMC1,2.:

Information Correlation Method 1 and 2; RPC, Run Percentage; SRE,

Short Run Emphasis.
aCorrected for GL dependence.
bCorrected for GL and volume dependence.

ARLGMS
Feature MTV1-GBSV MTV2-GBSV 64-32 64-128 64-256 OSEM-FOREIR OSEM-FOREFBP OSEM-3DRP

IDM
ID

Sum. Entropy
Mean**

Diff. Average
Diff. Variance
Diff. Entropy
Dissimilarity
Homogeneity

IMC2
SR0E
RPC

RLNU
LRE
HIE*

ZP
Coarseness
Contrast+

Complexity

High

Med

Low

NR

ARMS
Feature MTV1-GBSV MTV2-GBSV OSEM-FOREIR OSEM-FOREFBP OSEM-3DRP

Surface Area
Sph. Disprop.

Sphericity
Convexity

Intensity entropy
Histogram entropy

(a)

(b)

F I G . 7 . (a) Local (second order) and regional (higher order) radiomic features that showed reproducibility through all testing parameter (SM:
Segmentation Method, GL: Gray Level and RA: Reconstruction Algorithm). IDM, Inverse Difference Moment; ID, Inverse Difference; IMC2,
Information Measure of Correlation II; SRE, Short Run Emphasis; RPC, Run Percentage; RLNU, Run Length Non-Uniformity; LRE, Long Run Emphasis;
HIE, High Intensity Emphasis; Zp, Zone Percentage. (b) Shape-based radiomic features (SF) that showed reproducibility through SM and RA. GL was
not included because it does not affect shape-based features. Sph. Disprop, Spherical disproportionality. *Corrected for grey-level discretization
with (a) for GL dependence. **Corrected for gray-level discretization and voxel size with (b) corrected for GL and volume dependence.
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comparing results across institutions with different scanners. Along

the same vein, it creates challenges to generate large patient cohort

with similar clinical setups. Fortunately, despite this variation, differ-

ent vendors produced reconstruction algorithms that are similar

enough to be quantitatively comparable. According to our results,

most of the radiomic features rely heavily on the choice of image

reconstruction algorithm, whereas 3DRP had the least reproducible

outputs.

Standardization and robustness are of utmost importance in this

field; we suggest that features characterized by insensitivity toward

segmentation methods, gray intensity level, and reconstruction algo-

rithms (Fig. 9) may contribute as a robust characterizing descriptor

of 18F-FDG uptake heterogeneity and, therefore, might have promis-

ing clinical potential. However, such features might not demonstrate

the same reproducibility in other tumor sites. This site-specific study

underlines the need for a profound analysis of radiomic features as

descriptors of 18F-FDG PET heterogeneity in cervical cancer patients

treated with definitive radiochemotherapy. Accordingly, other site-

specific radiomic studies are required to examine the reproducibility

of the mentioned features in a different tumor site

The relatively small cohort of patients might be a limitation of

the current study. However, this cohort is about the same size, or

larger, in comparison to samples in previously published reproducibil-

ity studies. Finally, although it is a challenging task, we support mul-

ticenter collaborative efforts that aim to standardize the process of

radiomic analysis.

5 | CONCLUSION

This study examined the reproducibility of several radiomic features

extracted from 18F�FDG PET images of cervical cancer patients in

response to the variation of three parameters: segmentation meth-

ods, gray intensity levels, and reconstruction algorithms. According

to our results, most of the radiomic features within the scope of this

study were highly affected by variations of such parameters.

F I G . 8 . Comparison between: (a) geodesic active contour method with a classification speed function (blue volume), and (b) semiautomatic
graphical-based method (GBSV) for the same tumor volume (red volume). In contrast to GBSV, the geodesic active contour method often
captures intensity signals from surrounding organs such as the bladder.

F I G . 9 . A diagram presenting the number of reproducible radiomic
features per testing parameter and the common reproducible
featured among all tests. The features are categorized into textural
and shape features (TF and SF, respectively). The reproducibility
through the three-dimensional reprojection (3DRP) reconstruction
algorithm is excluded. SM: Segmentation Method, GL: Gray Level,
and RA: Reconstruction Algorithm.
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Therefore, we suggest that testing the reproducibility of radiomic

features is essential before proceeding to employ them in any clinical

applications.
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Table S1. Heatmap illustrating the Dice coefficient (DC) for man-

ual and semiautomatic methods. The volumes are sorted from small

to large based on MTV1. A perfect overlap between pairs of tumor

volumes is indicated by a DC value of 1.0. Acceptance Criteria: DC≥

0.75 for all tumor pairs.

Table S2. Descriptive Statistics for Mean Percentage Difference

(d) measured for Segmentation Method (SM) pairs of: 1) MTV1-

GBSV and 2) MTV2-GBSV MTV1: First Manually Segmented Meta-

bolic Tumor Volume, Reference Volume. MTV2: Second Manually

Segmented Metabolic Tumor Volume, Reference Volume. GBSV:

Graphical-Based (Region-Based) Semiautomatic volume.

Table S3. Descriptive Statistics for Mean Percentage Difference

(d) measured for Gray Intensity Levels (GL) pairs of: 1) 64-32 , 2)

64-128, and 3) 64-256.

Table S4. Descriptive Statistics for Mean Percentage Difference

(d) measured for Gray Intensity Levels (GL) pairs of: 1) 64-32 , 2)

64-128, and 3) 64-256.
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