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Abstract

Mass spectrometry is a fundamental tool for modern proteomics. The increasing availability

of mass spectrometry data paired with the increasing sensitivity and fidelity of the instru-

ments necessitates new and more potent analytical methods. To that end, we have created

and present XFlow, a feature detection algorithm for extracting ion chromatograms from

MS1 LC-MS data. XFlow is a parameter-free procedurally agnostic feature detection algo-

rithm that utilizes the latent properties of ion chromatograms to resolve them from the sur-

rounding noise present in MS1 data. XFlow is designed to function on either profile or

centroided data across different resolutions and instruments. This broad applicability lends

XFlow strong utility as a one-size-fits-all method for MS1 analysis or target acquisition for

MS2. XFlow is written in Java and packaged with JS-MS, an open-source mass spectrome-

try analysis toolkit.

Introduction

Mass spectrometry is a popular approach for measuring the sample-bound content and quan-

tity of a variety of classes of molecules across a broad range of applications including pharma-

ceuticals, forensics, biochemistry, and food science. All applications of mass spectrometry have

a common problem: the instrument itself does not directly provide measurements of mole-

cules nor their identities, but rather produces raw data that must be rendered human-inter-

pretable through the application of data processing algorithms.

According to community perceptions, advancements in software have lagged behind the

steady pace of instrumentation advancements [1]. Unlike other computational science fields

(such as genomics) where several foundational computational problems are regarded as

solved, most mass spectrometry users feel that significant problems in computational mass

spectrometry remain unsolved [1] despite (in some cases) dozens of published algorithms

designed to address them [2]. Beyond user sentiment, the experimental influence of algorithm

selection suggests that the analysis and advancement of computational mass spectrometry

algorithms is a valuable pursuit [3].

Mass spectrometry systems generate datasets that quantify counts of charged particles at

specific mass-to-charge (m/z) values. In liquid chromatography-mass spectrometry (LC-MS)
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systems, these measurements are taken over the time (retention time or RT) required for the

molecules to elute from a chromatography column designed to slow or speed the migration of

the molecules depending on particular physico-chemical properties such as size, or polarity.

Mapping the raw LC-MS data points to particular classes of molecule (say, a particular pep-

tide at a particular charge state) provides both an accurate count of the relative abundance of

that molecule class (through integrating the intensities in those points) and discriminatory

information about the identity of the molecule(s), as the charge state and uncharged mass can

be derived through the m/z gap present between isotopic-specific sub-signals (extracted ion

chromatograms or XICs) in the signal (see Fig 1).

Some existing algorithms attempt to resolve the features directly from the point data (e.g.

OpenMS FFC [4]). Other algorithms split this process into two steps. First, two step algorithms

cluster points into XICs, sometimes called isotopic traces (or features [5]) Second, by cluster-

ing XICs into isotopic envelopes (sometimes also called features [6]) (see Fig 1). This two-stage

approach maximizes the utilization of available information and serves to reduce the amount

of data by allowing a summary of each XIC to be used to find isotopic envelopes instead of

cumbersome point data.

This manuscript presents XFlow, a novel algorithm for extracting ion chromatograms from

LC-MS data. XFlow outperforms existing XIC algorithms evaluated recently on a benchmark

human-curated dataset and provides qualitative evidence in support of high-function on

Fig 1. 3d Isotopic envelope. In this figure are five extracted ion chromatograms (XIC) bounded by yellow rectangles. Each XIC is composed

of points, each with m/z, RT and intensity (denoted by color and height on z axis). Each XIC is the evidence of an isotope of a molecule or

molecules. The group of five XICs is referred to as an isotopic envelope, or feature, seen bounded by the red rectangle.

https://doi.org/10.1371/journal.pone.0227659.g001
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alternative datasets. The output of XFlow can be used in conjunction with the XIC clustering

algorithm Xnet [7] to map raw data points from an LC-MS run into the signal groups neces-

sary for further analysis (see Fig 2).

A recent XIC benchmark study [10] noted that Massifquant [11], a Kalman filter-based

XIC algorithm, performed well against other popular algorithms on a large set of hand-anno-

tated XICs. Massifquant uses a Kalman filter to model XICs as time-series events where the

probability of membership of a proximate point in the next scan is a factor of the m/z of previ-

ous points in the putative XIC. Massifquant has several drawbacks. It has a very large possible

parameter space, takes considerable time to run, and lacks an objective or automatic approach

to optimize parameters. Still, it outperformed all other evaluated algorithms on a large human-

curated dataset.

Perhaps the principle theoretical advantage of Massifquant is that it attempts to assemble

point membership in XICs as a function of the probability of a given point being a member of

a given proto-XIC. Unfortunately, Massifquant uses Kalman filters—which require many

expensive calculations), suffers from many parameters, and constructs XICs in decreasing

time order which can lead to incorrect XICs.

Several algorithms have been published that avoid the theoretical and computational limita-

tions of Massifquant by leveraging intensity order to iteratively construct XICs (for example,

FFC [4], KPIC2 [5], and Agilent Profinder).

The core idea of intensity order XIC algorithms is the hypothesis that the most intense

points in a mass spectrometry run also have the most accurate m/z measurement. Therefore,

intensity of a point can be used as a surrogate for confidence. These algorithms incrementally

adding points from surrounding windows to putative features seeded with a point of locally

maximal intensity, earning the nickname of “waterfall” methods. Other algorithms use less

rich sources of information. Shape filters (for example, matchedFilter [12] and centWave [13])

tend to degrade at lower intensities and are expensive to optimize for each signal in a run.

Fig 2. Ion chromatogram extraction in context. Like several other ion chromatogram extraction algorithms, XFlow forms one step in a two-step process where ion

chromatograms (blue, red, green) are extracted from raw data. In the example workflow provided for the software JS-MS [8, 9], the XICs are then combined into

isotopic envelopes (purple).

https://doi.org/10.1371/journal.pone.0227659.g002
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Massifquant [11] and MaxQuant [14] both build XICs scan by scan, though in reverse order.

Due to the Gaussian shape of XICs, this guarantees that the least confident information is the

most relied upon in both of these algorithms, ensuring suboptimal performance.

Like other intensity order algorithms, XFlow avoids the drawbacks of relying on specific

shapes or expensive models. Unlike other intensity order algorithms, XFlow takes the inten-

sity-confidence hypothesis a step further. Instead of processing local windows through “walk-

ing” through time on each side of an XIC’s intensity apex or extracting an XIC in a region of

interest around a high intensity local maxima, XFlow processes each point in decreasing order

without simplifying heuristics and post-processing. In other words, for each point in the run,

XFlow will either add it to an already existing putative feature, or create a new putative feature

seeded with the current point, in decreasing order of intensity. In addition to achieving single-

pass efficiency, XFlow’s strategy avoids the post-processing step necessary for local-neighbor-

hood algorithms that can’t distinguish between overlapping features on their own. XFlow also

avoids the drawback of reliance on user parameters, which, as we will show, is a significant

concern for other algorithms due to the effect parameter selection can have.

Methods

XFlow casts ion chromatogram extraction as a clustering problem, where points are clustered

into XICs (see Fig 2).

Baseline correction

XFlow uses a baseline filter for both: 1) determining the subset of points that will be clustered

into XICs and 2) determining whether a point is allowed to seed a putative XIC. The justifica-

tion for this thresholding is two part. The primary consideration of thresholding is to limit the

admission of noise into the final output, while the secondary consideration is to reduce the

computational burden to only the relevant subset of the data.

XFlow automatically calculates the baseline threshold from the data by calculating the aver-

age intensity of all points in the run, on the assumption that most points in the run will be very

low intensity. All points below the baseline are excluded from XIC consideration, and only

points with intensity at least twice the baseline are allowed to seed new putative XICs. The

study of when and where to apply intensity thresholding is an active and ongoing topic of

research in our lab due to the difficulty of avoiding bias, limiting noise inclusion, and maxi-

mizing signal inclusion [15].

XIC construction

Let (P) be the set of all points (pi) in a run with intensity equal to or greater than baseline. Let

W represent the set of points that are plausible members of the same XIC as a given pi such

that the intensity of the point is less than pi’s intensity. In theory, W could be the entire run. In

practice, and in the implementation of XFlow provided, the m/z width of two times the auto-

matically-calculated resolution estimate (explained below) and the RT width of two times the

sampling rate are sufficient to generate good results.

For each pi in decreasing intensity order down to twice the baseline, each point wj in W is

sorted by decreasing distance. Until the intensity of pi is exhausted, each wj is linked to pi with

the difference between pi and wj scaled by their distance, and this value is subtracted from pi’s

intensity (see Eq 1).

intensityðpi;t2Þ ¼ intensityðpi;t1Þ � jðintensityðpi;t2Þ � intensityðwjÞÞ � distanceðpi;wjÞj ð1Þ

PLOS ONE XFlow: An algorithm for extracting ion chromatograms

PLOS ONE | https://doi.org/10.1371/journal.pone.0227659 October 22, 2020 4 / 17

https://doi.org/10.1371/journal.pone.0227659


Using intensity as a surrogate for likelihood of XIC membership, we estimate confidence of

any link as a function of the difference of pi‘s intensity before and after linking the point

divided by its intensity before linking (see Eq 2). A high confidence point is one that is near in

space, and similar in intensity.

confidence ¼
intensityðpi;t1Þ � intensityðpi;t2Þ

intensityðpi;t1Þ
ð2Þ

This value is stored such that each link in question has an associated confidence that is a

function of the nearness in both intensity and Euclidean distance (given that the difference is

scaled by their distance) (see Fig 3).

After links and confidence for those links are calculated for all (pi), XICs are extracted such

that the points in each cluster consist of the highest confidence links when alternatives exist.

Putative XICs are required to contain more than 5 points for centroided data and more than

15 points for profile data.

No parameters

Unlike any published XIC algorithm, XFlow is also parameter-free. Unlike most XIC algo-

rithms, XFlow is designed to be agnostic to instrument and to whether the data is centroided

or profile. XFlow self-calibrates based on three parameters automatically derived from each

run: resolution, sampling rate, and noise baseline. The baseline calculation is described above.

The resolution is automatically estimated using the minimum m/z separation between any two

points belonging to the same scan. The sampling rate is estimated by calculating the minimum

RT separation between two consecutive scans.

Evaluation

Algorithmic performance is evaluated on a hand-annotated dataset [16] from a recent study

that presented over 57,000 XICs from a public LC-MS dataset [17] (UPS2). XFlow was com-

pared to the algorithms centWave [13], matchedFilter [12], and MZMine2 [18], selected for

comparison as equivalent open source algorithms. Accurate evaluation with respect to the

hand annotated dataset required point by point comparison. For the chosen algorithms, point

data was recovered using the window output that each provided.

For an XIC to be considered appropriately extracted, it must be matched to a corresponding

hand annotated XIC. For the purposes of determining matches, we will refer to the set of

Fig 3. XFlow link progression. This figure details the linking process (lines) and associated confidence (color) of XFlow in a sequence

of images with MZ and RT axis. Beginning with a completely unlinked region (1) XFlow links the highest intensity point to all nearby

points (2). Linking continues in (3) and (4) as XFlow progressively considers lower and lower intensity points, creating links of varying

confidence. Though this figure is just focusing on one XIC, the entire file is progressing in the same way simultaneously.

https://doi.org/10.1371/journal.pone.0227659.g003
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points constituting an XIC produced by the software as A while the set of points constituting

an XIC produced by hand annotation will be H. For an XIC to be considered correctly recov-

ered, the sum of the intensity of the intersection of points between A and H must constitute

greater than fifty percent of the sum of the intensity of the points in the hand annotated XIC

(H). This fraction of shared intensity will be referred to as S (Eq 3).

S ¼
P

intensityðA
T
HÞ

P
intensityðHÞ

ð3Þ

Results

Peak deconvolution, a problem generally thought of as difficult, is handled simply and intrinsi-

cally by XFlow’s intensity-first approach. This process is demonstrated in Fig 4 in a mockup of

a bi-modal XIC with several steps between initial consideration and completion of linking.

We compared XFlow to several popular publicly available and functionally equivalent algo-

rithms. For the purposes of this evaluation, algorithms were selected based on the similarity of

the intended task (MaxQuant [14] and FFC [4], for example, do not stop at XIC extraction,

but exports entire envelopes) and were limited according to previously published performance

(KPIC2 [5], for example, was shown to perform comparably or worse than GridMass [18]).

XCMS’s centWave [13] and matchedFilter [12] algorithms (optimized using Isotopologue

Parameter Optimization [19]) and GridMass (optimized by employing grid search of parame-

ters). Due to the difficulty of obtaining verified XIC datasets, quantitative validation of algo-

rithmic results for XFlow, centWave, matchedFilter and GridMass are limited to the UPS2

dataset, the only dataset with hand annotated XICs. Five other reference or standard datasets

were selected from the PRIDE repository: PXD000790, PXD000792, PXD003236, PXD008952,

PXD011194. These additional files were selected in order to provide qualitative information.

The RAW files were processed using ProteoWizard’s msConvert [20] (Version:

3.0.19277-b582d79cd) to create centroided and profile.mzml files using vendor centroiding

algorithm for a total of 10 qualitative test files (5 profile, 5 centroided) The percent recall of

each algorithm on the hand annotated dataset can be seen in Fig 5.

The hand-annotated dataset contains many accurate XICs, but is not a complete set of all

XICs in the file. Without confidence in the existence of a complete set, there is no verifiable

way to determine existence of false positives. Therefore, the best measure of false positives is

given by Fig 5.

In addition to evaluating the performance of these algorithms quantitively we can analyze

the output with a human eye. The characteristics of a high quality XIC are contiguity

along retention time (RT), narrow span along the m/z axis, and a unimodal distribution of

intensity along the RT axis. Example XICs from each algorithm on the UPS2 data are shown in

Figs 6–9.

The number of XICs recovered from alternative datasets for both centroid and profile data

can be observed in Figs 10 and 11.

XCMS’ matchedFilter and centWave performed similarly in relation to each other. This is

likely due to the common origin of the algorithms, and IPO’s optimization strategy. CentWave

and matchedFilter also had the most similar results between centroid and profile data (Figs 9

and 10), also likely attributable to IPOs parameter optimization strategy. The downside of

employing IPO is its very lengthy runtime. Further, while centWave and matchedFilter had a

very high percentage of detected XICs matched to hand annotated XICs, the overall number of

the hand annotated XICs they recovered is far fewer than XFlow or GridMass, qualitatively

suggesting that they fail to recover lower intensity signals, an observation that can be verified
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by analyzing images from PXD011194 dataset to provide qualitative evaluation and compari-

son between algorithms tested. (See Figs 12–15).

Additionally, it was observed that centWave and matchedFilter both harbor a tendency to

over or under select around regions of interest (Figs 14 and 15). Additionally, with the preva-

lence of large datasets, the runtime of these algorithms is vitally important for their continued

feasibility in the future. These runtimes can be seen in Fig 16 (note log scale).

Fig 4. XFlow intrinsic deconvolution. This figure demonstrates the latent capacity for XFlow to deconvolve

overlapping signals. Observe Subplot 1, XFlow has just begun linking points in intensity order, shown by the colored

points. Next in subplot 2, XFlow has begin linking progressively less intense points to the higher intensity points. In

subplot 3, XFlow links all points in the valley between two peaks, and all points are linked to one or the other growing

XIC. In subplot 4, XFlow continues linking lower intensity peaks on either side of the bi-modal peak, adding points to

each growing XIC respectively. Again note that while the figure is focusing on one XIC, in reality the entire file

proceeds in this manner simultaneously.

https://doi.org/10.1371/journal.pone.0227659.g004
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A comparison of the shared XICs found between the tested algorithms can be seen in Fig
17. Each algorithm is compared to every other algorithm and the hand annotated dataset twice

to give some sense of the peformance of the algorithm. The directionality of the comparison is

important, as each XIC present in the second comparison file can be matched to as many XICs

in the first comparison file. This evaluation was conducted in this way to detect a failure of the

algorithms to separate bimodal peaks. In this way, the difference between the two comparisons

between the same algorithms can be determined to mean that the algorithm with more

matches was better able to separate co-eluting XICs as it matched multiple XICs to one pre-

sumably concatenated bi-modal signal.

Discussion

The results of this study have brought to light several interesting and key features of the ability

of the evaluated algorithms to recover XICs from LC-MS data sets.

GridMass and XFlow were generally the most permissive algorithms tested, resulting in the

most XICs recovered. Both algorithms also managed to recover many XICs from the UPS2

dataset, GridMass recovering just over 64%, and XFlow recovering 71%. XFlow recovered a

disproportionally large number of XICs from the UPS2 dataset. Likely due to the large number

of extremely low intensity noise points that drove the baseline calculation down. While Grid-

Mass performed very well on recovering the hand annotated data, it was optimized using a

Fig 5. Percent recall of hand annotated XICs. Percentage of XICs shared between hand annotated dataset, and from the set of XICs output by each algorithm

recovered from the UPS2 dataset. Note the disparity between algorithms with XFlow recovering the most with just over 70%, and matched filter recovering just over

15%.

https://doi.org/10.1371/journal.pone.0227659.g005
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grid search evaluated using the hand annotated data, and was unable to replicate the success

without this optimization strategy.

Considering the total number of XICs collected for each algorithm with respect to each

data file, it is clear here that the UPS2 dataset has interesting qualities in relation to the other

datasets (Fig 9). XFlow returned the most hand annotated XICs between any algorithm, this

disparity seems only attributable to something inherent in the dataset itself, in addition to

what was mentioned before, UPS2 has a relatively small difference between the signal intensity

and the background noise intensity in the dataset.

The runtime of the algorithms is highly disparate, and the challenges of optimizing a highly

parameterized algorithm such as centWave, matchedFilter, and GridMass (Even using an

automated tool like IPO) is prohibitively time consuming for larger datasets. It is feasible to

reuse optimized parameters but doing so is likely to return suboptimal results. In this way, it is

clear that algorithms designed without user tunable parameters will excel.

Fig 6. XFlow results. Selected result of XFlow on the hand annotated data in top-down, 3d and spectral views. All XICs in window are fully formed, and the extent of

the XICs in the RT dimension are captured. Note the correctly distinguished bi-modal or tri-modal peaks in the spectral view.

https://doi.org/10.1371/journal.pone.0227659.g006
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Conclusion

The size of the datasets, the complexity of the signals, and the noise obfuscation make XIC

acquisition from MS1 data extremely challenging. The general method to account for com-

plexity has been to include parameters to increase the scope of an individual algorithm. It was

our goal in our lab to reduce complexity, and simplify the experience of conducting MS1 anal-

ysis by designing XFlow in a procedurally agnostic way such that it works on a wide variety of

MS1 datasets without parameter modification regardless of centroiding or instrument type, a

goal that is now accomplished. It’s clear that XFlow excels at signal acquisition for the UPS2

dataset in particular and performs favorably with respect to other algorithms in signal acquisi-

tion from alternate datasets (Figs 12–15). Additionally, while qualitative information is gained

by comparing results for alternative datasets, it’s impossible to quantitatively evaluate the per-

formance of the algorithms for datasets that do not have a hand annotated version. To this

end, developing a database of a variety of hand annotated datasets with which to evaluate algo-

rithms remains a valuable endeavor, in order to provide additional sources of comparison

beyond UPS2. Further exploration into noise/signal detection and baseline detection would

also serve to improve the predictability of XFlow in a method agnostic way.

Fig 7. GridMass results. Selected result of GridMass on the hand annotated data in top-down 3d and spectral views. Most XICS in window are fully formed, and XICs

extend in the RT dimension to their full extent. GridMass was also able to correctly distinguish bi-modal peaks after parameter optimization.

https://doi.org/10.1371/journal.pone.0227659.g007
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Fig 8. matchedFilter results. Selected result of matchedFilter on the hand-annotated data in top-down, 3d and spectral

views. One XIC in the center has been completely skipped. Several XICs extend too far in the m/z dimension. XICs do not

extend fully in the RT dimension.

https://doi.org/10.1371/journal.pone.0227659.g008

Fig 9. centWave results. Result example of centWave in top-down, 3d and spectral views. One XIC in the center has been

completely skipped. Some XICs extend too far in the m/z dimension as before with matchedFilter. XICs also do not fully

extend in RT dimension.

https://doi.org/10.1371/journal.pone.0227659.g009
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Fig 10. Total number of XICs for each centroid file. The number of XICs reported by each algorithm for each centroided dataset. Note the much larger set of XICs

returned from XFlow for the UPS2 data set in comparison to other algorithms, and other files.

https://doi.org/10.1371/journal.pone.0227659.g010

Fig 11. Total number of XICs for each profile file. The number of XICs reported by each algorithm for each profile dataset. Note some disparity among GridMass and

XFlow between centroid (Fig 10) and profile datasets. Disparity between profile and centroid, while expected, is not desirable. Ideally, the centroid and profile datasets

will have the exact same number of signals as they come from the same source. XCMS’s matchedFilter and centWave excelled at recovering the similar numbers of XICs

from profile and centroided versions of the datasets. The effect of centroiding and quantifying the related loss of information during the process is an ongoing area of

research in our lab.

https://doi.org/10.1371/journal.pone.0227659.g011
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Fig 12. XFlow qualitative results. XFlow wide scale (left) and XFlow feature scale (right). It is clear that XFlow has self-adjusted the intensity slightly too high, and as a

result is missing clearly present XICS (left). Further, XICs are well formed, and fully extended, having captured all relevant points.

https://doi.org/10.1371/journal.pone.0227659.g012

Fig 13. GridMass qualitative results. Feature view (left) and wide view (right). GridMass utterly failed to resolve any XICs in the selected window. It is clear that

without a method to optimize the parameters, GridMass is unable to deliver appropriate results. So while approximately 50,000 XICs were recovered from the dataset,

the qualitative quality of the XICs are poor.

https://doi.org/10.1371/journal.pone.0227659.g013
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Fig 15. centWave qualitative results. Feature view (right) and centWave wide view (left) and the left view shows that centWave manages to return several of the XICs.

Like matchedFilter, centWave failed to find most of the points in the XICs in the feature view (right), but found several peaks.

https://doi.org/10.1371/journal.pone.0227659.g015

Fig 14. matchedFilter qualitative results. Feature view (left) and wide view (right) The left view shows that matchedFilter manages to return several of the XICs.

MatchedFilter failed to find most of the high intensity points in the feature view (right), but found several of the peaks.

https://doi.org/10.1371/journal.pone.0227659.g014
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Fig 16. Runtime of algorithms on PXD000792. This chart shows the log scaled runtimes for each of the algorithms in seconds on the PXD000792-Centroid dataset.

CentWave took the longest at ~18000 seconds (approximately 5 hours), matchedFilter and GridMass took nearly the same at about 5 minutes. XFlow took

approximately 8 seconds. Note that the time consuming part of centWave and matchedFilter is the parameter optimization which necessitates repeated trials to obtain

optimal results.

https://doi.org/10.1371/journal.pone.0227659.g016

Fig 17. Comparison of Traces recovered for UPS2. This table was created to derive a metric to determine shared XICs recovered between algorithms and also to

determine quality of deconvolution.

https://doi.org/10.1371/journal.pone.0227659.g017
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