

Article The Search for Herbal Antibiotics: An In-Silico Investigation of Antibacterial Phytochemicals

Mary Snow Setzer¹, Javad Sharifi-Rad^{2,3} and William N. Setzer^{1,*}

- ¹ Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; mary.setzer@uah.edu
- ² Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran; javad.sharifirad@gmail.com
- ³ Department of Pharmacognosy, Zabol University of Medical Sciences, Zabol 61615-585, Iran
- * Correspondence: wsetzer@chemistry.uah.edu; Tel.: +1-256-824-6519

Academic Editor: William R. Schwan Received: 26 May 2016; Accepted: 26 August 2016; Published: 12 September 2016

Abstract: Recently, the emergence and spread of pathogenic bacterial resistance to many antibiotics (multidrug-resistant strains) have been increasing throughout the world. This phenomenon is of great concern and there is a need to find alternative chemotherapeutic agents to combat these antibiotic-resistant microorganisms. Higher plants may serve as a resource for new antimicrobials to replace or augment current therapeutic options. In this work, we have carried out a molecular docking study of a total of 561 antibacterial phytochemicals listed in the Dictionary of Natural Products, including 77 alkaloids (17 indole alkaloids, 27 isoquinoline alkaloids, 4 steroidal alkaloids, and 28 miscellaneous alkaloids), 99 terpenoids (5 monoterpenoids, 31 sesquiterpenoids, 52 diterpenoids, and 11 triterpenoids), 309 polyphenolics (87 flavonoids, 25 chalcones, 41 isoflavonoids, 5 neoflavonoids, 12 pterocarpans, 10 chromones, 7 condensed tannins, 11 coumarins, 30 stilbenoids, 2 lignans, 5 phenylpropanoids, 13 xanthones, 5 hydrolyzable tannins, and 56 miscellaneous phenolics), 30 quinones, and 46 miscellaneous phytochemicals, with six bacterial protein targets (peptide deformylase, DNA gyrase/topoisomerase IV, UDP-galactose mutase, protein tyrosine phosphatase, cytochrome P450 CYP121, and NAD⁺-dependent DNA ligase). In addition, 35 known inhibitors were docked with their respective targets for comparison purposes. Prenylated polyphenolics showed the best docking profiles, while terpenoids had the poorest. The most susceptible protein targets were peptide deformylases and NAD⁺-dependent DNA ligases.

Keywords: antibiotic resistance; antibacterial phytochemicals; molecular docking; bacterial protein targets

1. Introduction

Recently, established antibiotics have become less effective against numerous infectious organisms, and the Centers for Disease Control and Prevention (CDC) has warned of a "post-antibiotic era" [1]. This concern is heightened by our tenuous ability to detect, contain, and prevent emerging infectious diseases. The emergence of pathogenic microbes with increased resistance to existing antibiotics provides a major incentive for the discovery of new antimicrobial agents. The problems of drug-resistant pathogens have been reviewed recently [2–5]; there is a pressing need for more effective antibacterial therapy. Based on several recent reports, pathogens of immediate concern are methicillin-resistant *Staphylococcus aureus* (MRSA), a common cause of hospital-acquired infections, and which is evolving a resistance to vancomycin [6]; *Pseudomonas aeruginosa* in which multidrug resistance has become problematic [7]; *Streptococcus pneumoniae*, a common respiratory pathogen in which multidrug resistance is spreading [8]; multidrug-resistant strains of *Mycobacterium tuberculosis* [9],

which are causing an alarming increase in the incidence of tuberculosis; and virulent strains of *Escherichia coli*, which continue to emerge [10–12].

Virtual screening using cheminformatics, pharmacophore, or ligand- and structure-based target prediction methods [13] has emerged as an advantageous alternative to high-throughput screening for identification of potential lead structures or biological targets for anti-infective drug discovery. For example, Bernal and Coy-Barrera have used a combination of molecular docking and multivariate analysis to identify antifungal and antiviral xanthone lead compounds [14]. Rahimi and co-workers have used a structural similarity search along with molecular docking to identify potential *Shigella flexneri* DNA gyrase inhibitors [15]. Molecular docking has been used to identify bacterial peptidyl-tRNA hydrolase as an additional alternative target for known antibiotic drugs [16].

Until the beginning of the twentieth century, virtually all medicines were derived from natural sources, most often from plants, and plants continue to serve as sources of new medicines and provide lead compounds for drug development. These antimicrobial agents derived from higher plants have been reviewed recently [17,18]. In the discovery of new and complementary antibacterial agents, phytochemicals that show antibacterial activity can be examined for potential inhibition of bacterial target proteins such as peptide deformylase (PDF), topoisomerase IV (TopoIV), DNA gyrase B (GyrB), protein tyrosine phosphatase (Ptp), UDP-galactopyranose mutase (UGM), cytochrome P450 (CYP121), and NAD⁺-dependent DNA ligase, as well as phytochemical inhibitors of bacterial efflux pumps or quorum sensing proteins, or agents that enhance the immune system. In this work, we have carried out an in-silico screening of phytochemicals identified in the *Dictionary of Natural Products* [19] as showing antibacterial activity against several potential bacterial protein targets.

1.1. Peptide Deformylase

The process of bacterial protein synthesis is initiated with *N*-formylmethionine (f-Met-tRNAi), which is generated through the enzymatic transformylation of methionyl-tRNA (Met-tRNAi) by formyl methionyl transferase (f-Mett). The *N*-formyl group of the polypeptide that emerges from the ribosome after completion of the elongation process is removed by the sequential action of peptide deformylase (PDF) [20,21]. Methionine amino peptidase (MAP) then removes the *N*-terminal methionine depending on the nature of the second amino acid in the peptide chain [22]. Therefore, deformylation plays a pivotal role in bacterial protein maturation, growth, and survival; PDF is vital in a variety of pathogenic bacteria but it is not required for cytoplasmic protein synthesis in the eukaryotes. Hence, PDF has been identified as a potential antibacterial drug target [23]. Bacterial PDFs are metallohydrolases that use Fe²⁺ as the catalytic metal ion (which can be replaced with Ni²⁺ or Zn²⁺) that is tetrahedrally coordinated to two histidine residues, a cysteine residue, and a water molecule [24].

1.2. DNA Gyrase/Topoisomerase IV

Topoisomerase enzymes control the topological state of DNA within cells and are important for the essential process of protein translation and cell replication. Much attention in antibacterial drug discovery has been focused on the DNA gyrase (a type II topoisomerase) and topoisomerase IV. These types of topoisomerases are present in bacteria and plants, but not animals. DNA gyrase and topoisomerase IV share high structural and sequence similarity, yet play different necessary roles in the replication of DNA. Because of their vital nature and mechanisms of action, topoisomerases have become key drug targets for antibacterial drug discovery [25,26].

1.3. UDP-Galactopyranose Mutase

UDP-Galactopyranose mutase (UGM) is the only enzyme known to catalyze the isomerization of UDP-galactopyranose to UDP-galactofuranose. The enzyme has been identified in prokaryotes, including Gram-negative bacteria and mycobacteria, as well as eukaryotic parasites (*Leishmania major*, *Trypanosoma cruzi*), nematodes (*Caenorhabditis elegans*), and fungi (*Aspergillus fumigatus, Cryptococcus neoformans*), but have not been found in higher eukaryotes [27].

Galactofuranose residues are essential components of mycobacterial cell walls, and thus, UGM has been identified as a potential target for antimycobacterial chemotherapeutics.

1.4. Protein Tyrosine Phosphatase

Protein tyrosine phosphatases (Ptps) have been suggested to be major virulence determinants. These enzymes reverse the effect of tyrosine kinases by dephosphorylating the tyrosine residues of host cellular substrate proteins important in host cellular signaling, which attenuates host immune defenses [28,29]. Ptps are essential components for the interaction of mycobacteria with host cells, making them attractive protein targets; structural differences between mycobacterial Ptps and eukaryotic Ptps could allow for the discovery of selective mycobacterial Ptp inhibitors [28,29].

1.5. Cytochrome P450 CYP121

Several antifungal azole and triazole agents have been shown to inhibit mycobacterial cytochrome P450 CYP121 [30]. CYP121 is essential for *Mycobacterium tuberculosis* and there is a correlation between antimycobacterial activity and MtCYP121 binding, suggesting that MtCYP121 is the major target in *M. tuberculosis* [31]. There is low sequence similarity between MtCYP121 and mammalian P450s, which suggests that MtCYP121 is a promising antimycobacterial drug target [32].

1.6. NAD+-Dependent DNA Ligase

DNA ligases are involved in DNA replication, recombination, and repair pathways by joining adjacent 3'-hydroxyl and 5'-phosphoryl termini in DNA [33]. Bacterial DNA ligases use NAD⁺ as a cofactor, which differentiates them from eukaryotic DNA ligases, which use ATP [34]. The differences between bacterial NAD⁺-dependent DNA ligases (LigA) and mammalian ATP-dependent DNA ligases suggest that bacterial LigA should be excellent targets for antibacterial drug discovery [35].

2. Computational Methods

Protein-ligand docking studies were carried out based on the structures of verified bacterial protein drug targets.

Bacterial peptide deformylase: *Bacillus cereus* (BcPDF, PDB 2OKL [36]); *Escherichia coli* (EcPDF, PDB 1G2A and 1G27 [37], PDB 1LRU [38], PDB 2AI8 [39], PDB 2KMN [40], and PDB 3K6L [41]); *Mycobacterium tuberculosis* (MtPDF, PDB 3E3U [42]); *Pseudomonas aeruginosa* (PaPDF, PDB 1LRY [38], 1IX1 [43], and 1S17 [44]); and *Staphylococcus aureus* (SaPDF, PDB 1Q1Y [43], PDB 3U7K, 3U7M, and 3U7N [45]). In order to test for the selectivity toward bacterial PDF over human PDF, molecular docking of the phytochemical ligands was also carried out on human PDF (HsPDF, PDB 4JE7 and 4JE8 [46]).

Bacterial DNA gyrase B/topoisomerase IV: *E. coli* (EcGyrB, PDB 1AJ6 [47], EcTopoIVB, PDB 1S16 [48]), and *M. tuberculosis* (MtGyrB, PDB 3ZKB and 3ZKD [49]).

Bacterial protein tyrosine phosphatase: *M. tuberculosis* (MtPtpA, PDB 1U2Q [28], and MtPtpB, PDB 2OZ5 [29]). In order to compare *Mycobacterium* Ptp docking over human Ptp, molecular docking of the phytochemical ligands was also carried out with human PtpB (HsPtpB, PDB 2I4H and 2I5X [50]).

Mycobacterial UDP-galactopyranose mutase: *M. tuberculosis* (MtUGM, PDB 4RPG, 4RPH, 4RPJ, 4RPK, and 4RPL [51]).

Mycobacterial cytochrome P450 CYP121: *M. tuberculosis* (MtCYP121, PDB 4IPS [52], 4KTF [53], and 5IBE [32]).

Bacterial NAD⁺-Dependent DNA ligase: *E. coli* (EcLigA, PDB 20WO [35] and 4GLX [54]), *M. tuberculosis* (MtLigA and PDB 1ZAU [55]), *S. aureus* (SaLigA, PDB 4CC5 and 4CC6 [56]), and *S. pneumoniae* (SpLigA and PDB 4GLW [54]).

Prior to docking, all solvent molecules and the co-crystallized ligands were removed from the structures. If co-factors were present, they were retained in each protein model (e.g., divalent metal ions in peptide deformylases, flavin adenine dinucleotide (FAD) in *M. tuberculosis* UDP-galactopyranose

mutase, and heme in MtCYP121). Molecular docking calculations for all compounds with each of the proteins were undertaken using Molegro Virtual Docker (version 6.0, Molegro ApS, Aarhus, Denmark) [57], with a sphere (15 Å radius) large enough to accommodate the cavity centered on the binding sites of each protein structure in order to allow each ligand to search. If a co-crystallized inhibitor or substrate was present in the structure, then that site was chosen as the binding site. If no co-crystallized ligand was present, then suitably sized (>50 $Å^3$) cavities were used as potential binding sites. Standard protonation states of the proteins based on neutral pH were used in the docking studies. Each protein was used as a rigid model structure; no relaxation of the protein was performed. Assignments of the charges on each protein were based on standard templates as part of the Molegro Virtual Docker program; no other charges were necessary to be set. Overall, 561 antibacterial phytochemicals have been docked. This molecule set was comprised of 77 alkaloids, 99 terpenoids, 190 flavonoids, 119 polyphenolic compounds, 30 quinones, and 46 miscellaneous phytochemicals. Each ligand structure was built using Spartan'14 for Windows (version 1.1.0, Wavefunction Inc., Irvine, CA, USA). For each ligand, a conformational search and geometry optimization was carried out using the MMFF force field [58]. Flexible ligand models were used in the docking and subsequent optimization scheme. Variable orientations of each of the ligands were searched and ranked based on their re-rank score. For each docking simulation the maximum number of iterations for the docking algorithm was set to 1500, with a maximum population size of 50, and 100 runs per ligand. The RMSD threshold for multiple poses was set to 1.00 Å. The generated poses from each ligand were sorted by the calculated re-rank score.

3. Results and Discussion

The Molegro Virtual Docking program [57,59] was used to carry out in-silico protein-ligand docking studies using known antibacterial phytochemicals with the structures of verified bacterial protein drug targets. A total of 561 antibacterial phytochemicals listed in the Dictionary of Natural Products [19] were studied, including 77 alkaloids (17 indole alkaloids, 27 isoquinoline alkaloids, 4 steroidal alkaloids, and 28 miscellaneous alkaloids), 99 terpenoids (5 monoterpenoids, 31 sesquiterpenoids, 52 diterpenoids, and 11 triterpenoids), 309 polyphenolics (87 flavonoids, 25 chalcones, 41 isoflavonoids, 5 neoflavonoids, 12 pterocarpans, 10 chromones, 7 condensed tannins, 11 coumarins, 30 stilbenoids, 2 lignans, 5 phenylpropanoids, 13 xanthones, 5 hydrolyzable tannins, and 56 miscellaneous phenolics), 30 quinones, and 46 miscellaneous phytochemicals (see Figures 1–23), with six bacterial protein targets (peptide deformylase, DNA gyrase/topoisomerase IV, UDP-galactose mutase, protein tyrosine phosphatase, cytochrome P450 CYP121, and NAD⁺-dependent DNA ligase). As a test for docking accuracy, the co-crystallized ligands from each protein structure were re-docked into the proteins. The docking energies and root-mean squared deviations (RMSD) are summarized in Table 1. In order to correct for the known biasing of docking energies (E_{dock}) with increasing molecular weight (MW) [60–65], we have also determined a normalized docking score (DS_{norm}) based on the molecular weight: $DS_{norm} = 7.2 \times E_{dock} / MW^{1/3}$.

Figure 1. Cont.

Figure 1. Indole alkaloids examined in this work.

Figure 2. Cont.

Figure 2. Cont.

Figure 2. Isoquinoline alkaloids examined in this work.

Figure 3. Cont.

Figure 4. Cont.

Figure 4. Miscellaneous alkaloids examined in this work.

Figure 5. Monoterpenoids examined in this work.

Figure 6. Cont.

106

Xanthorrhizol

109 α -Muurolene

Figure 6. Cont.

Figure 7. Cont.

Salvic acid

Figure 7. Cont.

Shikokianin

Strictic acid

Salvic acid acetate

Figure 8. Triterpenoids examined in this work.

Figure 9. Cont.

Figure 9. Chalcones examined in this work.

Figure 10. Cont.

Figure 10. Flavonoids examined in this work.

Figure 11. Cont.

330 Inophyllum A

HO O 332 Mammea A/BA

0

333 Mammea A/BB

Figure 12. Neoflavonoids examined in this work.

Figure 13. Coumarins examined in this work.

Figure 14. Cont.

Figure 14. Pterocarpans examined in this work.

Figure 15. Chromones examined in this work.

Figure 16. Condensed tannins examined in this work.

Figure 17. Cont.

Figure 17. Cont.

Figure 18. Phenylpropanoids and lignans examined in this work.

Figure 19. Cont.

Figure 19. Xanthones examined in this work.

Figure 20. Hydrolyzable tannins examined in this work.

Figure 21. Cont.

Figure 21. Cont.

Figure 21. Miscellaneous phenolic phytochemicals examined in this work.

Figure 22. Cont.

Figure 22. Quinones examined in this work.

Figure 23. Cont.

Figure 23. Cont.

Figure 23. Acetylene, glucoside, and other miscellaneous phytochemicals examined in this work.

Table 1. MolDock docking energies of co-crystallized ligands and the root-mean-squared deviations between the co-crystallized ligand and the re-docked poses of the co-crystallized ligand with bacterial protein target crystal structures.

Protein Target	PDB Code	Co-Crystallized Ligand	E (kJ/mol)	RMSD (Å)
BcPDF	20KL	Actinonin	-114.6	0.82
EcPDF	1G2A	Actinonin	-111.8	1.08
	1G27	2-[(Formyl-hydroxy-amino)-methyl]-hexanoic acid (1-dimethylcarbamoyl-2,2-dimethyl-propyl)-amide (BB-3497)	-90.2	0.49
	1LRU	Actinonin	-110.0	1.23
	2AI8	[Hydroxy(3-phenylpropyl)amino]methanol (SB-485345)	-56.1	0.71
	2KMN	Actinonin	-46.6	0.84
	3K6L	(2 <i>S</i> ,3 <i>R</i>)- <i>N</i> 4-[(1 <i>S</i>)-1-(Dimethylcarbamoyl)-2,2-dimethylpropyl]- <i>N</i> 1,2-dihydroxy- 3-(2-methylpropyl)butanediamide (BB-2827)	-96.2	0.79
McPDF	3E3U	N-[(2R)-2-{[(2S)-2-(1,3-benzoxazol-2-yl)pyrrolidin-1-yl]carbonyl}-hexyl]-N- hydroxyformamide	-99.9	0.55
Protein Target	PDB Code	Co-Crystallized Ligand	E (kJ/mol)	RMSD (Å)
-------------------	-------------	---	---------------	-------------
PaPDF	1LRY	Actinonin	-97.6	0.71
	1IX1	Actinonin	-127.2	0.81
-	1S17	2-(3,4-Dihydro-3-oxo-2H-benzo[B][1,4]thiazin-2-yl)-N-hydroxyacetamide	-92.6	1.10
SaPDF	1Q1Y	Actinonin	-98.4	2.18
-	3U7K	(S)-N-(Cyclopentylmethyl)-N-(2-(hydroxyamino)-2-oxoethyl)-2-[3-(2- methoxyphenyl)ureido]-3,3-dimethylbutanamide	-120.5	3.12
-	3U7L	(S)-N-(Cyclopentylmethyl)-2-[3-(3,5-difluorophenyl)ureido]-N-(2- (hydroxyamino)-2-oxoethyl)-3,3-dimethylbutanamide	-111.9	3.25
-	3U7M	<i>N-</i> [(2 <i>R</i> ,4 <i>S</i>)-2-butyl-4-(3-(2-fluorophenyl)ureido)-5-methyl-3-oxohexyl]- <i>N</i> -hydroxyformamide	-93.9	4.94
-	3U7N	N-[(2R,4S)-2-butyl-5-methyl-4-(3-(5-methylpyridin-2-yl)ureido)-3-oxohexyl]- N-hydroxyformamide	-82.5	5.00
SpPDF	2AI7	[Hydroxy(3-phenylpropyl)amino]methanol (SB-485345)	-58.8	1.07
-	2AIA	2-(3-Benzoylphenoxy)ethyl(hydroxyl)formamide (SB-543668)	-113.2	5.83
-	2AIE	Hydroxy[3-(6-methylpyridin-2-yl)propyl]formamide (SB-505684)	-73.1	1.06
HsPDF	4JE7	Actinonin	-105.0	0.71
-	4JE8	Met-Ala-Ser	-78.3	0.85
EcTopoIV	1S16	Phosphoaminophosphonic acid-adenylate ester (ADPNP)	-175.9	0.59
EcGyrB	1AJ6	Novobiocin	-74.2	5.55
MtGyrB	3ZKB	Phosphoaminophosphonic acid-adenylate ester (ADPNP)	-158.4	1.04
-	3ZKD	Phosphoaminophosphonic acid-adenylate ester (ADPNP)	-176.2	0.81
MtPtp	1U2Q	Glycerol	-29.9	4.43
-	20Z5	{(3-Chlorobenzyl)[(5-{[(3,3-diphenylpropyl)aminosulfonyl}-2- thienyl)methyl]-amino}(oxo)acetic acid	-148.3	4.92
HsPtp	1I4H	N-(t-Butoxycarbonyl)-L-tyrosyl-N-methyl-4-(sulfoamino)-L-phenylalaninamide	-121.2	4.81
-	2I5X	(4-Ethylphenyl)sulfamic acid	-80.4	0.82
MtUGM	4RPG	UDP-D-Galactopyranose	-148.3	0.94
-	4RPH	UDP-D-Galactopyranose	-162.1	0.34
-	4RPJ	UDP	-132.0	0.68
-	4RPK	(2R,5S)-5-[(1R)-1,2-Dihydroxyethyl]-3,3,4,4-tetrafluorotetrahydrofuran-2-yl [(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetr ahydrofuran-2-yl]methyl dihydrogen diphosphate	-154.6	1.89
	4RPL	[(2 <i>R</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>R</i>)-5-(2,4-Dioxo-3,4-dihydropyrimidin-1(2 <i>H</i>)-yl)-3,4-dihydroxyte trahydrofuran-2-yl]methyl(2 <i>R</i> ,5 <i>S</i> ,6 <i>R</i>)-3,3,4,4-tetrafluoro-5-hydroxy-6- (hydroxymethyl)tetrahydro-2 <i>H</i> -pyran-2-yl dihydrogen diphosphate	-124.9	1.67
MtCYP121	3G5H	(35,65)-3,6-Bis(4-hydroxybenzyl)piperazine-2,5-dioneCyclo(Tyr-Tyr)	-77.6	4.18
-	4G44	3-(1H-1,2,4-Triazol-1-ylmethyl)aniline	-55.3	0.49
-	4IPS	(35,65)-3,6-Bis(4-hydroxybenzyl)piperazin-2-one	-63.4	5.44
-	4KTF	4,4'-(3-Amino-1H-pyrazole-4,5-diyl)diphenol	-80.4	8.19
-	5IBE	4-[5-Amino-4-(3'-amino[1,1'-biphenyl]-3-yl)-1H-pyrazol-3-yl]phenol	-94.2	2.17
EcLigA	20WO	none	-	-
	4GLX	2-Amino-6-bromo-7-(trifluoromethyl)-1,8-naphthyridine-3-carboxamide	-90.6	0.69
MtLigA	1ZAU	Adenosine monophosphate	-77.0	0.80
SaLigA	4CC5	2-Chloranyl-6-(1H-1,2,4-triazol-3-yl)pyrazine	-52.7	4.57
<u> </u>	4CC6	2-{[2-(1 <i>H</i> -Pyrazolo[3,4- <i>c</i>]pyridin-3-yl)-6-(trifluoromethyl)pyridin-4-yl] amino}ethanol	-110.3	0.65
SpLigA	4GLW	7-Methoxy-6-methylpteridine-2,4-diamine	-84.0	0.41

3.1. Bacterial Peptide Deformylase

MolDock docking energies (E_{dock}) and normalized docking scores (DS_{norm}) of antibacterial phytochemical ligands with bacterial peptide deformylase enzyme structures are summarized in Table 2. There were very few alkaloids docking to the bacterial peptide deformylase protein targets with notable docking scores. Those alkaloids that had large exothermic docking energies usually violated Lipinski's rule of five [66], with molecular weights >500 or hydrogen-bond acceptor atoms >10. Tuberine (76), however, did show excellent docking to *Escherichia coli* peptide deformylase (EcPDF)

 $(E_{dock} = -136.7 \text{ kJ/mol}; DS_{norm} = -126.5)$ compared to docking of the ligand with human PDF (HsPDF, $E_{dock} = -121.7 \text{ kJ/mol}$) or compared with the docking energy of the co-crystallized ligand actinonin $(E_{dock} = -111.8 \text{ kJ/mol})$. (+)-Tuberine (76), isolated from *Haplophyllum tuberculatum*, has shown antibacterial properties against *Staphylococcus aureus* and *Bacillus* subtilis, as well as *E. coli* [67,68].

Several chalcones exhibited particularly strong docking properties with bacterial PDFs. Most notably, angusticornin B (182) docked strongly with EcPDF ($E_{dock} = -143 \text{ kJ/mol}$), Mycobacterium tuberculosis PDF (MtPDF, E_{dock} = -134.4 kJ/mol), Pseudomonas aeruginosa PDF (PaPDF, $E_{dock} = -134.7 \text{ kJ/mol}$), and Streptococcus pneumoniae PDF (SpPDF, $E_{dock} = -131.4 \text{ kJ/mol}$); more strongly than with HsPDF (-126.7 kJ/mol). Balsacone B (184) and balsacone C (185) docked well with SpPDF; kanzonol C (193) docked well with EcPDF, SpPDF, but also with HsPDF; piperaduncin B (197) docked well with EcPDF, SaPDF, and SpPDF, but also with HsPDF; xanthoangelol (200) showed remarkable docking properties with EcPDF, MtPDF, PaPDF, SaPDF (*Staphylococcus aureus* PDF), and SpPDF, but also with HsPDF; and xanthoangelol F (201) docked well with MtPDF. Angusticornin B (182) has shown activity against E. coli and P. aeruginosa [69]. Apparently the balsacones B and C (184, 185) were not screened for activity against S. pneumoniae, but these compounds have shown activity against Gram-positive S. aureus [70]. Kanzonol C (193) has shown broad spectrum antibacterial activity including inhibition of E. coli [71]. Although piperaduncum B (197) was active against Micrococcus luteus and Bacillus subtilis, it was inactive against E. coli [72]. Neither xanthoangelol (200) nor xanthoangelol F (201) showed activity against Gram-negative bacteria, but both were active against Gram-positive organisms [73,74].

Four antibacterial flavonoids, 3'-O-methyldiplacone (205), 5'-(1,1-dimethyl-2-propenyl)-2',4',5, 7-tetrahydroxy-8-prenylflavanone (220), 5'-(1,1-dimethyl-2-propenyl)-4',5,7-trihydroxy-2'-methoxy-8prenylflavanone (221), and flemiflavanone D (240) showed excellent docking properties to EcPDF with E_{dock} -130 kJ/mol. The geranylflavonoid 3'-O-methyldiplacone (205) has shown excellent antibacterial activity against Gram-positive bacteria (MIC 4–8 µg/mL), but was inactive against Gram-negative organisms, including *E. coli* [75]. Both 5'-(1,1-dimethyl-2-propenyl)-2',4',5,7-tetrahydroxy-8-prenylflavanone (220) and 5'-(1,1-dimethyl-2-propenyl)-4',5,7-trihydroxy-2'-methoxy-8-prenylflavanone (221), isolated from the root extract of *Dalea scandens*, showed significant activity against both methicillin-susceptible and methicillin-resistant *S. aureus* [76]. Flemiflavanone D (240) has also shown activity against *S. aureus* [77]. The geranylflavonoid macarangaflavanone A (259), active against *E. coli* and *Micrococcus luteus* [78], showed excellent docking with SpPDF ($E_{dock} = -130.7$ kJ/mol). The prenylated flavanone, 5'-(1,1-dimethyl-2-propenyl)-2',4',5,7-tetrahydroxy-6-prenylflavanone (219), which had shown activity against oxacillin-sensitive and oxacillin-resistant *S. aureus*, docked well with PaPDF ($E_{dock} = -132.2$ kJ/mol).

Garcinoic acid (=*trans*- δ -tocotrienoloic acid) (550) has shown antibacterial activity against *B. cereus*, *S. aureus*, and *P. aeruginosa* [79]. This compound has also shown notable docking properties with EcPDF, PaPDF, and SaPDF, with docking energies of -134.6, -129.4, and -135.3 kJ/mol, respectively. Unfortunately, garcinoic acid (550) also docked well with human PDF (E_{dock} = -132.0 kJ/mol).

Rosmarinic acid (488), a relatively common caffeic acid ester, has been found in many plants, including *Rosmarinus officinalis*, *Melissa officinalis*, *Momordica balsamina*, *Mentha piperita*, *Salvia officinalis*, *Teucrium scorodonia*, *Sanicula europaea*, *Thymus* spp., *Hyptis verticillata*, *Lithospermum erythrorhizon*, and many other plant species [19]. The compound has a number of important biological activities such as antithrombotic, anti-inflammatory, antiviral, antifungal, and antibacterial effects [80]. Rosmarinic acid (488) showed strong docking to both EcPDF and PaPDF (–129.8 and –129.9 kJ/mol, respectively), and the compound is active against both *E. coli* [81] and *P. aeruginosa* [82,83].

The antibacterial hydroquinone derivatives shikonofuran C (494) and shikonofuran E (496) [84] both showed selective docking to EcPDF with docking energies of -130.8 kJ/mol. The naphthoquinones rhinacanthins G (506), H (507), I (508), K (510), and L (511) all showed remarkable docking to EcPDF (E_{dock} ranged from -130.3 kJ/mol to -136.0 kJ/mol). The docking energies were generally selective for EcPDF, but rhinacanthin I (508) did show comparable docking to human PDF ($E_{dock} = -133.2$ kJ/mol). Rhinacanthin-rich extracts have shown antibacterial activity [85].

Table 2.	MolDock molecular	docking en	ergies (E _{dock} ,	kJ/mol) a	and normalized	docking scores	(DS _{norm})	for antibacterial	phytochemical	ligands w	vith bacterial
peptide	deformylases.										

Ligand	Bcl	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Liganu	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Indole Alkaloids														
1-Hydroxy-6,7-dimethoxy-3- methylcarbazole (1)	-78.8	-89.1	-92.9	-105.0	-87.3	-98.6	-79.9	-90.3	-88.3	-99.8	-88.3	-99.8	-84.4	-95.4
11-Methoxytubotaiwine (2)	-83.8	-85.1	-94.6	-96.1	-96.6	-98.1	-90.9	-92.3	-94.6	-96.1	-92.3	-93.8	-100.7	-102.3
12-Methoxy-4-methyl- voachalotine (3)	-81.5	-78.8	-97.6	-94.4	-82.6	-79.8	-88.0	-85.0	-91.2	-88.2	-92.0	-89.0	-93.5	-90.4
3-Prenylindole (4)	-80.4	-101.4	-83.5	-105.3	-84.7	-106.8	-84.8	-106.9	-82.6	-104.1	-79.8	-100.7	-87.2	-110.0
Affinisine (5)	-74.1	-78.8	-92.8	-98.7	-88.9	-94.6	-82.6	-87.9	-83.8	-89.2	-84.6	-90.0	-86.3	-91.9
Apparicine (6)	-69.2	-77.5	-83.9	-94.0	-83.4	-93.4	-83.3	-93.3	-86.2	-96.6	-92.7	-103.9	-81.8	-91.6
Aristolactam I (7)	-90.4	-97.9	-104.7	-113.3	-98.1	-106.1	-99.5	-107.7	-105.6	-114.3	-102.3	-110.7	-100.9	-109.2
Clausenawalline A (8) ^a	no dock	no dock	-128.8	-112.5	-40.1	-35.1	-120.0	-104.9	-74.0	-64.7	-102.2	-89.4	-114.5	-100.0
Cryptoheptine (9)	-77.6	-87.2	-96.0	-107.9	-79.8	-89.6	-91.3	-102.5	-95.5	-107.2	-98.4	-110.5	-86.8	-97.5
Diploceline (10)	-93.6	-93.8	-105.1	-105.3	-100.7	-100.9	-90.0	-90.2	-106.4	-106.6	-96.3	-96.5	-95.4	-95.6
Discarine B (11)	-109.8	-95.0	-126.2	-109.2	-122.3	-105.9	-115.8	-100.2	-126.0	-109.1	-126.7	-109.6	-126.0	-109.1
Ibogamine (12)	-67.3	-74.0	-91.1	-100.0	-87.8	-96.4	-90.5	-99.4	-78.9	-86.7	-75.4	-82.9	-94.6	-104.0
Iboxygaine (13)	-71.8	-75.0	-106.4	-111.1	-93.8	-98.0	-105.5	-110.1	-82.4	-86.0	-80.9	-84.5	-104.1	-108.7
Isovoacangine (14)	-90.6	-90.9	-100.7	-100.9	-89.1	-89.4	-94.5	-94.8	-83.1	-83.3	-96.9	-97.2	-89.8	-90.1
Rugosanine B (15)	-110.8	-93.3	-113.1	-95.3	-104.3	-87.9	-98.1	-82.7	-124.8	-105.1	-133.9	-112.8	-123.6	-104.1
Suaveolindole (16)	-103.0	-104.7	-108.1	-109.9	-98.5	-100.1	-108.1	-109.9	-103.2	-105.0	-103.8	-105.6	-109.0	-110.8
Toussaintine B (17)	-83.1	-89.3	-100.0	-107.5	-85.5	-91.9	-104.2	-112.0	-85.5	-91.9	-83.9	-90.2	-101.0	-108.6
Isoquinoline Alkaloids														
8-Acetonyldihydroavicine (18)	-99.8	-98.2	-106.8	-105.1	-96.4	-94.9	-96.6	-95.1	-98.6	-97.0	-100.0	-98.5	-104.4	-102.8
8-Acetonyldihydronitidine (19)	-85.7	-83.3	-108.1	-105.0	-91.5	-88.9	-104.2	-101.2	-101.3	-98.4	-102.1	-99.2	-103.8	-100.9
Antofine (20)	-85.5	-86.1	-107.4	-108.2	-99.1	-99.8	-93.3	-94.0	-97.5	-98.3	-91.9	-92.6	-99.7	-100.4
Berbamine (24)	-41.7	-35.4	-90.1	-76.5	-57.2	-48.5	-84.3	-71.5	-76.7	-65.1	-74.4	-63.2	-100.3	-85.1
Berberine (21)	-84.7	-87.6	-103.5	-107.0	-91.9	-95.0	-88.4	-91.4	-88.6	-91.6	-87.8	-90.7	-87.7	-90.7
Bisnorthalphenine (22)	-95.3	-99.8	-101.3	-106.1	-104.5	-109.5	-97.1	-101.7	-98.1	-102.8	-99.7	-104.4	-96.5	-101.0
Cepharanthine (25)	-86.7	-73.7	-92.5	-78.5	-74.4	-63.2	-93.4	-79.3	-114.5	-97.2	-121.5	-103.2	-96.8	-82.2

	Bcl	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Ligand	Edock	DS _{norm}	Edock	DS _{norm}	E _{dock}	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Isoquinoline Alkaloids														
Cryptopleurine (23)	-80.6	-80.2	-105.6	-105.1	-98.9	-98.4	-98.5	-98.0	-96.1	-95.6	-89.7	-89.2	-99.9	-99.4
Emetine (26)	-111.2	-102.0	-119.4	-109.6	-117.4	-107.8	-120.8	-110.9	-120.2	-110.3	-109.9	-100.9	-110.9	-101.8
Hydrastine (27)	-80.2	-79.4	-112.6	-111.4	-101.6	-100.5	-94.6	-93.6	-97.9	-96.9	-102.0	-101.0	-109.5	-108.4
Isotrilobine (29)	-47.8	-41.3	-103.3	-89.3	-100.3	-86.6	-86.3	-74.5	-99.3	-85.7	-87.6	-75.6	-102.4	-88.4
Jatrorrhizine (28)	-86.4	-89.1	-101.5	-104.7	-95.1	-98.1	-92.0	-94.9	-93.2	-96.2	-92.3	-95.2	-94.7	-97.7
Lauroscholtzine (31)	-71.5	-73.6	-95.5	-98.2	-93.0	-95.6	-91.1	-93.7	-98.4	-101.2	-93.5	-96.2	-90.7	-93.3
Methothalistyline (30)	-76.6	-61.6	-112.1	-90.2	-104.5	-84.1	-115.7	-93.1	-108.1	-87.0	-127.9	-102.9	-132.7	-106.8
<i>N</i> -Demethylthalphenine (32)	-100.4	-103.7	-98.7	-101.9	-107.6	-111.1	-102.2	-105.6	-102.1	-105.4	-98.0	-101.2	-93.5	-96.6
Obamegine (34)	no dock	no dock	-83.1	-71.1	-19.4	-16.6	-67.9	-58.0	-83.2	-71.1	-83.7	-71.6	-102.0	-87.2
Oxyacanthine (35)	-39.7	-33.7	-93.7	-79.5	11.1	9.4	-85.3	-72.4	-69.8	-59.2	-85.8	-72.8	-94.1	-79.8
Pennsylvanine (36)	-102.4	-83.6	-131.0	-106.9	-113.2	-92.4	-108.7	-88.7	-126.2	-103.1	-129.9	-106.1	-137.8	-112.5
Thaliadanine (38)	-91.0	-73.2	-131.2	-105.5	-89.9	-72.3	-108.5	-87.2	-123.6	-99.4	-124.3	-100.0	-124.7	-100.3
Thalicarpine (37)	-87.8	-71.2	-128.3	-104.0	-105.2	-85.3	-105.9	-85.9	-130.1	-105.5	-115.1	-93.3	-114.6	-93.0
Thalidasine (39)	-64.5	-53.4	-82.5	-68.4	-67.3	-55.8	-92.8	-76.9	-82.9	-68.7	-103.5	-85.8	-102.2	-84.7
Thalistyline (40)	-84.1	-68.2	-119.3	-96.7	-96.0	-77.8	-111.9	-90.7	-118.2	-95.8	-117.8	-95.5	-120.6	-97.8
Thalmelatine (41)	-87.7	-71.6	-130.3	-106.4	-102.8	-83.9	-116.5	-95.1	-124.1	-101.3	-130.5	-106.5	-145.0	-118.4
Thalmirabine (42)	-76.5	-62.9	-85.1	-69.9	-39.2	-32.2	-73.6	-60.5	-111.1	-91.3	-100.2	-82.4	-97.4	-80.1
Thalphenine (33)	-88.5	-90.1	-102.6	-104.5	-91.2	-92.8	-94.6	-96.3	-93.8	-95.5	-91.6	-93.2	-93.0	-94.6
Thalrugosidine (43)	no dock	no dock	-90.7	-75.7	-42.4	-35.4	-89.4	-74.6	-97.2	-81.1	-106.9	-89.2	-96.1	-80.2
Thalrugosine (44)	no dock	no dock	-85.7	-72.7	-25.2	-21.4	-69.3	-58.8	-83.6	-70.9	-97.6	-82.8	-104.2	-88.4
Piperidine, Pyrrole, Pyrrolizidir	ne, Quinolin	e, and Stero	oidal Alka	loids										
Aconicaramide (46)	-86.0	-102.0	-89.6	-106.3	-80.8	-96.0	-89.1	-105.8	-89.7	-106.5	-85.4	-101.4	-89.5	-106.2
Lasiocarpine (47)	-82.9	-80.2	-121.9	-117.8	-104.0	-100.5	-106.1	-102.6	-117.3	-113.4	-108.5	-104.9	-119.5	-115.6
Lasiocarpine N-oxide (48)	-94.5	-90.2	-119.1	-113.6	-110.0	-105.0	-104.5	-99.8	-106.8	-102.0	-108.2	-103.2	-117.7	-112.4
Piperine (45)	-88.8	-97.0	-107.3	-117.2	-89.5	-97.7	-104.9	-114.5	-95.0	-103.8	-94.8	-103.5	-104.3	-113.9
4-Methoxy-1-methyl-2(1 <i>H</i>)- quinolinone (49)	-70.1	-87.8	-73.5	-92.0	-68.7	-86.0	-72.6	-90.9	-72.3	-90.6	-73.1	-91.5	-72.1	-90.3
Cryptolepine (50)	-74.4	-87.0	-85.3	-99.8	-79.1	-92.5	-82.8	-96.9	-86.8	-101.6	-88.4	-103.4	-80.9	-94.6
Neocryptolepine (51)	-71.2	-83.2	-83.5	-97.7	-77.5	-90.6	-79.9	-93.5	-87.6	-102.5	-87.7	-102.6	-80.4	-94.1
Pteleine (52)	-84.5	-99.2	-90.0	-105.8	-83.4	-98.0	-89.3	-104.9	-88.9	-104.4	-88.2	-103.6	-85.6	-100.6

Licond	BcI	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Ligand	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm
Piperidine, Pyrrole, Pyrrolizidin	e, Quinolin	e, and Stere	oidal Alka	loids										
Veprisinium (53)	-89.8	-93.0	-99.2	-102.8	-101.7	-105.4	-100.0	-103.6	-95.2	-98.6	-94.3	-97.7	-96.3	-99.8
Conessine (54)	-70.4	-71.4	-103.5	-104.9	-83.6	-84.8	-74.2	-75.3	-88.6	-89.8	-95.1	-96.4	-81.9	-83.0
Irehdiamine A (55)	-84.2	-88.9	-89.8	-94.8	-98.5	-104.0	-89.4	-94.3	-91.2	-96.2	-87.0	-91.8	-85.4	-90.0
Solacassine (56)	-75.6	-71.3	-92.6	-87.4	-83.1	-78.4	-86.5	-81.6	-89.6	-84.6	-92.4	-87.2	-86.7	-81.8
Solanocapsine (57)	-75.3	-71.7	-94.2	-89.6	-88.8	-84.6	-74.3	-70.7	-87.6	-83.4	-85.1	-81.0	-97.4	-92.7
Tomatidine (58)	-71.2	-68.6	-94.8	-91.4	-65.7	-63.3	-88.3	-85.1	-90.7	-87.4	-87.1	-83.9	-98.0	-94.5
Miscellaneous Alkaloids														
2-(Methoxyamino)-4 <i>H</i> -1- benzo-pyran-3,4,5,7-tetrol (59)	-84.7	-97.8	-87.8	-101.4	-80.5	-93.0	-89.2	-103.0	-85.9	-99.2	-89.3	-103.1	-84.6	-97.7
Abyssenine C (60)	-78.7	-74.2	-102.5	-96.6	-111.3	-104.8	-106.6	-100.4	-103.1	-97.1	-101.2	-95.4	-103.7	-97.6
Amphibine H (61)	-64.2	-54.6	-115.2	-97.9	-123.8	-105.2	-118.6	-100.8	-119.9	-101.9	-117.1	-99.5	-121.1	-102.9
Cepharatine A (62)	-81.4	-86.2	-97.4	-103.1	-78.9	-83.5	-92.4	-97.8	-95.7	-101.3	-94.5	-100.1	-90.3	-95.6
Curcamide (63)	-93.8	-107.5	-98.8	-113.3	-93.0	-106.6	-100.5	-115.2	-97.4	-111.8	-95.5	-109.5	-102.7	-117.8
Drodrenin (64)	-113.2	-102.1	-148.6	-134.1	-123.6	-111.6	-135.5	-122.3	-130.6	-117.9	-135.6	-122.3	-132.2	-119.4
Eschscholtzidine (65)	-79.9	-82.3	-104.0	-107.2	-94.8	-97.7	-92.3	-95.2	-94.0	-96.9	-91.4	-94.3	-99.1	-102.1
Jervine (66)	-71.6	-68.5	-96.4	-92.1	-83.5	-79.8	-92.5	-88.4	-92.3	-88.3	-100.9	-96.4	-97.7	-93.4
Matrine (67)	-80.2	-91.7	-91.0	-104.1	-83.6	-95.7	-90.8	-103.9	-85.9	-98.3	-87.7	-100.3	-85.0	-97.3
Mucronine H (68)	-101.8	-93.6	-109.2	-100.4	-111.0	-102.0	-103.5	-95.1	-109.0	-100.2	-114.6	-105.3	-124.4	-114.3
N-Benzoylmescaline (69)	-101.3	-107.0	-109.7	-115.9	-100.9	-106.6	-112.4	-118.7	-103.4	-109.2	-99.0	-104.6	-109.9	-116.1
Nummularine B (70)	-107.3	-91.9	-126.2	-108.1	-127.8	-109.5	-108.7	-93.1	-129.4	-110.8	-122.9	-105.2	-119.4	-102.2
Nummularine S (71)	-84.2	-75.3	-120.7	-107.8	-116.1	-103.8	-112.8	-100.8	-124.0	-110.8	-119.0	-106.4	-130.6	-116.7
Scutianine B (72)	-90.1	-78.2	-128.5	-111.5	-103.5	-89.8	-124.6	-108.1	-118.8	-103.1	-118.3	-102.6	-126.8	-110.0
Shahidine (73)	-85.2	-93.7	-105.5	-116.1	-88.1	-96.9	-98.5	-108.4	-93.8	-103.1	-95.6	-105.2	-101.8	-112.0
Thaliglucinone (74)	-92.9	-93.4	-116.0	-116.6	-106.1	-106.7	-119.4	-120.1	-104.9	-105.5	-106.9	-107.5	-103.3	-103.8
Triisopenylguanidine (75)	-91.4	-101.7	-107.6	-119.8	-95.6	-106.4	-98.4	-109.6	-97.2	-108.2	-92.1	-102.6	-101.4	-112.9
Tuberine (76)	-92.7	-85.7	-136.7	-126.5	-103.7	-95.9	-105.6	-97.7	-121.9	-112.7	-121.1	-112.0	-121.7	-112.6
Monoterpenoids														
Linalool (77)	-78.7	-105.6	-81.4	-109.1	-75.9	-101.7	-80.0	-107.3	-77.0	-103.2	-77.9	-104.4	-80.4	-107.8
Thymol (78)	-68.6	-92.7	-71.0	-96.1	-65.8	-89.0	-67.5	-91.3	-69.5	-94.1	-69.0	-93.3	-68.6	-92.8
Thymoquinol (79)	-73.7	-96.4	-76.2	-99.6	-70.6	-92.4	-75.7	-98.9	-76.9	-100.5	-75.7	-99.0	-73.8	-96.5

Licend	Bcl	PDF	Ec	PDF	M	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Ligand	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}	Edock	DS _{norm}
Monoterpenoids														
β-Dolabrin (80)	-76.9	-101.3	-76.9	-101.4	-74.2	-97.8	-77.3	-102.0	-77.9	-102.7	-77.7	-102.4	-75.0	-98.9
β-Thujaplicin (81)	-74.9	-98.4	-75.8	-99.5	-73.4	-96.3	-75.6	-99.3	-76.2	-100.1	-76.9	-100.9	-74.7	-98.1
Sesquiterpenoids														
11,13-Dehydroeriolin (82)	-85.2	-95.4	-100.0	-112.0	-89.1	-99.8	-101.1	-113.2	-93.0	-104.2	-86.9	-97.4	-84.6	-94.8
2,10-Bisaboladien-1-one (83)	-84.5	-100.6	-91.0	-108.3	-94.6	-112.6	-86.0	-102.3	-93.0	-110.7	-89.4	-106.4	-86.2	-102.7
2-Hydroxycalamenene (84)	-81.1	-96.8	-85.0	-101.5	-81.5	-97.3	-84.5	-100.9	-83.6	-99.8	-82.8	-98.9	-78.0	-93.1
2-Methoxyfurano-9-guaien-8- one (85)	-91.7	-103.3	-100.3	-112.9	-93.2	-104.9	-102.4	-115.3	-102.9	-115.8	-101.3	-114.1	-95.4	-107.5
4α,10α-Dihydroxy-1,11(13)- guaiadien-12,8-olide (93)	-89.8	-100.6	-93.3	-104.5	-87.2	-97.7	-97.1	-108.7	-91.3	-102.3	-90.0	-100.8	-96.6	-108.2
4α,10β-Dihydroxy-1,11(13)- guaiadien-12,8-olide (89)	-94.0	-105.3	-99.8	-111.8	-104.1	-116.6	-98.7	-110.6	-102.0	-114.3	-93.3	-104.6	-96.7	-108.3
Alantolactone (86)	-78.9	-92.2	-80.7	-94.4	-77.3	-90.4	-82.9	-97.0	-86.2	-100.8	-83.2	-97.3	-78.2	-91.4
Alliacol A (87)	-45.9	-51.5	-75.8	-85.0	-67.2	-75.3	-77.4	-86.7	-73.1	-81.9	-72.7	-81.4	-77.0	-86.3
Alliacol B (88)	-78.5	-87.9	-82.2	-92.0	-90.5	-101.4	-81.8	-91.6	-85.3	-95.5	-80.3	-89.9	-81.7	-91.6
Artemisinic acid (113)	-84.4	-98.4	-85.0	-99.2	-86.2	-100.5	-83.8	-97.7	-88.3	-103.0	-86.0	-100.3	-81.4	-94.9
Baileyolin (90)	-98.8	-99.6	-103.1	-104.0	-111.4	-112.3	-105.2	-106.1	-113.3	-114.3	-108.2	-109.1	-103.2	-104.0
Bilobalide A (91)	-78.0	-81.4	-93.0	-97.1	-95.6	-99.9	-82.5	-86.2	-98.6	-103.0	-102.0	-106.5	-95.8	-100.0
Confertin (92)	-83.4	-95.4	-90.9	-104.0	-91.4	-104.6	-90.5	-103.5	-89.2	-102.0	-87.4	-100.0	-87.5	-100.1
Cyperenal (94)	-46.2	-55.2	-65.6	-78.3	-70.6	-84.3	-60.6	-72.4	-63.2	-75.4	-67.6	-80.7	-60.9	-72.7
Cyperenol (95)	-36.1	-43.0	-65.5	-77.9	-70.6	-84.0	-57.8	-68.8	-62.6	-74.5	-64.7	-77.1	-57.1	-68.0
Furanodienone (97)	-84.3	-98.9	-88.4	-103.7	-87.1	-102.1	-94.7	-111.1	-89.0	-104.4	-88.5	-103.8	-87.5	-102.6
Ganodermycin (96)	-111.8	-122.8	-109.5	-120.3	-115.7	-127.1	-109.3	-120.1	-113.6	-124.8	-110.9	-121.8	-105.4	-115.7
Helenalin (98)	-69.8	-78.4	-81.9	-92.0	-82.8	-93.0	-80.0	-89.8	-84.2	-94.6	-85.8	-96.4	-86.5	-97.2
Hydrogrammic acid (99)	-83.0	-93.5	-91.4	-103.0	-86.8	-97.7	-88.5	-99.6	-88.9	-100.1	-87.8	-98.8	-83.7	-94.3
Isoalantolactone (100)	-79.3	-92.8	-84.7	-99.0	-76.8	-89.8	-87.9	-102.9	-85.1	-99.5	-85.4	-99.9	-78.0	-91.2
Ivaxillin (101)	-81.1	-90.6	-98.4	-110.0	-90.3	-100.9	-100.6	-112.4	-93.6	-104.6	-90.4	-101.0	-82.8	-92.6
Petrovin A (102)	-84.1	-96.2	-88.9	-101.7	-84.5	-96.6	-90.1	-103.0	-88.5	-101.2	-86.0	-98.3	-86.2	-98.7
Petrovin B (103)	-84.8	-96.8	-87.5	-99.9	-80.5	-91.9	-89.9	-102.6	-86.6	-98.8	-84.7	-96.6	-85.9	-98.0
Polygodial (104)	-79.0	-92.1	-84.1	-98.1	-88.1	-102.7	-82.8	-96.5	-88.8	-103.6	-86.1	-100.4	-74.8	-87.2
Rishitin (105)	-75.0	-89.0	-80.0	-94.9	-77.0	-91.4	-81.6	-96.8	-79.3	-94.1	-80.8	-95.9	-81.0	-96.1

Licond	Bcl	PDF	Ec	PDF	M	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Liganu	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm								
Sesquiterpenoids														
Xanthorrhizol (106)	-86.1	-102.8	-90.9	-108.5	-91.2	-108.9	-90.1	-107.5	-92.3	-110.3	-88.6	-105.8	-91.7	-109.4
α-Amorphene (107)	-75.5	-92.2	-79.5	-97.1	-80.2	-97.9	-77.9	-95.1	-78.1	-95.3	-73.8	-90.1	-72.0	-87.9
α-Cadinene (108)	-73.3	-89.5	-80.6	-98.4	-79.8	-97.4	-80.4	-98.1	-79.6	-97.2	-77.6	-94.8	-77.8	-94.9
α-Copaene (110)	-66.9	-83.6	-65.6	-81.9	-67.3	-84.1	-66.7	-83.3	-73.2	-91.5	-68.6	-85.7	-68.0	-85.0
α-Muurolene (109)	-76.9	-93.9	-79.1	-96.6	-75.9	-92.7	-78.2	-95.4	-78.7	-96.1	-77.3	-94.3	-79.0	-96.4
γ-Cadinene (112)	-77.2	-94.2	-81.4	-99.4	-77.5	-94.6	-81.9	-99.9	-81.4	-99.4	-79.7	-97.3	-79.7	-97.3
Diterpenoids														
1,12-Diacetyljativatriol (114)	-96.9	-94.2	-107.0	-104.0	-107.1	-104.1	-98.6	-95.9	-101.6	-98.8	-102.1	-99.3	-102.4	-99.5
12-Oxo-3,13(16)-clerodadien- 15-oic acid (115)	-104.5	-110.0	-102.9	-108.3	-98.3	-103.5	-101.8	-107.1	-109.2	-114.9	-96.9	-102.0	-100.8	-106.1
12-Oxo-8,13(16)-clerodadien- 15-oic acid (116)	-93.4	-98.3	-106.7	-112.3	-102.3	-107.8	-99.8	-105.1	-106.6	-112.3	-107.9	-113.6	-95.3	-100.3
13-Epimanoyl oxide (117)	-58.8	-63.8	-81.6	-88.6	-86.1	-93.5	-81.0	-88.0	-78.6	-85.3	-78.8	-85.6	-76.7	-83.3
13-Episclareol (118)	-88.1	-93.8	-101.5	-108.0	-103.0	-109.6	-99.6	-106.0	-99.1	-105.5	-94.6	-100.7	-95.7	-101.8
3,4-Seco-4(18)-trachyloben-3- oic acid (120)	-99.3	-106.4	-99.0	-106.1	-99.6	-106.7	-96.3	-103.2	-99.3	-106.4	-96.5	-103.3	-94.9	-101.6
3-Hydroxytotarol (119)	-82.6	-88.5	-87.0	-93.2	-83.0	-88.9	-89.1	-95.4	-86.2	-92.3	-81.7	-87.5	-84.8	-90.8
7,13-Labdadien-15-ol acetate (121)	-76.8	-79.7	-108.6	-112.7	-105.3	-109.3	-106.9	-110.9	-105.1	-109.0	-102.0	-105.8	-104.1	-108.1
7,13-Labdadien-15-ol malonate (122)	-99.8	-99.4	-121.2	-120.6	-111.4	-110.9	-115.9	-115.4	-115.9	-115.4	-122.7	-122.2	-105.3	-104.8
Acetylcrinipellin A (125)	-90.1	-90.1	-100.1	-100.0	-96.4	-96.4	-91.8	-91.7	-97.7	-97.7	-88.5	-88.4	-99.4	-99.4
Aethiopinone (123)	-89.4	-96.4	-104.4	-112.6	-92.8	-100.1	-105.6	-113.9	-92.5	-99.7	-94.5	-102.0	-100.0	-107.8
Andrographolide (124)	-89.7	-91.5	-102.9	-104.9	-101.3	-103.3	-102.6	-104.6	-106.9	-109.0	-104.6	-106.6	-99.9	-101.9
Biflorin (126)	-92.0	-99.4	-102.1	-110.4	-93.6	-101.1	-101.0	-109.2	-102.0	-110.2	-100.3	-108.4	-95.5	-103.3
Continentalic acid (127)	-74.3	-79.6	-91.4	-97.9	-76.7	-82.2	-80.7	-86.4	-82.5	-88.4	-81.9	-87.7	-78.7	-84.3
Crinipellin A (129)	-79.7	-82.9	-96.3	-100.1	-99.9	-103.9	-82.0	-85.3	-92.6	-96.3	-84.8	-88.2	-94.9	-98.7
Cryptobeilic acid A (128)	-89.8	-94.8	-116.8	-123.2	-106.8	-112.7	-112.3	-118.5	-103.4	-109.1	-102.9	-108.6	-108.4	-114.4
Cryptobeilic acid C (130)	-95.2	-95.8	-124.6	-125.5	-105.0	-105.7	-122.0	-122.8	-116.1	-116.9	-125.2	-126.0	-113.5	-114.2
Cryptobeilic acid D (131)	-92.2	-98.9	-103.5	-111.1	-100.5	-107.8	-96.4	-103.5	-98.0	-105.2	-100.5	-107.9	-98.6	-105.8
Effusanin A (132)	-65.1	-66.5	-83.0	-84.8	-87.7	-89.6	-77.7	-79.4	-89.6	-91.6	-74.6	-76.2	-87.4	-89.3
Effusanin B (133)	-80.7	-79.4	-94.3	-92.8	-99.9	-98.3	-91.1	-89.7	-100.9	-99.2	-95.0	-93.5	-89.5	-88.0

Licend	Bc	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Ligand	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm
Diterpenoids														
Effusanin C (134)	-71.5	-69.4	-86.0	-83.5	-91.7	-89.0	-82.0	-79.6	-95.4	-92.6	-91.1	-88.4	-95.0	-92.2
Effusanin D (135)	-74.6	-70.0	-101.8	-95.6	-100.7	-94.6	-99.8	-93.8	-105.0	-98.6	-101.4	-95.2	-96.9	-91.0
Effusanin E (136)	-73.5	-74.0	-86.6	-87.2	-87.2	-87.8	-79.1	-79.6	-92.2	-92.8	-85.4	-85.9	-89.6	-90.2
Grandiflorenic acid (137)	-65.3	-70.1	-81.1	-87.1	-75.8	-81.4	-59.4	-63.8	-70.6	-75.8	-74.9	-80.4	-70.7	-75.9
Haplociliatic acid (138)	-92.3	-95.4	-104.2	-107.8	-102.0	-105.4	-95.0	-98.2	-103.9	-107.4	-109.6	-113.3	-100.6	-103.9
Hypargenin A (139)	-83.8	-87.1	-95.7	-99.6	-91.5	-95.2	-89.4	-93.0	-97.2	-101.1	-94.1	-97.9	-88.8	-92.4
Hypargenin B (140)	-81.8	-86.3	-90.3	-95.3	-81.9	-86.4	-84.3	-88.9	-94.4	-99.6	-87.4	-92.2	-83.5	-88.1
Hypargenin D (141)	-72.3	-77.8	-89.2	-96.0	-82.0	-88.2	-79.5	-85.6	-85.3	-91.8	-82.5	-88.7	-82.5	-88.8
Hypargenin F (142)	-71.0	-73.9	-86.1	-89.5	-72.4	-75.3	-79.9	-83.1	-79.8	-83.0	-83.3	-86.6	-73.2	-76.1
Isodomedin (143)	-66.4	-65.2	-94.5	-92.8	-95.8	-94.1	-78.1	-76.7	-98.8	-97.1	-98.2	-96.4	-76.7	-75.3
Kamebanin (144)	-72.7	-75.3	-95.5	-98.9	-81.2	-84.1	-74.3	-77.0	-101.5	-105.2	-79.3	-82.2	-74.2	-76.9
Lasiokaurin (145)	-82.0	-79.5	-101.0	-97.9	-100.5	-97.4	-84.3	-81.7	-99.4	-96.3	-91.4	-88.6	-70.6	-68.4
Longikaurin A (146)	-67.8	-69.3	-79.4	-81.1	-90.4	-92.3	-76.1	-77.7	-89.0	-91.0	-81.6	-83.3	-70.7	-72.2
Longikaurin B (147)	-63.0	-61.1	-83.9	-81.5	-93.2	-90.4	-78.1	-75.8	-94.0	-91.3	-89.0	-86.4	-69.9	-67.8
Longikaurin C (148)	-27.9	-27.4	-80.2	-78.9	-88.1	-86.7	-79.2	-78.0	-91.0	-89.5	-90.2	-88.7	-89.2	-87.7
Longikaurin D (149)	-51.3	-49.8	-84.3	-81.8	-96.0	-93.2	-84.9	-82.4	-95.8	-93.0	-91.7	-89.0	-96.8	-94.0
Longikaurin E (150)	-75.8	-77.4	-84.0	-85.8	-85.9	-87.8	-82.1	-83.9	-88.9	-90.9	-79.3	-81.0	-84.4	-86.3
Longikaurin F (151)	-88.2	-82.9	-98.6	-92.7	-111.3	-104.6	-98.8	-92.8	-114.1	-107.1	-102.9	-96.7	-107.7	-101.1
Longikaurin G (152)	-74.6	-75.1	-81.2	-81.7	-96.0	-96.6	-80.8	-81.3	-91.5	-92.1	-87.1	-87.6	-75.8	-76.3
Lupulin E (153)	-97.3	-86.8	-117.1	-104.5	-112.5	-100.4	-108.4	-96.7	-99.1	-88.5	-102.7	-91.7	-119.9	-107.0
Lupulin F (154)	-87.2	-77.8	-116.1	-103.5	-115.2	-102.7	-99.8	-88.9	-103.0	-91.8	-101.8	-90.7	-116.3	-103.7
Methyl seconidoresedate (155)	-89.3	-93.0	-106.5	-110.9	-97.2	-101.3	-109.3	-113.9	-97.5	-101.6	-101.4	-105.7	-99.7	-103.9
Pisiferol (156)	-70.5	-75.5	-86.2	-92.4	-86.5	-92.6	-75.9	-81.3	-93.3	-100.0	-88.0	-94.2	-82.1	-87.9
Salvic acid (157)	-85.1	-89.2	-101.6	-106.5	-89.6	-93.9	-105.0	-110.1	-97.3	-102.0	-95.9	-100.5	-97.3	-102.0
Salvic acid acetate (158)	-92.3	-92.9	-114.4	-115.1	-91.3	-91.8	-104.1	-104.7	-103.3	-104.0	-102.8	-103.5	-103.8	-104.5
Shikokianin (159)	-63.1	-59.2	-104.1	-97.8	-93.7	-88.0	-93.9	-88.2	-93.0	-87.3	-97.0	-91.1	-84.8	-79.7
Strictic acid (160)	-88.5	-93.6	-103.1	-109.0	-94.5	-99.9	-106.8	-112.9	-97.2	-102.8	-98.6	-104.3	-96.5	-102.0
Taxodione (161)	-69.8	-73.8	-92.1	-97.4	-87.3	-92.3	-76.9	-81.3	-92.9	-98.2	-90.8	-96.0	-74.2	-78.4
Trichodonin (162)	-80.6	-78.3	-91.6	-89.1	-67.4	-65.5	-82.0	-79.7	-80.1	-77.9	-91.9	-89.3	-84.1	-81.7
Umbrosin A (163)	-74.7	-77.4	-93.3	-96.6	-83.8	-86.8	-78.7	-81.5	-95.2	-98.7	-85.8	-88.8	-76.2	-78.9
Umbrosin B (164)	-76.3	-79.2	-88.8	-92.2	-86.7	-90.0	-78.3	-81.2	-86.6	-89.9	-86.6	-89.9	-73.4	-76.2

Table 2. Cont.

Licond	BcI	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Ligano –	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm
Yuexiandajisu A (165)	-104.3	-109.8	-114.0	-120.0	-101.1	-106.5	-113.3	-119.3	-109.8	-115.6	-98.4	-103.6	-106.3	-111.9
Triterpenoids														
Alisol A 24-acetate (166)	-88.7	-78.6	-96.5	-85.6	-104.7	-92.9	-90.7	-80.5	-105.4	-93.5	-100.4	-89.1	-103.2	-91.6
Alisol B 23-acetate (167)	-63.6	-57.0	-112.6	-101.0	-107.2	-96.2	-81.1	-72.8	-111.0	-99.6	-98.1	-88.0	-113.2	-101.6
Betulinic acid (168)	-98.3	-91.8	-91.4	-85.3	-113.0	-105.5	-88.8	-82.9	-105.7	-98.7	-94.3	-88.0	-102.3	-95.5
Entagenic acid (169)	-56.4	-51.5	-101.0	-92.2	-86.3	-78.8	-69.3	-63.3	-85.1	-77.7	-79.1	-72.2	-87.7	-80.0
Lantic acid (170)	-38.1	-35.2	-79.1	-73.1	-82.2	-76.0	-74.4	-68.8	-80.1	-74.0	-83.1	-76.8	-88.8	-82.1
Mahmoodin (171)	-81.3	-72.4	-97.6	-86.9	-84.8	-75.5	-87.8	-78.1	-86.6	-77.1	-76.8	-68.3	-99.8	-88.9
Maslinic acid (172)	-43.6	-40.3	-98.9	-91.3	-87.0	-80.3	-80.1	-73.9	-84.5	-78.0	-82.6	-76.3	-92.1	-85.0
Oleanolic acid (173)	-70.3	-65.7	-95.2	-88.9	-81.8	-76.4	-77.9	-72.7	-86.4	-80.7	-82.8	-77.3	-88.4	-82.6
Pristimerin (174)	-81.9	-76.0	-103.5	-96.1	-98.1	-91.0	-89.9	-83.5	-96.0	-89.1	-88.3	-81.9	-102.8	-95.5
Rubrinol (175)	-70.8	-66.8	-88.0	-83.0	-82.0	-77.4	-79.6	-75.1	-87.1	-82.2	-86.6	-81.7	-95.0	-89.6
Tingenone (176)	-71.6	-68.7	-92.0	-88.2	-83.9	-80.5	-80.6	-77.3	-83.2	-79.8	-87.3	-83.8	-94.1	-90.3
Chalcones														
1-(2,6-Dihydroxy-4-methoxyphenyl) -3-phenyl-1-propanone (177)	-92.7	-102.8	-107.4	-119.1	-93.8	-104.1	-101.8	-112.9	-100.6	-111.6	-98.9	-109.7	-105.3	-116.8
2'-Hydroxy-2,3,4',6'-tetramethox ychalcone (178)	-91.9	-94.2	-110.7	-113.6	-92.8	-95.2	-108.6	-111.4	-103.6	-106.3	-99.7	-102.2	-117.5	-120.5
3'''',5''',5'''''-Tribenzyl-2'''',2''''',2''''' -trihydroxyisodiuvaretin (180)	′′′ –41.6	-32.2	-114.0	-88.2	-141.1	-109.1	-129.7	-100.3	-147.7	-114.2	-126.3	-97.7	-145.6	-112.6
4'-Hydroxychalcone (179)	-78.9	-93.3	-94.2	-111.5	-81.1	-96.0	-86.5	-102.3	-90.3	-106.9	-87.3	-103.4	-89.4	-105.9
5′′,5′′′′,5′′′′′,5′′′′′-Tribenzyl-2′′′′′,2′′′′′,2′′′′′ -trihydroxyisodiuvaretin (181)	′ –100.9	-78.0	-114.7	-88.7	-152.4	-117.9	-164.0	-126.9	-145.6	-112.6	-136.0	-105.2	-156.9	-121.4
Angusticornin B (182)	-117.5	-112.4	-143.5	-137.2	-134.4	-128.6	-134.7	-128.8	-129.3	-123.7	-131.4	-125.7	-126.7	-121.2
Balsacone A (183)	-106.9	-102.6	-127.5	-122.4	-122.3	-117.4	-122.4	-117.5	-127.6	-122.4	-121.9	-117.0	-124.1	-119.1
Balsacone B (184)	-109.2	-104.8	-129.0	-123.8	-123.0	-118.0	-124.7	-119.7	-128.3	-123.2	-132.4	-127.0	-119.9	-115.1
Balsacone C (185)	-109.0	-107.3	-124.2	-122.1	-121.4	-119.5	-120.0	-118.1	-127.4	-125.3	-132.3	-130.1	-122.4	-120.4
Bartericin C (186)	-75.7	-73.3	-123.3	-119.4	-109.6	-106.2	-107.7	-104.3	-102.2	-99.0	-105.6	-102.3	-112.7	-109.2
Bavachalcone (187)	-105.6	-109.0	-121.5	-125.3	-114.0	-117.6	-120.0	-123.9	-116.0	-119.7	-112.3	-115.9	-116.9	-120.6
Broussochalcone B (188)	-102.3	-107.1	-117.5	-122.9	-109.7	-114.8	-119.4	-124.9	-103.2	-108.0	-109.7	-114.8	-114.5	-119.8
Corylifol B (189)	-106.2	-109.3	-121.0	-124.6	-112.9	-116.2	-123.3	-127.0	-113.7	-117.1	-117.7	-121.2	-119.7	-123.3

Table 2. Cont.

Ligand	BcI	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Liganu	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}						
Chalcones														
Erythbidin C (190)	-98.5	-104.4	-119.5	-126.6	-103.3	-109.5	-115.5	-122.4	-108.7	-115.1	-113.0	-119.7	-112.2	-118.9
Helichrysone A (191)	-91.6	-93.1	-117.8	-119.7	-99.4	-101.0	-112.4	-114.2	-109.2	-110.9	-102.7	-104.3	-104.9	-106.6
Isobavachalcone (192)	-104.3	-109.2	-117.8	-123.2	-111.5	-116.7	-114.0	-119.3	-112.4	-117.7	-113.6	-118.9	-115.8	-121.2
Kanzonol C (193)	-110.3	-108.4	-133.3	-130.9	-125.2	-123.0	-128.4	-126.1	-130.1	-127.8	-135.9	-133.4	-131.8	-129.4
Kuraridin (194)	-117.2	-110.9	-124.0	-117.3	-105.7	-100.0	-127.9	-121.0	-121.1	-114.6	-111.5	-105.6	-136.6	-129.2
Myrigalone G (195)	-89.4	-97.5	-105.7	-115.3	-96.9	-105.7	-105.5	-115.0	-104.4	-113.9	-99.7	-108.8	-104.9	-114.5
Piperaduncin A (196)	-113.3	-103.3	-141.0	-128.5	-121.0	-110.3	-130.8	-119.2	-132.2	-120.5	-120.8	-110.1	-131.7	-120.1
Piperaduncin B (197)	-117.9	-106.3	-139.3	-125.6	-112.0	-101.0	-141.8	-127.9	-144.3	-130.2	-134.3	-121.2	-133.6	-120.5
Piperaduncin C (198)	-110.2	-96.3	-155.9	-136.2	-104.1	-91.0	-149.2	-130.4	-127.2	-111.2	-131.8	-115.2	-149.4	-130.6
Psorachalcone A (199)	-102.2	-105.2	-118.9	-122.4	-107.2	-110.4	-116.8	-120.3	-112.0	-115.3	-114.5	-117.9	-116.7	-120.2
Xanthoangelol (200)	-117.6	-115.4	-135.2	-132.8	-131.9	-129.5	-131.3	-129.0	-132.1	-129.7	-130.6	-128.3	-132.6	-130.2
Xanthoangelol F (201)	-115.9	-112.5	-129.8	-126.0	-135.6	-131.6	-127.0	-123.3	-126.2	-122.5	-126.5	-122.8	-127.5	-123.7
Flavonoids														
2',5,5',7-Tetrahydroxyflavanone (202)	-81.2	-88.4	-95.9	-104.4	-84.1	-91.5	-95.4	-103.9	-87.4	-95.2	-87.7	-95.5	-88.2	-96.0
2',7-Dimethoxyflavone (203)	-84.2	-92.3	-94.7	-103.8	-87.5	-95.9	-95.8	-105.0	-98.8	-108.3	-95.9	-105.1	-94.8	-103.8
3''''-(2-Hydroxybenzyl)- isouvarinol (218)	-77.8	-63.6	-130.5	-106.6	-109.5	-89.5	-133.1	-108.8	-123.5	-100.9	-147.9	-120.9	-149.8	-122.4
3 ^{''''} -(2-Hydroxybenzyl)uvarinol (217)	-81.3	-66.5	-129.1	-105.5	-135.5	-110.7	-141.3	-115.5	-117.5	-96.0	-131.1	-107.2	-153.7	-125.6
3'-Methylpelargonidin (204)	-90.7	-99.1	-98.9	-108.0	-87.4	-95.5	-101.5	-110.8	-92.0	-100.5	-98.0	-107.1	-92.4	-100.9
3'-O-Methyldiplacone (205)	-67.4	-63.8	-133.5	-126.4	-120.3	-113.9	-122.7	-116.1	-111.4	-105.5	-109.3	-103.4	-128.9	-122.0
4′,5,7-Trihydroxy-6-methyl-8- prenylflavanone (207)	-87.9	-89.3	-102.2	-103.8	-107.1	-108.8	-99.8	-101.4	-98.9	-100.5	-94.2	-95.7	-105.2	-106.9
4′,5,7-Trihydroxy-8-methyl-6- prenylflavanone (206)	-84.8	-86.2	-106.0	-107.7	-94.0	-95.5	-105.6	-107.3	-96.9	-98.5	-88.8	-90.2	-105.6	-107.3
4′,5-Dihydroxy-7-methoxy-6- prenylflavanone (208)	-92.3	-93.8	-111.3	-113.1	-96.5	-98.0	-112.1	-113.9	-96.6	-98.2	-91.5	-93.0	-106.4	-108.1
4',6,7-Trihydroxy-3',5'- dimethoxyflavone (209)	-90.8	-94.5	-109.8	-114.2	-99.9	-103.9	-104.2	-108.4	-97.9	-101.9	-97.9	-101.8	-102.6	-106.7
4′,7-Dihydroxy-8- methylflavan (210)	-80.2	-90.7	-87.3	-98.8	-80.9	-91.5	-87.8	-99.4	-81.8	-92.6	-85.8	-97.1	-86.7	-98.1

Licend	Bcl	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Ligand —	Edock	DS _{norm}	Edock	DSnorm										
Flavonoids														
4'-Hydroxy-5,7-dimethoxy-flavone (211)	-83.6	-90.0	-98.6	-106.1	-96.0	-103.3	-91.5	-98.4	-88.5	-95.3	-84.9	-91.4	-91.7	-98.7
5 ^{''} -(2-Hydroxybenzyl)-isouvarinol (216)	-113.5	-92.8	-143.5	-117.3	-132.9	-108.6	-137.9	-112.7	-153.3	-125.3	-134.9	-110.2	-156.6	-128.0
5'-(1,1-Dimethyl-2-propenyl)- 2',4',5,7-tetrahydroxy-6-prenyl- flavanone (219)	-102.7	-98.3	-122.9	-117.6	-101.9	-97.5	-132.2	-126.5	-111.6	-106.8	-99.5	-95.2	-117.4	-112.3
5'-(1,1-Dimethyl-2-propenyl)- 2',4',5,7-tetrahydroxy-8- prenylflavanone (220)	-106.9	-102.3	-131.3	-125.6	-112.7	-107.8	-128.4	-122.8	-119.4	-114.2	-115.9	-110.8	-124.1	-118.7
5'-(1,1-Dimethyl-2-propenyl)- 4',5,7-trihydroxy-2'-methoxy-8- prenylflavanone (221)	-103.2	-97.6	-132.8	-125.7	-122.3	-115.7	-128.4	-121.6	-111.4	-105.4	-106.7	-101.0	-124.5	-117.8
5,6-Dihydroxy-4′,7,8-trimethoxy- flavone (212)	-95.2	-97.6	-110.1	-113.0	-96.1	-98.6	-101.2	-103.8	-100.9	-103.5	-102.4	-105.0	-103.2	-105.8
5-Hydroxy-2′,4′,5′,7-Tetra- methoxyflavone (213)	-99.4	-100.6	-110.2	-111.5	-105.0	-106.3	-112.5	-113.9	-95.6	-96.8	-102.3	-103.5	-104.1	-105.4
6,7-Dihydroxyflavone (214)	-76.1	-86.3	-87.5	-99.3	-80.8	-91.7	-92.0	-104.4	-88.6	-100.6	-85.4	-97.0	-87.9	-99.8
8-Methoxycirsilineol (215)	-93.3	-93.0	-117.9	-117.6	-103.7	-103.5	-118.0	-117.7	-99.6	-99.4	-96.4	-96.2	-107.6	-107.3
9,10-Dihydro-9,10-diacetoxy-3- methoxy-8,8-dimethyl-2-phenyl- 4 <i>H</i> ,8 <i>H</i> -benzo[1,2-b:3,4-b']- dipyran-4-one (222)	-97.9	-91.7	-102.6	-96.1	-101.4	-95.0	-100.5	-94.2	-99.9	-93.6	-97.2	-91.0	-98.6	-92.4
Abyssinone I (223)	-85.5	-89.6	-108.9	-114.2	-87.8	-92.0	-98.8	-103.6	-86.9	-91.1	-87.4	-91.7	-101.1	-106.0
Abyssinone IV (224)	-98.6	-96.8	-125.9	-123.6	-107.4	-105.5	-117.3	-115.2	-113.0	-111.0	-116.1	-114.1	-120.3	-118.2
Astragalin (225)	-100.1	-94.1	-117.0	-109.9	-95.4	-89.6	-112.8	-106.0	-118.5	-111.3	-105.7	-99.3	-116.3	-109.3
Bavachinin (226)	-97.3	-100.4	-111.8	-115.4	-103.4	-106.7	-116.3	-120.0	-101.5	-104.8	-101.5	-104.7	-112.9	-116.5
Betuletol (227)	-82.6	-85.9	-102.6	-106.7	-82.1	-85.4	-98.4	-102.4	-87.1	-90.6	-90.9	-94.5	-103.1	-107.3
Bonannione A (228)	-81.3	-78.8	-129.0	-125.0	-121.6	-117.8	-120.4	-116.7	-112.2	-108.7	-110.6	-107.2	-116.7	-113.1
Brosimone I (229)	-90.4	-86.7	-114.0	-109.4	-100.1	-96.0	-110.2	-105.7	-100.8	-96.8	-97.9	-94.0	-102.0	-97.9
Cassiaflavan (230)	-76.1	-87.7	-85.7	-98.9	-75.4	-87.0	-84.3	-97.2	-76.6	-88.3	-82.1	-94.7	-83.3	-96.1
Cerasinone (231)	-83.4	-86.7	-101.3	-105.4	-91.2	-94.8	-106.2	-110.4	-88.8	-92.3	-95.3	-99.2	-99.4	-103.4
Chrysin (233)	-79.0	-89.6	-85.7	-97.3	-81.5	-92.5	-86.6	-98.2	-82.0	-93.1	-86.4	-98.1	-85.6	-97.2

Ligand	Bcl	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Ligand	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}	Edock	DS _{norm}
Flavonoids														
Chrysoeriol (232)	-86.0	-92.4	-101.0	-108.5	-92.1	-98.9	-101.8	-109.3	-90.1	-96.7	-97.6	-104.8	-98.7	-106.0
Corniculatusin (234)	-95.1	-98.8	-105.0	-109.0	-103.0	-106.9	-109.1	-113.3	-103.6	-107.6	-97.5	-101.2	-100.0	-103.8
Cudraflavone A (235)	-85.8	-82.4	-108.6	-104.4	-97.2	-93.5	-100.2	-96.3	-96.7	-93.0	-85.7	-82.4	-100.4	-96.5
Dihydroquercetin (236)	-84.1	-89.9	-98.0	-104.8	-75.8	-81.1	-98.5	-105.3	-85.4	-91.3	-88.2	-94.3	-87.9	-93.9
Eucalyptin (237)	-87.4	-91.3	-98.6	-103.0	-90.4	-94.4	-95.8	-100.0	-93.4	-97.5	-94.0	-98.2	-101.9	-106.4
Euchrestaflavanone A (238)	-114.5	-111.0	-126.3	-122.4	-118.2	-114.6	-130.4	-126.3	-121.4	-117.6	-128.0	-124.1	-126.9	-123.0
Flavaprenin (239)	-99.0	-101.9	-101.7	-104.7	-108.9	-112.2	-107.6	-110.8	-103.2	-106.3	-104.9	-108.0	-112.7	-116.1
Flemiflavanone D (240)	-104.6	-100.0	-131.3	-125.6	-118.9	-113.7	-120.0	-114.8	-117.0	-111.9	-111.1	-106.3	-129.3	-123.7
Glabranin (241)	-94.8	-99.2	-102.6	-107.4	-99.2	-103.8	-103.5	-108.3	-101.9	-106.6	-102.7	-107.5	-107.0	-112.0
Isoorientin (243)	-81.8	-76.8	-111.7	-104.9	-103.4	-97.1	-107.0	-100.5	-101.9	-95.7	-102.1	-95.9	-117.2	-110.1
Isoscoparin (244)	-78.4	-72.9	-113.6	-105.7	-113.4	-105.5	-115.2	-107.1	-108.9	-101.2	-106.5	-99.0	-123.0	-114.4
Kaempferol (242)	-83.1	-90.7	-94.9	-103.6	-86.6	-94.5	-90.3	-98.5	-84.1	-91.8	-86.4	-94.3	-89.4	-97.5
Kushenol A (245)	-105.3	-102.1	-120.0	-116.3	-113.1	-109.6	-117.5	-113.9	-116.8	-113.2	-115.6	-112.0	-110.7	-107.3
Kushenol S (246)	-94.7	-97.6	-103.2	-106.3	-100.8	-103.8	-105.3	-108.4	-100.4	-103.4	-105.1	-108.2	-104.7	-107.8
Kushenol U (247)	-85.9	-82.3	-121.5	-116.5	-104.7	-100.3	-113.4	-108.7	-112.9	-108.2	-105.5	-101.0	-112.1	-107.4
Kushenol V (248)	-99.4	-96.9	-116.3	-113.4	-98.2	-95.8	-126.9	-123.7	-104.5	-101.9	-103.8	-101.2	-113.7	-110.9
Kushenol W (249)	-102.6	-101.3	-120.6	-119.0	-109.9	-108.5	-120.6	-119.1	-111.3	-109.8	-114.7	-113.2	-114.4	-112.9
Leachianone A (250)	-108.8	-102.9	-121.2	-114.7	-119.4	-113.0	-121.1	-114.6	-117.1	-110.9	-114.7	-108.6	-124.2	-117.6
Leachianone G (251)	-99.4	-100.8	-104.5	-106.0	-111.5	-113.1	-106.6	-108.1	-103.9	-105.4	-105.3	-106.8	-109.7	-111.3
Licoflavanone (252)	-94.2	-97.0	-111.9	-115.2	-107.2	-110.4	-111.1	-114.4	-99.1	-102.0	-106.2	-109.4	-107.3	-110.5
Licoflavone C (253)	-100.9	-104.1	-105.3	-108.7	-109.0	-112.5	-106.3	-109.7	-105.5	-108.9	-107.5	-110.9	-109.4	-112.9
Licoflavonol (254)	-85.6	-86.9	-113.1	-114.9	-96.7	-98.3	-113.6	-115.5	-98.0	-99.6	-95.6	-97.2	-104.9	-106.6
Lonchocarpol A (255)	-93.8	-90.9	-110.7	-107.3	-113.9	-110.3	-112.0	-108.5	-116.1	-112.5	-111.9	-108.5	-111.5	-108.0
Loranthin (256)	-106.0	-96.3	-122.8	-111.6	-113.8	-103.4	-114.0	-103.5	-119.4	-108.4	-122.4	-111.2	-117.2	-106.4
Loxophlebal A (257)	-99.3	-91.7	-119.1	-110.0	-100.1	-92.4	-112.6	-104.0	-103.0	-95.1	-98.8	-91.2	-129.2	-119.3
Lucenin 2 (258)	-100.5	-85.2	-131.5	-111.4	-116.3	-98.6	-120.8	-102.4	-118.1	-100.1	-101.5	-86.0	-138.6	-117.4
Macarangaflavanone A (259)	-105.6	-102.3	-127.0	-123.1	-118.4	-114.7	-123.0	-119.2	-117.4	-113.8	-130.7	-126.6	-113.7	-110.1
Malvidin (260)	-89.6	-93.1	-108.4	-112.7	-99.8	-103.7	-111.6	-115.9	-97.7	-101.6	-95.1	-98.8	-98.7	-102.6
Myricetin (261)	-86.3	-90.9	-105.2	-110.8	-95.8	-100.9	-103.0	-108.4	-92.8	-97.7	-88.0	-92.7	-98.8	-104.0
Natsudaidain (262)	-78.2	-75.2	-118.9	-114.3	-102.9	-99.0	-105.1	-101.0	-99.1	-95.3	-102.4	-98.4	-108.6	-104.4

Table 2. Cont.

	BcI	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Ligand	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	E _{dock}	DS _{norm}
Flavonoids														
Nevadensin (263)	-85.9	-88.1	-106.9	-109.6	-96.8	-99.3	-110.0	-112.9	-94.8	-97.2	-98.3	-100.9	-106.8	-109.6
O-Methylpongaglabol (264)	-93.3	-101.0	-97.6	-105.8	-102.5	-111.0	-100.2	-108.5	-96.8	-104.9	-95.7	-103.6	-99.3	-107.6
Paratocarpin L (265)	-107.6	-104.2	-127.2	-123.2	-119.5	-115.8	-128.1	-124.1	-117.8	-114.1	-106.1	-102.8	-118.8	-115.1
Persicogenin (266)	-89.7	-94.6	-103.1	-108.8	-92.5	-97.7	-98.8	-104.3	-95.2	-100.5	-94.0	-99.2	-100.2	-105.7
Pilosanol A (267)	-114.7	-101.2	-124.2	-109.7	-112.9	-99.7	-124.4	-109.8	-111.9	-98.8	-131.6	-116.2	-129.0	-113.9
Pilosanol B (268)	-111.7	-99.5	-129.2	-115.0	-97.9	-87.1	-124.4	-110.7	-118.2	-105.3	-124.3	-110.6	-127.4	-113.4
Pilosanol C (269)	-115.8	-103.1	-132.5	-118.0	-108.4	-96.5	-123.4	-109.9	-121.1	-107.8	-125.4	-111.7	-130.0	-115.7
Pinocembrin (270)	-76.4	-86.5	-86.2	-97.6	-79.4	-89.9	-84.6	-95.8	-79.0	-89.4	-84.1	-95.2	-83.4	-94.4
Pongaflavone (271)	-84.1	-87.1	-99.0	-102.6	-92.2	-95.5	-92.1	-95.4	-102.6	-106.3	-93.0	-96.3	-83.3	-86.3
Quercetin (272)	-83.6	-89.6	-100.0	-107.2	-92.3	-98.9	-95.5	-102.3	-89.1	-95.5	-88.0	-94.3	-94.4	-101.2
Quercetin 3-methyl ether (273)	-91.9	-96.9	-99.5	-105.0	-91.9	-97.0	-97.2	-102.6	-89.4	-94.3	-93.4	-98.5	-95.3	-100.6
Remangiflavanone A (274)	-101.5	-97.3	-124.9	-119.7	-113.6	-108.9	-114.2	-109.4	-113.5	-108.7	-103.6	-99.2	-114.4	-109.6
Remangiflavanone B (275)	-110.0	-105.2	-117.4	-112.3	-119.1	-113.9	-121.4	-116.2	-119.2	-114.0	-118.9	-113.7	-117.4	-112.3
Sanggenon G (276)	-35.5	-28.8	-127.7	-103.7	-108.3	-87.9	-124.4	-101.0	-129.3	-105.0	-131.1	-106.5	-178.3	-144.7
Sigmoidin A (277)	-108.2	-103.5	-126.6	-121.1	-117.3	-112.3	-126.1	-120.7	-119.8	-114.6	-114.1	-109.2	-128.5	-122.9
Sigmoidin B (278)	-98.1	-99.5	-117.3	-118.9	-111.4	-112.9	-114.3	-115.9	-102.2	-103.6	-100.5	-101.9	-112.4	-114.0
Sigmoidin L (279)	-106.5	-106.6	-119.4	-119.5	-117.4	-117.5	-119.7	-119.8	-108.0	-108.1	-106.9	-107.0	-115.3	-115.4
Siraitiflavandiol (280)	-96.6	-98.0	-113.0	-114.6	-101.8	-103.2	-102.4	-103.8	-97.6	-99.0	-97.4	-98.8	-114.1	-115.8
Solophenol D (281)	-108.3	-102.5	-127.4	-120.5	-119.4	-113.0	-136.5	-129.1	-122.7	-116.1	-122.9	-116.3	-123.8	-117.1
Sophoraflavanone G (282)	-102.9	-98.5	-128.2	-122.6	-115.7	-110.7	-120.5	-115.3	-116.5	-111.5	-116.6	-111.6	-116.4	-111.3
Sternbin (283)	-86.1	-92.3	-102.8	-110.1	-87.5	-93.7	-98.5	-105.5	-92.2	-98.8	-94.8	-101.6	-97.0	-103.9
Sudachitin (284)	-93.4	-94.4	-118.3	-119.5	-102.5	-103.5	-114.8	-116.0	-96.1	-97.1	-97.5	-98.5	-114.0	-115.2
Uvarinol (285)	-97.2	-84.1	-135.9	-117.6	-110.7	-95.8	-124.7	-107.8	-135.1	-116.8	-125.2	-108.3	-143.8	-124.4
Vahliabiflavone (286)	-95.7	-82.9	-104.3	-90.4	-106.0	-91.9	-104.9	-91.0	-119.0	-103.2	-106.5	-92.3	-110.4	-95.7
Vitexin (287)	-111.9	-106.4	-117.8	-112.0	-113.8	-108.2	-120.2	-114.2	-118.1	-112.3	-115.5	-109.8	-123.0	-117.0
Wogonin (288)	-87.6	-95.8	-94.1	-102.8	-91.1	-99.6	-96.2	-105.2	-91.0	-99.5	-93.4	-102.2	-94.0	-102.8
Isoflavonoids														
2",3"-Epoxybolusanthol B (289)	-104.6	-104.6	-113.5	-113.4	-103.6	-103.5	-112.9	-112.8	-108.7	-108.7	-101.5	-101.4	-116.8	-116.7
3',5,7-Trihydroxy-4'-methoxy- 5',6-diprenylisoflavanone (290)	-87.5	-82.8	-124.9	-118.2	-107.4	-101.6	-124.0	-117.4	-112.6	-106.6	-118.5	-112.1	-130.5	-123.5

Licend	Bcl	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Ligand	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm								
Flavonoids														
4 ^{''} -Hydroxydiphysolone (292)	-98.9	-98.8	-114.3	-114.2	-100.9	-100.8	-94.6	-94.6	-108.7	-108.6	-99.0	-99.0	-106.9	-106.8
5,7-Dihydroxy-2'-methoxy-3',4'- methylenedioxyisoflavanone (293)	-83.4	-86.7	-96.7	-100.6	-86.3	-89.7	-93.0	-96.7	-93.9	-97.7	-89.1	-92.7	-99.6	-103.6
6a-Hydroxyphaseollin (291)	-76.2	-78.7	-101.8	-105.0	-91.8	-94.7	-92.1	-95.0	-84.4	-87.0	-82.2	-84.8	-103.1	-106.4
Amorphaquinone (294)	-80.8	-82.7	-99.5	-101.9	-89.0	-91.1	-98.9	-101.3	-89.5	-91.6	-90.5	-92.7	-93.1	-95.3
Asphodelin A (295)	-84.4	-93.9	-94.0	-104.5	-82.7	-91.9	-95.6	-106.3	-86.7	-96.5	-93.4	-103.9	-91.5	-101.7
Bidwillon A (296)	-55.7	-54.0	-127.1	-123.2	-110.0	-106.6	-108.6	-105.2	-113.7	-110.1	-105.4	-102.2	-120.3	-116.6
Bolucarpan A (297)	-82.8	-83.0	-97.4	-97.7	-92.9	-93.2	-89.8	-90.0	-89.4	-89.7	-102.1	-102.4	-92.6	-92.9
Bolucarpan B (298)	-77.9	-78.3	-101.1	-101.6	-91.9	-92.4	-85.8	-86.3	-90.3	-90.7	-104.1	-104.6	-96.0	-96.5
Bolucarpan D (299)	-77.9	-80.5	-97.4	-100.7	-89.2	-92.2	-80.6	-83.3	-86.7	-89.7	-100.3	-103.6	-91.1	-94.2
Bolusanthol B (300)	-98.2	-99.6	-112.0	-113.6	-101.1	-102.5	-108.3	-109.8	-107.2	-108.8	-100.2	-101.6	-112.5	-114.1
Cajanol (301)	-81.1	-85.6	-93.8	-98.9	-86.1	-90.9	-87.2	-92.1	-87.0	-91.8	-85.9	-90.6	-91.8	-96.9
Chandalone (302)	-63.0	-61.2	-122.2	-118.8	-113.3	-110.2	-116.7	-113.5	-109.3	-106.2	-109.8	-106.8	-122.2	-118.8
Dalversinol A (303)	-108.9	-104.2	-118.9	-113.8	-104.5	-100.0	-113.8	-108.9	-111.8	-106.9	-110.1	-105.4	-114.0	-109.1
Derrisin (304)	-88.8	-84.7	-97.1	-92.6	-81.8	-78.0	-82.9	-79.1	-82.4	-78.6	-86.6	-82.6	-87.0	-83.0
Erybraedin A (305)	-91.4	-89.8	-120.1	-117.9	-100.8	-99.0	-110.0	-108.1	-100.3	-98.5	-101.8	-100.0	-116.9	-114.8
Erybraedin D (306)	-97.9	-96.3	-106.6	-104.9	-102.5	-100.8	-107.0	-105.2	-96.4	-94.8	-99.7	-98.0	-106.0	-104.2
Erypoegin I (307)	-101.8	-101.9	-111.1	-111.2	-106.9	-107.0	-108.7	-108.9	-117.0	-117.2	-100.6	-100.8	-112.1	-112.2
Erysubin F (308)	-119.6	-117.7	-124.6	-122.5	-124.4	-122.4	-115.0	-113.1	-116.6	-114.7	-126.4	-124.3	-129.8	-127.7
Eryvarin V (309)	-91.8	-88.0	-115.0	-110.1	-96.8	-92.7	-114.8	-110.0	-104.3	-99.9	-98.7	-94.6	-99.2	-95.0
Eryvarin W (310)	-109.5	-107.8	-122.5	-120.5	-118.8	-116.9	-115.8	-113.9	-122.4	-120.4	-115.4	-113.5	-120.0	-118.0
Eryzerin C (311)	-75.0	-73.6	-122.3	-119.9	-108.0	-105.9	-110.1	-108.0	-113.5	-111.3	-106.6	-104.5	-120.3	-117.9
Eryzerin D (312)	-76.6	-75.2	-112.1	-110.1	-96.4	-94.6	-108.3	-106.3	-104.7	-102.9	-103.4	-101.6	-103.9	-102.0
Euchretin A (313)	-25.3	-22.9	-114.5	-103.6	-115.6	-104.5	-99.2	-89.7	-115.4	-104.3	-114.4	-103.5	-122.2	-110.5
Gancaonin C (314)	-105.9	-107.6	-116.7	-118.6	-104.0	-105.7	-113.7	-115.5	-108.7	-110.5	-108.4	-110.2	-115.2	-117.1
Genistein (315)	-81.3	-90.4	-92.5	-102.9	-78.6	-87.4	-86.0	-95.6	-75.6	-84.1	-82.5	-91.7	-87.7	-97.6
Glycyrrhisoflavone (316)	-98.3	-99.9	-113.9	-115.8	-110.6	-112.4	-109.4	-111.1	-102.1	-103.7	-105.9	-107.6	-116.2	-118.1
Hispaglabridin A (317)	-38.2	-37.5	-117.1	-115.0	-107.8	-105.8	-111.6	-109.6	-93.7	-92.0	-106.3	-104.4	-118.1	-115.9
Hispaglabridin B (318)	-71.6	-70.4	-113.3	-111.4	-91.8	-90.3	-111.1	-109.3	-79.1	-77.8	-88.5	-87.0	-97.2	-95.6
Hydroxycristacarpone (319)	-96.7	-96.8	-112.7	-112.8	-108.2	-108.4	-100.5	-100.6	-113.0	-113.2	-110.3	-110.4	-100.3	-100.4

Table 2. Cont.

Ligand	Bcl	PDF	Ecl	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Liganu	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm
Isoneorautenol (320)	-82.2	-86.2	-96.1	-100.8	-83.2	-87.2	-80.1	-84.0	-83.3	-87.4	-87.9	-92.1	-86.5	-90.7
Lachnoisoflavone A (321)	-65.6	-66.8	-118.5	-120.6	-107.3	-109.2	-93.5	-95.1	-105.3	-107.2	-105.5	-107.4	-98.4	-100.2
Licoisoflavanone (322)	-76.9	-78.2	-105.5	-107.2	-91.8	-93.2	-103.0	-104.7	-87.4	-88.8	-84.6	-85.9	-100.7	-102.3
Licoricidin (323)	-106.3	-101.7	-122.2	-116.9	-114.1	-109.1	-125.1	-119.7	-114.8	-109.8	-114.5	-109.6	-117.0	-111.9
Lupinalbin C (324)	-79.3	-79.5	-104.0	-104.3	-94.1	-94.3	-90.1	-90.4	-94.3	-94.5	-92.5	-92.7	-97.1	-97.4
Mucronulatol (326)	-83.9	-89.9	-98.8	-105.9	-90.1	-96.5	-96.0	-102.9	-80.9	-86.7	-86.8	-93.0	-94.0	-100.7
Neomillinol (325)	-81.1	-84.7	-106.1	-110.8	-96.8	-101.1	-94.9	-99.1	-93.6	-97.7	-85.8	-89.6	-101.5	-106.0
Pendulone (327)	-77.9	-82.2	-98.2	-103.6	-85.9	-90.6	-94.6	-99.8	-81.4	-85.9	-84.3	-89.0	-92.1	-97.2
Phyllanone B (328)	-96.4	-91.2	-121.7	-115.1	-115.3	-109.2	-116.5	-110.3	-116.0	-109.8	-117.0	-110.7	-122.4	-115.9
Shinpterocarpin (329)	-73.3	-76.8	-88.0	-92.3	-84.4	-88.5	-82.2	-86.2	-85.0	-89.2	-82.0	-86.0	-85.9	-90.1
Neoflavonoids														
Inophyllum A (330)	-98.8	-96.0	-109.9	-106.9	-100.1	-97.3	-102.0	-99.2	-102.2	-99.4	-97.5	-94.8	-105.0	-102.1
Inophyllum C (331)	-95.4	-92.9	-104.1	-101.4	-92.0	-89.6	-103.4	-100.7	-102.7	-100.0	-92.6	-90.1	-105.8	-103.0
Mammea A/BA (332)	-107.7	-104.5	-123.2	-119.6	-118.6	-115.1	-120.5	-116.9	-119.6	-116.1	-110.5	-107.2	-125.6	-121.9
Mammea A/BB (333)	-101.4	-98.4	-120.8	-117.3	-114.7	-111.3	-112.3	-109.0	-117.6	-114.2	-107.2	-104.0	-121.8	-118.3
Mesuol (334)	-92.5	-90.8	-118.7	-116.6	-114.1	-112.0	-114.2	-112.2	-107.6	-105.6	-102.7	-100.8	-112.0	-110.0
Pterocarpans														
1-Methoxyphaseollidin (356)	-92.1	-93.6	-105.6	-107.3	-109.5	-111.2	-112.3	-114.1	-105.1	-106.8	-99.0	-100.5	-104.9	-106.6
Aracarpene 1 (357)	-83.2	-89.3	-95.0	-102.0	-88.1	-94.6	-85.7	-92.0	-97.9	-105.1	-88.3	-94.8	-89.7	-96.3
Aracarpene 2 (358)	-81.3	-87.3	-98.1	-105.3	-90.1	-96.7	-88.6	-95.2	-94.9	-101.9	-86.0	-92.3	-91.3	-98.1
Calopocarpin (360)	-96.7	-101.2	-103.8	-108.7	-108.1	-113.2	-103.3	-108.1	-103.8	-108.7	-103.0	-107.8	-100.8	-105.5
Cristacarpin (359)	-82.4	-83.7	-107.2	-108.9	-107.9	-109.7	-102.8	-104.5	-108.1	-109.8	-95.7	-97.2	-102.3	-104.0
Erythbidin D (362)	-84.8	-91.1	-92.4	-99.2	-92.7	-99.5	-94.1	-101.1	-90.4	-97.1	-85.8	-92.1	-91.5	-98.2
Eryzerin E (363)	-100.9	-96.7	-122.4	-117.2	-103.3	-98.9	-111.1	-106.4	-113.7	-108.9	-114.5	-109.7	-120.6	-115.6
Fuscacarpan B (364)	-86.2	-86.3	-111.4	-111.6	-99.6	-99.7	-98.3	-98.4	-102.5	-102.7	-96.5	-96.6	-105.8	-105.9
Fuscacarpan C (365)	-84.7	-84.8	-112.7	-112.8	-100.9	-101.0	-101.4	-101.5	-113.2	-113.4	-98.0	-98.1	-102.9	-103.0
Glycyrol (366)	-90.2	-90.6	-105.5	-106.0	-105.9	-106.4	-102.2	-102.7	-103.6	-104.1	-101.9	-102.4	-94.9	-95.4
Glycyrrhizol A (367)	-90.8	-87.1	-120.0	-115.2	-120.9	-116.0	-109.4	-105.0	-109.5	-105.1	-106.8	-102.5	-117.0	-112.3
Glycyrrhizol B (368)	-88.3	-90.1	-104.6	-106.7	-98.7	-100.7	-94.4	-96.3	-103.6	-105.6	-100.1	-102.1	-98.0	-99.9
Sandwicensin (369)	-83.2	-85.9	-105.3	-108.6	-104.1	-107.4	-107.0	-110.4	-103.4	-106.7	-96.3	-99.3	-98.9	-102.1
Variabilin (370)	-77.0	-82.7	-93.1	-99.9	-94.7	-101.7	-84.6	-90.8	-98.1	-105.3	-89.2	-95.8	-93.7	-100.6
ent-Sophoracarpan A (361)	-79.2	-85.0	-96.6	-103.7	-90.0	-96.7	-97.6	-104.8	-92.3	-99.1	-92.8	-99.6	-95.4	-102.5

	BcI	PDF	Ecl	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Ligand	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm								
Chromones														
3-(3-Hydroxy-4-methoxy- benzylidene)-6,7-dimethoxy-4- chromanone (371)	-78.1	-80.2	-113.4	-116.6	-97.5	-100.2	-99.4	-102.2	-94.3	-96.9	-85.2	-87.5	-97.7	-100.5
4′,5,7-Trihydroxy-6,8-dimethyl- homoisoflavanone (372)	-83.5	-88.3	-105.0	-111.0	-89.2	-94.4	-98.5	-104.2	-86.6	-91.6	-86.7	-91.7	-98.2	-103.9
4′,5,7-Trihydroxy-6-methyl- homoisoflavanone (373)	-79.0	-84.8	-102.7	-110.3	-86.7	-93.1	-98.7	-105.9	-84.3	-90.5	-95.3	-102.3	-91.9	-98.7
7-O-Methylbonducellin (374)	-75.5	-81.4	-102.1	-110.2	-84.0	-90.6	-92.8	-100.1	-76.9	-83.0	-83.5	-90.0	-89.5	-96.5
8-Methylophiopogonanone B (375)	-86.3	-90.0	-108.3	-112.9	-87.7	-91.4	-103.9	-108.3	-94.9	-98.9	-92.6	-96.5	-104.1	-108.4
Bonducellin (376)	-75.3	-82.5	-95.5	-104.7	-83.3	-91.2	-90.0	-98.7	-79.6	-87.3	-80.3	-88.0	-90.8	-99.6
Odoratumone A (377)	-89.3	-91.6	-114.3	-117.2	-97.6	-100.2	-110.5	-113.3	-98.4	-101.0	-97.6	-100.1	-110.7	-113.6
Sappanone A 3',4'-methylene ether (378)	-81.8	-88.2	-102.1	-110.1	-92.3	-99.5	-94.4	-101.8	-86.4	-93.2	-83.6	-90.2	-94.5	-101.9
Sappanone A 4'-methyl ether (379)	-79.9	-86.0	-101.4	-109.1	-81.4	-87.6	-94.1	-101.2	-87.7	-94.4	-82.4	-88.7	-97.0	-104.4
Sappanone A trimethyl ether (380)	-82.4	-86.1	-111.8	-116.7	-89.0	-92.9	-107.5	-112.3	-90.2	-94.2	-89.7	-93.6	-94.8	-99.0
Condensed Tannins														
GB 1 (381)	-121.0	-105.6	-118.3	-103.3	-100.9	-88.1	-127.4	-111.2	-145.4	-127.0	-123.4	-107.8	-116.1	-101.4
Proanthocyanidin A_1 (382)	-95.2	-82.3	-126.7	-109.4	-129.2	-111.6	-105.9	-91.5	-116.3	-100.5	-122.7	-106.0	-117.6	-101.6
Proanthocyanidin A_2 (383)	-94.3	-81.5	-109.1	-94.3	-130.1	-112.4	-109.4	-94.5	-110.2	-95.2	-121.5	-105.0	-113.9	-98.4
Procyanidin B_4 (384)	-97.8	-84.4	-118.8	-102.5	-98.7	-85.1	-115.7	-99.8	-123.1	-106.2	-112.6	-97.2	-113.5	-97.9
Procyanidin B ₅ (385)	23.0	19.9	-114.3	-98.7	-111.8	-96.5	-131.1	-113.1	-131.3	-113.3	-115.6	-99.7	-146.4	-126.3
Procyanidin B ₆ (386)	-68.6	-59.2	-123.6	-106.6	-101.3	-87.4	-111.5	-96.2	-135.0	-116.5	-121.6	-104.9	-126.1	-108.8
Teatannin (387)	-96.6	-91.1	-131.8	-124.4	-103.4	-97.6	-118.4	-111.8	-107.6	-101.6	-104.7	-98.8	-124.7	-117.7
Coumarins														
4,5',8'-Trihydroxy-5-methyl-3,7'- bicoumarin (344)	-97.3	-99.0	-104.3	-106.2	-89.6	-91.2	-103.4	-105.3	-95.2	-96.9	-92.9	-94.6	-104.1	-106.0
6-Geranyl-5,7-dihydroxy-8(2- methylbutanoyl)-4-phenyl- coumarin (345)	-112.6	-103.8	-127.7	-117.7	-115.8	-106.8	-128.6	-118.5	-122.3	-112.7	-121.3	-111.8	-132.2	-121.9

Table 2. Cont.

Ligand	Bcl	PDF	Ecl	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Liganu	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm
Coumarins														
(–)-Heliettin (354)	-70.0	-89.5	-72.8	-93.1	-66.9	-85.5	-73.5	-93.9	-70.0	-89.4	-71.3	-91.1	-70.4	-89.9
Aesculin (347)	-99.8	-102.7	-111.0	-114.4	-104.2	-107.3	-103.4	-106.5	-100.9	-103.9	-97.8	-100.7	-102.1	-105.1
Alloimperatorin (346)	-95.2	-105.8	-100.7	-112.0	-99.5	-110.7	-101.6	-112.9	-97.1	-107.9	-97.7	-108.6	-98.4	-109.4
Anofinic acid (348)	-75.4	-92.0	-80.1	-97.8	-77.9	-95.1	-78.2	-95.4	-77.7	-94.9	-78.1	-95.3	-83.4	-101.8
Calaustralin (349)	-90.9	-88.4	-111.9	-108.8	-111.2	-108.1	-107.3	-104.3	-100.5	-97.8	-97.5	-94.7	-114.3	-111.1
Calophyllolide (350)	-94.3	-90.8	-120.9	-116.4	-111.0	-106.9	-111.4	-107.3	-113.9	-109.6	-114.6	-110.4	-101.2	-97.4
Dicoumarol (351)	-95.2	-98.4	-101.6	-105.1	-80.7	-83.5	-96.8	-100.1	-93.5	-96.6	-90.3	-93.4	-99.6	-103.0
Dipetalolactone (352)	-84.9	-90.1	-95.2	-101.1	-101.3	-107.6	-96.3	-102.2	-89.8	-95.3	-90.7	-96.3	-91.2	-96.9
Glycycoumarin (353)	-89.1	-89.4	-113.1	-113.5	-106.0	-106.3	-102.7	-103.0	-100.7	-101.0	-95.5	-95.8	-100.3	-100.6
Marmesin (355)	-69.8	-80.0	-87.2	-100.0	-80.1	-91.9	-84.0	-96.3	-81.7	-93.8	-83.8	-96.1	-77.9	-89.3
Stilbenoids														
2-(2,4-Dihydroxyphenyl-5- (1-propenyl)benzofuran (388)	-82.8	-92.6	-96.0	-107.3	-90.3	-100.9	-97.5	-109.0	-85.2	-95.2	-88.9	-99.3	-94.9	-106.0
Albanol A (389)	-79.4	-69.2	-116.3	-101.3	-101.2	-88.1	-125.2	-109.1	-111.8	-97.4	-106.7	-92.9	-147.1	-128.1
Albanol B (390)	no dock	no dock	-138.1	-120.5	-23.4	-20.4	-109.7	-95.8	-106.7	-93.2	-113.0	-98.7	-114.7	-100.2
Amorfrutin A (391)	-100.4	-103.3	-121.8	-125.4	-103.6	-106.7	-117.0	-120.5	-113.0	-116.3	-109.3	-112.5	-118.5	-122.0
Cajaninstilbene acid (392)	-97.3	-100.3	-116.3	-120.0	-99.0	-102.1	-112.7	-116.3	-97.3	-100.4	-97.9	-101.0	-118.9	-122.6
Calodenin B (393)	-114.8	-102.4	-148.6	-132.5	-135.7	-121.0	-150.0	-133.7	-157.6	-140.6	-143.5	-127.9	-147.0	-131.1
Centrolobofuran (394)	-82.1	-93.0	-95.3	-107.9	-83.6	-94.7	-93.4	-105.8	-85.8	-97.1	-84.0	-95.0	-90.6	-102.6
Cochinchinenene A (395)	-84.4	-74.5	-113.7	-100.3	-102.5	-90.5	-107.9	-95.2	-134.6	-118.8	-119.9	-105.8	-135.8	-119.9
Cochinchinenene B (396)	-101.2	-90.9	-145.2	-130.5	-101.1	-90.9	-124.5	-111.9	-130.4	-117.2	-119.8	-107.6	-156.8	-140.8
Cochinchinenene C (397)	-114.8	-104.1	-135.8	-123.1	-133.2	-120.7	-117.1	-106.2	-133.7	-121.2	-116.3	-105.4	-138.2	-125.3
Cochinchinenene D (398)	-127.5	-116.7	-140.3	-128.4	-107.9	-98.7	-121.1	-110.9	-124.0	-113.5	-121.1	-110.8	-145.0	-132.8
Egonol (399)	-108.1	-112.9	-120.1	-125.4	-103.9	-108.5	-114.9	-119.9	-104.1	-108.7	-105.0	-109.6	-119.2	-124.5
Erypoegin F (400)	-104.3	-106.2	-122.4	-124.6	-120.3	-122.4	-121.9	-124.1	-115.1	-117.2	-114.8	-116.9	-117.1	-119.2
Erythbidin E (401)	-53.5	-60.6	-97.7	-110.6	-86.9	-98.3	-91.0	-103.0	-87.0	-98.5	-85.5	-96.8	-91.8	-103.9
Eryvarin Q (402)	-119.5	-116.0	-140.8	-136.7	-126.3	-122.6	-143.0	-138.8	-130.9	-127.1	-131.6	-127.7	-133.9	-130.0
Gancaonin I (403)	-108.9	-110.6	-120.0	-121.9	-103.7	-105.4	-120.9	-122.9	-110.5	-112.2	-108.4	-110.2	-120.8	-122.7
Glyinflanin H (404)	-90.5	-96.3	-101.8	-108.4	-88.3	-94.0	-102.3	-108.9	-86.5	-92.0	-88.9	-94.6	-90.9	-96.7
Kuwanol A (405)	-74.5	-64.8	-111.1	-96.7	-101.9	-88.7	-129.6	-112.8	-119.2	-103.7	-116.2	-101.1	-155.8	-135.6
Licobenzofuran (406)	-106.3	-108.0	-117.4	-119.2	-119.7	-121.6	-112.6	-114.4	-109.1	-110.8	-112.5	-114.3	-113.3	-115.1

Table 2. Cont.

Licond	BcI	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Liganu	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm
Stilbenoids														
Licocoumarone (407)	-102.0	-105.0	-120.5	-124.1	-98.7	-101.7	-120.7	-124.3	-104.4	-107.5	-98.6	-101.5	-118.4	-122.0
Mulberrofuran D (408)	-122.0	-114.8	-145.5	-136.9	-120.8	-113.6	-136.9	-128.8	-129.7	-122.0	-129.5	-121.8	-134.3	-126.3
Mulberrofuran Y (409)	-114.6	-111.0	-134.3	-130.1	-113.6	-110.0	-128.8	-124.8	-126.8	-122.9	-123.2	-119.4	-137.9	-133.6
Pinosylvin (410)	-61.5	-74.1	-88.4	-106.6	-77.5	-93.4	-78.8	-95.0	-74.9	-90.3	-76.6	-92.3	-80.0	-96.4
Schweinfurthin A (411)	-30.4	-26.7	-82.8	-72.7	-114.6	-100.7	-113.9	-100.1	-116.6	-102.4	-120.7	-106.0	-123.6	-108.5
Shanciguol 3-methyl ether (412)	-107.2	-101.1	-125.1	-118.0	-112.9	-106.5	-119.7	-113.0	-122.2	-115.3	-116.9	-110.3	-130.9	-123.5
Stemofuran R (413)	-92.6	-96.5	-110.7	-115.3	-95.4	-99.4	-106.3	-110.8	-98.9	-103.0	-100.8	-105.0	-106.3	-110.8
Stilbostemin S (414)	-92.1	-100.3	-107.7	-117.2	-93.5	-101.8	-102.0	-111.0	-101.8	-110.8	-101.6	-110.6	-97.8	-106.4
Thunberginol F (415)	-85.5	-95.1	-99.1	-110.2	-85.7	-95.3	-96.7	-107.6	-89.3	-99.3	-86.8	-96.6	-96.0	-106.8
(7 <i>E</i> ,7′ <i>R</i> ,8′ <i>R</i>)-ε-Viniferin (416)	-101.7	-95.1	-134.0	-125.3	-118.1	-110.4	-110.8	-103.6	-114.7	-107.3	-115.6	-108.1	-131.7	-123.2
(7 <i>E</i> ,7′ <i>S</i> ,8′ <i>S</i>)-ε-Viniferin (417)	-103.2	-96.5	-134.3	-125.6	-112.6	-105.3	-111.0	-103.8	-119.1	-111.3	-118.8	-111.1	-126.9	-118.7
Phenylpropanoids and Lignans														
(E)-Cinnamaldehyde (418)	-69.5	-98.1	-70.6	-99.6	-66.4	-93.7	-71.3	-100.6	-64.3	-90.7	-66.8	-94.2	-68.2	-96.3
3,4-Dimethylcinnamaldehyde (419)	-77.2	-102.2	-81.6	-108.0	-72.2	-95.5	-77.2	-102.3	-77.1	-102.0	-78.7	-104.2	-79.4	-105.1
Methyleugenol (422)	-79.9	-102.1	-81.8	-104.5	-74.8	-95.6	-78.1	-99.8	-79.6	-101.7	-80.4	-102.7	-79.8	-101.9
<i>p</i> -Coumaraldehyde (420)	-73.8	-100.3	-75.9	-103.2	-67.9	-92.3	-72.8	-99.0	-69.8	-94.8	-72.5	-98.6	-74.3	-101.0
<i>p</i> -Methoxycinnamaldehyde (421)	-79.0	-104.2	-82.1	-108.2	-71.7	-94.5	-78.5	-103.5	-74.1	-97.7	-76.3	-100.6	-81.3	-107.2
(–)-Asarinin (423)	-98.1	-99.6	-120.0	-121.9	-96.7	-98.2	-106.8	-108.5	-109.4	-111.1	-110.6	-112.4	-117.3	-119.2
Nordihydroguaiaretic acid (424)	-88.6	-94.9	-106.0	-113.6	-103.9	-111.3	-100.1	-107.3	-98.0	-105.0	-93.5	-100.1	-104.6	-112.1
Xanthones														
2-Deoxy-4-Hydroxycudratricus- xanthone D (425)	-92.1	-90.3	-103.2	-101.2	-110.9	-108.8	-108.2	-106.1	-97.7	-95.8	-96.2	-94.3	-96.4	-94.5
Calozeyloxanthone (426)	-86.8	-86.3	-88.3	-87.8	-83.8	-83.3	-86.3	-85.8	-92.6	-92.1	-99.1	-98.5	-92.1	-91.6
Cycloartobiloxanthone (427)	-89.3	-84.8	-99.1	-94.0	-101.4	-96.3	-103.8	-98.6	-98.4	-93.5	-96.6	-91.7	-94.4	-89.6
Formoxanthone C (428)	-103.0	-100.8	-101.9	-99.8	-107.6	-105.3	-105.2	-103.0	-108.6	-106.3	-104.4	-102.2	-107.6	-105.3
Garciniacowone (429)	-71.0	-65.8	-124.5	-115.4	-110.4	-102.3	-106.7	-98.9	-123.0	-114.0	-115.0	-106.6	-119.9	-111.1
Globulixanthone C (430)	-81.5	-85.1	-102.8	-107.3	-90.9	-95.0	-94.4	-98.6	-94.5	-98.7	-90.6	-94.6	-89.5	-93.5
Globulixanthone D (431)	-90.9	-93.4	-109.6	-112.6	-88.5	-90.9	-99.0	-101.7	-98.4	-101.2	-98.9	-101.7	-99.6	-102.3
Globulixanthone E (432)	-68.0	-57.3	-114.7	-96.8	-110.9	-93.6	-89.7	-75.7	-104.9	-88.6	-110.4	-93.2	-124.0	-104.6

Table 2. Cont.

Ligand	Bcl	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm
Xanthones														
Morellin (433)	-88.3	-77.7	-92.7	-81.6	-102.7	-90.4	-98.8	-87.0	-107.7	-94.8	-107.7	-94.8	-97.7	-86.0
Nigrolineaxanthone N (434)	-98.5	-96.2	-105.1	-102.7	-99.2	-97.0	-103.5	-101.1	-120.9	-118.1	-106.5	-104.1	-99.0	-96.7
Pinselin (435)	-94.0	-100.9	-91.2	-97.9	-95.4	-102.4	-99.2	-106.5	-102.7	-110.2	-96.4	-103.5	-98.3	-105.6
Scortechinone B (436)	-95.9	-82.1	-123.2	-105.5	-112.5	-96.3	-85.9	-73.5	-113.0	-96.7	-102.3	-87.6	-107.4	-91.9
Symphonin (437)	-97.5	-91.3	-107.7	-100.9	-109.3	-102.4	-103.9	-97.3	-106.0	-99.2	-103.0	-96.5	-94.7	-88.7
Hydrolyzable Tannins														
1,2,3,4,6-Pentagalloylglucose (335)	-115.6	-84.8	-178.0	-130.6	-148.1	-108.7	-161.0	-118.1	-157.5	-115.6	-151.6	-111.3	-184.7	-135.5
Aceritannin (438)	-112.5	-104.1	-133.9	-123.9	-133.0	-123.1	-146.6	-135.7	-128.6	-119.0	-139.2	-128.9	-121.8	-112.8
Ginnalin B (439)	-92.2	-97.3	-101.3	-106.9	-102.7	-108.4	-104.0	-109.7	-100.2	-105.7	-99.4	-104.9	-106.3	-112.1
Ginnalin C (440)	-88.4	-93.3	-106.6	-112.5	-94.6	-99.8	-110.4	-116.5	-100.8	-106.4	-94.1	-99.3	-106.0	-111.9
Panconoside A (441)	-79.7	-65.9	-137.5	-113.6	-118.4	-97.8	-124.5	-102.9	-119.3	-98.6	-112.5	-93.0	-134.2	-110.9
Miscellaneous Phenolics														
1,3,7,9-Tetrahydroxy-4,6-dimethyl- 2,8-bis(2-methyl-propanoyl) -dibenzofuran (442)	-93.7	-91.4	-119.9	-117.0	-104.7	-102.1	-106.2	-103.6	-102.4	-99.8	-100.3	-97.9	-108.3	-105.7
2',4'-Dihydroxy-6'-methoxy-3'- methylacetophenone (443)	-76.2	-94.3	-76.7	-94.9	-75.5	-93.4	-77.6	-96.0	-74.5	-92.2	-75.7	-93.7	-74.7	-92.4
3',4'-Dihydroxyacetophenone (444)	-68.6	-92.4	-71.7	-96.6	-67.3	-90.6	-70.5	-95.0	-70.3	-94.7	-70.2	-94.5	-68.1	-91.8
4'-O-Methylhonokiol (446)	-95.2	-104.6	-107.7	-118.3	-100.8	-110.7	-107.5	-118.1	-97.7	-107.3	-97.0	-106.6	-100.2	-110.1
4-Deoxyadhumulone 2 ^{''} ,3 ^{''} -epoxide (445)	-75.3	-75.9	-114.6	-115.5	-97.6	-98.4	-104.9	-105.8	-103.4	-104.2	-98.7	-99.5	-109.0	-109.9
7-(3,4-Dihydroxy-5-methoxy- phenyl)-1-phenyl-4-hepten-3- one (447)	-103.6	-108.2	-124.2	-129.7	-104.9	-109.5	-121.5	-126.9	-111.0	-115.9	-110.6	-115.5	-117.6	-122.8
Agrimol C (449)	-102.3	-84.1	-136.6	-112.3	-104.0	-85.5	-127.8	-105.1	-126.9	-104.4	-126.4	-103.9	-119.5	-98.3
Agrimol F (450)	-107.7	-89.9	-127.3	-106.1	-106.0	-88.4	-121.5	-101.3	-126.6	-105.6	-122.2	-101.9	-125.8	-104.9
Agrimol G (451)	-85.0	-69.9	-128.4	-105.5	-104.6	-86.0	-122.2	-100.5	-132.6	-109.0	-124.6	-102.4	-134.9	-110.9
Arzanol (452)	-96.8	-94.3	-118.6	-115.5	-89.1	-86.8	-118.2	-115.1	-102.1	-99.4	-108.1	-105.3	-110.5	-107.6
Aspidinol C (448)	-82.6	-97.7	-92.9	-109.9	-85.4	-101.1	-89.8	-106.3	-89.2	-105.5	-93.9	-111.1	-90.1	-106.7
Bruguierol C (453)	-80.3	-97.7	-76.2	-92.7	-76.7	-93.4	-80.0	-97.3	-78.7	-95.7	-80.0	-97.4	-76.4	-93.0
Cearoin (454)	-87.2	-100.3	-91.7	-105.4	-90.1	-103.6	-88.6	-101.9	-94.3	-108.5	-89.2	-102.6	-87.1	-100.1

Ligand	Bcl	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Liganu	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}						
Miscellaneous Phenolics														
Citrusnin A (455)	-99.2	-116.1	-101.3	-118.5	-92.4	-108.1	-101.4	-118.6	-99.2	-116.0	-100.4	-117.5	-101.7	-119.0
Cochinchinenin B (456)	-126.9	-111.9	-140.4	-123.8	-123.6	-109.0	-132.2	-116.6	-127.4	-112.3	-139.8	-123.2	-139.4	-122.8
Cochinchinenin C (457)	-127.2	-112.2	-132.9	-117.1	-123.3	-108.7	-121.7	-107.3	-132.0	-116.3	-130.5	-115.0	-146.7	-129.3
Drummondin D (458)	-87.0	-79.0	-125.2	-113.7	-112.3	-102.0	-121.0	-109.9	-112.3	-101.9	-113.2	-102.8	-120.9	-109.7
Drummondin E (459)	-112.1	-101.7	-129.4	-117.4	-107.8	-97.7	-125.8	-114.1	-117.4	-106.5	-122.4	-111.0	-126.4	-114.6
Eleutherol (460)	-86.3	-99.2	-94.1	-108.3	-87.5	-100.7	-94.4	-108.5	-90.6	-104.2	-90.8	-104.5	-90.6	-104.2
Ellagicacid (461)	-91.6	-98.1	-98.4	-105.4	-98.3	-105.3	-98.7	-105.7	-96.3	-103.1	-98.4	-105.5	-96.1	-103.0
Epicoccolide A (462)	-81.3	-81.1	-91.8	-91.6	-91.7	-91.5	-84.0	-83.8	-92.5	-92.3	-90.3	-90.1	-93.6	-93.4
Gibbilimbol A (464)	-86.3	-100.9	-102.8	-120.2	-91.4	-106.8	-91.9	-107.5	-96.1	-112.4	-91.3	-106.8	-92.8	-108.5
Gibbilimbol B (465)	-89.6	-104.8	-101.1	-118.3	-95.2	-111.3	-96.8	-113.3	-95.5	-111.7	-95.2	-111.3	-94.8	-110.8
Grifolin (466)	-101.2	-105.5	-124.0	-129.2	-106.3	-110.7	-119.4	-124.4	-109.3	-113.9	-120.1	-125.2	-116.4	-121.3
Hyperbrasilol A (467)	-18.6	-16.2	-131.4	-114.0	-113.4	-98.4	-127.0	-110.2	-115.4	-100.1	-87.5	-76.0	-123.3	-107.0
Hyperbrasilol B (468)	-104.7	-91.7	-133.0	-116.5	-108.6	-95.1	-125.6	-110.1	-114.7	-100.5	-111.4	-97.6	-127.3	-111.5
Hyperbrasilol C (469)	-110.4	-96.6	-131.6	-115.1	-108.6	-95.1	-115.9	-101.4	-117.1	-102.5	-111.8	-97.9	-120.6	-105.5
Isodrummondin D (470)	-105.0	-95.4	-122.9	-111.6	-108.6	-98.6	-113.1	-102.7	-116.4	-105.7	-115.6	-105.0	-120.1	-109.0
Isohyperbrasilol B (471)	-106.2	-93.0	-122.9	-107.6	-111.7	-97.9	-118.6	-103.9	-123.7	-108.4	-113.7	-99.6	-133.8	-117.2
Isouliginosin B (472)	-104.7	-94.9	-119.5	-108.4	-114.8	-104.1	-119.5	-108.4	-117.7	-106.8	-105.4	-95.6	-125.0	-113.3
Italipyrone (473)	-104.2	-101.6	-120.5	-117.5	-105.5	-102.9	-115.0	-112.2	-108.1	-105.4	-105.4	-102.8	-112.2	-109.5
Knerachelin A (474)	-100.6	-108.0	-115.2	-123.7	-103.7	-111.3	-108.7	-116.7	-101.5	-109.0	-107.3	-115.1	-108.7	-116.7
Knerachelin B (475)	-94.7	-105.3	-110.2	-122.6	-98.8	-109.9	-100.0	-111.2	-98.5	-109.5	-102.4	-113.8	-102.7	-114.2
Magnolol (476)	-95.7	-106.9	-108.5	-121.3	-93.0	-103.9	-110.6	-123.6	-100.3	-112.1	-99.1	-110.7	-102.0	-114.0
Myrtucommulone A (477)	-84.9	-69.8	-115.2	-94.7	-90.7	-74.6	-100.5	-82.6	-121.8	-100.2	-102.6	-84.4	-126.7	-104.1
Myrtucommulone B (478)	-103.5	-99.8	-99.8	-96.2	-98.5	-94.9	-111.2	-107.2	-103.3	-99.6	-98.7	-95.2	-98.5	-94.9
Obovatol (479)	-89.7	-98.3	-105.7	-115.8	-99.3	-108.8	-104.8	-114.8	-96.6	-105.9	-91.2	-99.9	-97.5	-106.9
Oenostacin (480)	-95.4	-106.6	-104.8	-117.2	-94.8	-105.9	-107.6	-120.2	-105.2	-117.6	-101.7	-113.7	-104.0	-116.3
Paeonol (481)	-75.7	-99.0	-77.8	-101.8	-71.1	-93.0	-75.4	-98.6	-76.6	-100.1	-76.9	-100.5	-74.7	-97.6
Perlatolic acid (482)	-106.6	-100.4	-129.6	-122.1	-116.4	-109.7	-125.7	-118.4	-127.9	-120.5	-132.0	-124.3	-126.8	-119.4
Plicatipyrone (483)	-81.3	-78.2	-106.0	-101.9	-96.2	-92.5	-101.4	-97.4	-103.8	-99.8	-98.5	-94.7	-105.4	-101.3
Propterol (484)	-85.2	-98.0	-98.1	-112.8	-91.6	-105.3	-87.6	-100.8	-93.5	-107.5	-93.0	-107.0	-91.5	-105.2
Pulverulentone B (485)	-80.3	-93.1	-92.6	-107.3	-88.6	-102.8	-91.1	-105.7	-94.1	-109.2	-95.8	-111.1	-90.5	-104.9
Quinquangulin (486)	-78.6	-85.7	-86.3	-94.1	-83.1	-90.7	-81.4	-88.8	-86.6	-94.4	-86.7	-94.6	-84.3	-91.9

Table 2. Cont.

Licend	Bcl	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Liganu	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}	Edock	DS _{norm}
Miscellaneous Phenolics														
Rhodomyrtone (487)	-94.0	-88.7	-111.4	-105.1	-82.5	-77.9	-100.9	-95.2	-110.7	-104.4	-107.0	-101.0	-109.5	-103.3
Rosmarinic acid (488)	-99.0	-100.0	-129.8	-131.2	-111.5	-112.7	-129.9	-131.3	-107.3	-108.4	-106.3	-107.4	-119.8	-121.0
Rubanthrone A (489)	-102.1	-101.5	-105.3	-104.6	-108.4	-107.8	-101.3	-100.7	-107.5	-106.9	-105.8	-105.2	-105.1	-104.5
Sampsone A (490)	-81.4	-80.5	-98.2	-97.1	-98.5	-97.4	-99.2	-98.1	-97.5	-96.4	-91.8	-90.8	-101.1	-99.9
Sarothralen B (491)	-98.2	-85.3	-140.1	-121.7	-106.3	-92.3	-128.7	-111.9	-132.2	-114.9	-122.5	-106.5	-118.2	-102.7
Sarothralen C (492)	-93.5	-80.4	-161.4	-138.8	-71.2	-61.2	-127.8	-109.9	-122.5	-105.3	-127.7	-109.8	-128.3	-110.3
Sarothralen D (493)	-106.3	-91.4	-146.7	-126.1	-110.6	-95.1	-121.5	-104.5	-135.8	-116.8	-120.5	-103.6	-130.0	-111.7
Shikonofuran C (494)	-98.2	-99.3	-130.8	-132.4	-105.6	-106.9	-121.1	-122.6	-111.4	-112.8	-108.0	-109.3	-125.1	-126.6
Shikonofuran D (495)	-101.0	-103.6	-125.6	-128.8	-102.0	-104.6	-120.8	-123.9	-109.4	-112.2	-103.9	-106.6	-118.8	-121.9
Shikonofuran E (496)	-101.2	-102.6	-130.8	-132.7	-112.7	-114.3	-124.0	-125.8	-108.1	-109.6	-105.6	-107.1	-123.7	-125.5
Sinapic acid (497)	-83.4	-98.7	-89.8	-106.2	-84.9	-100.5	-87.2	-103.2	-84.3	-99.8	-84.6	-100.1	-87.3	-103.3
Walrycin A (498)	-68.1	-87.7	-73.6	-94.8	-66.9	-86.1	-73.9	-95.1	-71.4	-91.9	-71.5	-92.1	-70.3	-90.5
Quinones														
2,6-Dimethoxy-1,4-benzo- quinone (336)	-66.9	-87.2	-69.3	-90.2	-67.6	-88.1	-69.2	-90.2	-68.0	-88.5	-66.9	-87.1	-68.3	-89.0
2-Methyl-6-prenyl-1,4-benzo- quinone (337)	-80.4	-100.6	-83.4	-104.3	-78.6	-98.3	-84.0	-105.0	-82.9	-103.6	-81.0	-101.3	-85.9	-107.4
Omphalone (499)	-88.5	-111.1	-90.1	-113.0	-84.6	-106.1	-91.2	-114.4	-85.7	-107.5	-87.2	-109.5	-90.0	-113.0
Primin (500)	-82.1	-99.6	-91.4	-110.9	-80.5	-97.6	-88.5	-107.3	-88.3	-107.1	-87.2	-105.7	-93.6	-113.5
1,4-Naphthoquinone (338)	-63.6	-84.5	-67.6	-89.9	-61.4	-81.6	-68.0	-90.4	-64.1	-85.3	-65.4	-86.9	-65.4	-87.0
2-Acetylnaphtho[2,3- <i>b</i>]furan-4,9- dione (339)	-83.4	-96.5	-90.3	-104.5	-83.7	-96.8	-91.8	-106.2	-89.4	-103.4	-89.3	-103.3	-89.2	-103.2
Alkannin (340)	-88.7	-96.6	-104.5	-113.8	-93.5	-101.8	-104.8	-114.1	-95.9	-104.3	-92.8	-101.0	-99.1	-107.8
Isobutyrylshikonin (341)	-98.6	-99.8	-112.4	-113.7	-106.2	-107.5	-118.7	-120.2	-105.8	-107.1	-101.8	-103.0	-113.3	-114.6
Lapachol (501)	-83.9	-96.8	-91.8	-105.9	-84.5	-97.5	-91.8	-105.8	-88.8	-102.4	-85.4	-98.5	-92.6	-106.8
Mamegakinone (502)	-92.8	-92.6	-106.7	-106.5	-91.3	-91.1	-105.7	-105.4	-92.4	-92.2	-87.2	-87.0	-104.1	-103.8
Menadione (503)	-69.9	-90.4	-73.0	-94.4	-65.5	-84.7	-72.6	-93.8	-70.9	-91.7	-72.2	-93.3	-69.5	-89.8
Rhinacanthin C (504)	-114.9	-111.1	-128.5	-124.3	-112.3	-108.7	-122.9	-118.9	-114.2	-110.4	-114.3	-110.6	-116.1	-112.3
Rhinacanthin D (505)	-100.4	-97.3	-128.7	-124.7	-112.8	-109.3	-118.6	-114.9	-118.4	-114.7	-125.1	-121.2	-122.1	-118.3
Rhinacanthin G (506)	-115.2	-110.0	-136.0	-129.9	-116.2	-111.0	-123.7	-118.2	-122.9	-117.4	-123.3	-117.7	-118.1	-112.8

Table 2. Cont.

Ligand	BcI	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Liganu	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}
Quinones														
Rhinacanthin H (507)	-96.7	-92.4	-131.2	-125.3	-98.6	-94.2	-121.2	-115.8	-117.8	-112.6	-119.6	-114.3	-124.3	-118.8
Rhinacanthin I (508)	-116.4	-111.2	-130.9	-125.0	-109.9	-105.0	-124.2	-118.6	-128.3	-122.5	-121.9	-116.5	-133.2	-127.2
Rhinacanthin J (509)	-124.5	-119.1	-126.5	-121.0	-112.4	-107.6	-127.9	-122.3	-121.1	-115.9	-124.6	-119.2	-119.5	-114.3
Rhinacanthin K (510)	-98.9	-93.2	-130.3	-122.8	-121.4	-114.3	-117.3	-110.5	-123.0	-115.9	-118.7	-111.8	-119.1	-112.2
Rhinacanthin L (511)	-105.6	-98.3	-134.8	-125.5	-110.6	-103.0	-118.2	-110.1	-118.3	-110.1	-116.8	-108.8	-120.0	-111.7
Rhinacanthin M (512)	-110.0	-110.8	-117.2	-118.0	-99.6	-100.3	-110.8	-111.5	-105.3	-106.0	-105.4	-106.1	-115.7	-116.4
Shikonin acetate (513)	-95.0	-98.9	-109.3	-113.7	-101.2	-105.3	-114.2	-118.8	-103.7	-107.9	-98.8	-102.8	-108.8	-113.2
β , β -Dimethylacrylshikonin (514)	-100.5	-100.6	-121.3	-121.5	-107.0	-107.1	-125.7	-125.9	-109.9	-110.0	-107.7	-107.8	-121.4	-121.5
β-Hydroxyisovaleryshikonin (515)	-103.2	-101.7	-126.2	-124.3	-106.6	-105.0	-120.7	-118.9	-110.3	-108.7	-105.1	-103.5	-120.0	-118.3
1-Hydroxy-3-hydroxymethyl- anthraquinone (516)	-84.8	-96.2	-93.8	-106.4	-85.2	-96.7	-92.1	-104.5	-96.1	-109.0	-93.7	-106.3	-88.5	-100.4
Aloeemodin (518)	-85.6	-95.2	-94.6	-105.2	-88.3	-98.2	-97.4	-108.3	-96.3	-107.1	-95.7	-106.4	-86.9	-96.7
Islandicin (519)	-77.5	-86.2	-91.0	-101.2	-84.9	-94.4	-92.9	-103.3	-90.8	-101.0	-93.8	-104.3	-79.3	-88.2
Newbouldiaquinone (521)	-82.2	-80.6	-101.6	-99.6	-99.3	-97.4	-93.5	-91.7	-93.8	-92.0	-93.9	-92.1	-95.0	-93.2
Newbouldiaquinone A (520)	-105.6	-102.2	-112.2	-108.5	-92.5	-89.5	-105.8	-102.3	-96.7	-93.5	-104.1	-100.7	-114.3	-110.6
Rhein (522)	-90.4	-98.9	-100.6	-110.0	-88.7	-97.0	-100.2	-109.6	-96.1	-105.1	-99.4	-108.7	-90.6	-99.0
15,16-Dihydrotanshinone I (517)	-81.1	-89.4	-90.7	-99.9	-83.8	-92.3	-89.0	-98.0	-86.3	-95.0	-85.4	-94.0	-86.3	-95.0
Acetylene, Glucoside, and Other	Miscellane	eous Phytoc	hemicals											
1,7-Diphenyl-4-(2-phenylethyl)- 1-heptene-3,5-dione (530)	-99.6	-98.6	-127.4	-126.1	-115.0	-113.9	-114.4	-113.3	-127.2	-126.0	-114.1	-113.0	-130.7	-129.5
1,7-Diphenyl-5-hepten-3-one (531)	-96.6	-108.2	-114.5	-128.2	-98.4	-110.3	-107.9	-120.9	-100.1	-112.1	-95.1	-106.6	-108.0	-120.9
3'-Demothexycyclocurcumin (532)	-96.6	-99.7	-112.7	-116.3	-97.1	-100.2	-103.9	-107.2	-113.7	-117.3	-113.3	-116.9	-110.4	-114.0
5,7-Dihydroxyphthalide (533)	-68.6	-89.7	-71.2	-93.1	-66.0	-86.4	-70.8	-92.6	-70.4	-92.1	-69.7	-91.1	-72.9	-95.3
6-Methyl-4,5-dithia-2-octene (534)	-65.9	-86.8	-65.5	-86.4	-63.6	-83.8	-65.0	-85.7	-64.6	-85.1	-64.8	-85.4	-65.9	-86.8
7-Epiclusianone (535)	-100.2	-90.6	-126.3	-114.2	-115.1	-104.1	-125.9	-113.9	-113.0	-102.1	-111.1	-100.5	-127.8	-115.6
Allamandin (536)	-82.3	-87.6	-94.9	-101.0	-96.5	-102.7	-86.3	-91.9	-99.6	-106.0	-93.4	-99.4	-88.8	-94.5
Allicin (537)	-65.3	-86.1	-65.4	-86.3	-62.6	-82.6	-64.1	-84.5	-64.8	-85.5	-62.9	-83.0	-66.7	-87.9
Amadannulen (538)	-92.0	-91.6	-112.5	-112.1	-98.4	-97.9	-111.5	-111.0	-114.0	-113.5	-108.4	-108.0	-111.7	-111.2

Licend	Bcl	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Ligand	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm
Acetylene, Glucoside, and Other	Miscellane	eous Phytoc	chemicals											
Anemonin (539)	-72.0	-89.7	-73.9	-92.0	-70.4	-87.7	-76.7	-95.6	-78.2	-97.4	-77.0	-95.9	-81.8	-102.0
Antibiotic CZ 34 (540)	-68.6	-81.7	-84.8	-100.9	-89.3	-106.3	-80.7	-96.1	-82.0	-97.7	-78.6	-93.6	-82.5	-98.2
Argutone (541)	-75.4	-95.0	-78.9	-99.4	-72.2	-90.9	-74.9	-94.4	-74.0	-93.2	-74.6	-93.9	-76.3	-96.1
Bakuchiol (542)	-87.3	-98.8	-106.6	-120.7	-92.0	-104.1	-98.3	-111.3	-99.6	-112.7	-91.8	-103.9	-97.5	-110.4
Brasiliensophyllic acid A (543)	-112.9	-98.4	-139.3	-121.5	-123.7	-107.8	-130.4	-113.7	-118.5	-103.3	-118.9	-103.7	-128.9	-112.4
Brasiliensophyllic acid C (544)	-114.6	-99.1	-130.8	-113.1	-121.7	-105.3	-137.5	-118.9	-122.0	-105.5	-127.2	-110.0	-126.8	-109.6
Centrolobin (545)	-96.7	-102.5	-106.5	-112.8	-102.0	-108.1	-103.4	-109.6	-108.1	-114.6	-102.6	-108.8	-101.9	-108.0
Chamone I (546)	-102.5	-88.8	-125.8	-109.0	-110.1	-95.4	-117.3	-101.7	-113.2	-98.1	-115.6	-100.2	-133.6	-115.8
Chamone II (547)	-98.9	-85.8	-132.4	-114.9	-115.7	-100.4	-115.7	-100.4	-116.8	-101.3	-110.5	-95.9	-130.6	-113.3
Champanone A (548)	-84.1	-95.2	-102.1	-115.5	-85.6	-96.9	-99.5	-112.7	-93.2	-105.5	-92.8	-105.0	-101.7	-115.2
Dhelwangin (549)	-87.3	-103.4	-89.4	-105.8	-83.4	-98.7	-86.6	-102.5	-90.7	-107.4	-88.9	-105.2	-89.5	-105.9
Garcinoic acid (550)	-108.9	-104.0	-134.6	-128.5	-113.4	-108.3	-129.4	-123.6	-135.3	-129.2	-127.3	-121.5	-132.0	-126.0
Ginkgolide A (551)	-69.1	-66.9	-100.9	-97.8	-90.7	-87.9	-74.5	-72.2	-97.6	-94.6	-96.3	-93.3	-90.3	-87.5
Guttiferone E (552)	-112.9	-96.1	-160.7	-136.8	-120.6	-102.6	-129.5	-110.3	-130.2	-110.8	-129.9	-110.6	-135.0	-114.9
Helipyrone B (553)	-89.4	-95.4	-99.0	-105.5	-89.2	-95.2	-99.3	-105.9	-92.5	-98.6	-89.7	-95.7	-91.1	-97.1
Helipyrone C (554)	-84.6	-91.7	-94.2	-102.1	-84.4	-91.4	-94.5	-102.4	-88.7	-96.1	-88.9	-96.3	-88.7	-96.1
Ialibinone A (555)	-87.2	-89.4	-97.5	-100.0	-96.2	-98.7	-94.8	-97.2	-99.2	-101.7	-97.9	-100.4	-101.4	-104.0
Ialibinone B (556)	-81.9	-84.0	-96.7	-99.2	-85.0	-87.2	-88.1	-90.4	-94.3	-96.8	-91.7	-94.1	-95.5	-97.9
Ialibinone C (557)	-86.9	-88.0	-99.4	-100.6	-98.4	-99.6	-96.9	-98.1	-103.1	-104.3	-97.1	-98.2	-100.4	-101.6
Ialibinone D (558)	-84.0	-85.0	-93.3	-94.4	-83.5	-84.5	-93.5	-94.7	-93.5	-94.6	-98.7	-99.9	-100.7	-102.0
Isobrasiliensophyllic acid A (559)	-99.1	-86.4	-120.1	-104.7	-122.1	-106.5	-122.0	-106.4	-102.3	-89.2	-119.5	-104.2	-110.8	-96.6
Moskachan C (560)	-87.4	-103.8	-90.9	-107.9	-87.2	-103.4	-92.3	-109.6	-94.8	-112.5	-91.3	-108.4	-91.3	-108.4
Nimbolide (561)	-107.4	-99.5	-123.1	-114.1	-95.1	-88.2	-113.7	-105.4	-125.7	-116.6	-119.8	-111.0	-111.7	-103.5
Pectinolide H (562)	-98.6	-109.9	-103.0	-114.8	-98.8	-110.1	-106.4	-118.6	-108.0	-120.3	-102.7	-114.5	-106.3	-118.5
Propolone A (563)	-98.9	-89.5	-127.3	-115.1	-108.3	-97.9	-106.5	-96.3	-115.3	-104.3	-102.1	-92.3	-120.4	-108.8
Sellovicine B (564)	-82.3	-95.9	-93.2	-108.6	-84.1	-98.1	-92.2	-107.5	-86.0	-100.3	-89.2	-104.0	-87.1	-101.6
Simonin A (565)	-84.4	-81.2	-109.6	-105.6	-104.3	-100.4	-105.6	-101.6	-117.0	-112.7	-106.3	-102.4	-111.2	-107.1
Tenulin (566)	-83.0	-88.5	-89.7	-95.7	-81.9	-87.3	-89.9	-95.9	-96.6	-103.0	-91.1	-97.2	-93.2	-99.4
Atractylodin (522)	-66.5	-84.3	-86.2	-109.3	-76.8	-97.4	-78.0	-98.9	-76.6	-97.2	-78.8	-100.0	-84.0	-106.5
Atractylodinol (523)	-75.1	-92.6	-90.3	-111.4	-83.6	-103.1	-82.7	-101.9	-81.2	-100.1	-87.5	-107.8	-89.7	-110.6
Capillene (342)	-65.5	-87.8	-71.6	-96.0	-69.3	-92.9	-70.8	-94.9	-72.6	-97.4	-74.9	-100.4	-72.1	-96.7

Licond	Bcl	PDF	Ec	PDF	Mt	PDF	Pa	PDF	Sa	PDF	Sp	PDF	Hs	PDF
Liganu	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Acetylene, Glucoside, and Other	Miscellane	eous Phytoc	chemicals											
Peniophorin A (524)	-101.4	-111.1	-106.8	-117.1	-96.7	-105.9	-103.7	-113.6	-111.0	-121.6	-109.1	-119.5	-107.7	-118.0
Peniophorin B (525)	-84.8	-102.2	-93.2	-112.3	-88.4	-106.6	-94.5	-113.9	-87.2	-105.1	-85.5	-103.0	-89.8	-108.3
Thiarubrin A (526)	-70.3	-82.7	-85.5	-100.6	-77.6	-91.2	-76.4	-89.8	-73.7	-86.7	-77.2	-90.8	-74.7	-87.9
Arbutin (527)	-90.0	-99.8	-92.0	-102.0	-91.6	-101.7	-94.8	-105.2	-91.9	-101.9	-93.8	-104.1	-88.0	-97.6
Aucubin (528)	-99.3	-101.7	-104.7	-107.2	-103.7	-106.2	-111.0	-113.6	-101.2	-103.6	-94.7	-97.0	-103.6	-106.1
Diospyrodin (529)	-88.6	-93.7	-97.9	-103.5	-97.4	-103.1	-96.3	-101.8	-95.0	-100.5	-90.4	-95.6	-96.6	-102.2
Synthetic Inhibitors														
06-1467 [23] (567)	-111.0	-114.0	-122.7	-125.9	-113.7	-116.8	-129.8	-133.2	-107.4	-110.3	-109.5	-112.4	-	-
64-1811 [23] (569)	-84.3	-99.3	-86.3	-101.7	-80.8	-95.2	-84.5	-99.6	-83.5	-98.4	-84.5	-99.5	-	-
66-6976 [23] (568)	-91.1	-101.5	-101.4	-112.9	-92.8	-103.3	-91.1	-101.4	-99.1	-110.4	-97.6	-108.7	-	-
<i>N</i> -Hydroxy-2-(5-methylsulfanyl- 1 <i>H</i> -indol-3-yl)acetamide [86] (570)	-89.4	-104.0	-101.6	-118.2	-80.5	-93.7	-91.9	-106.8	-95.7	-111.3	-88.9	-103.4	-	-
2-(1-Benzyl-5-bromoindol-3-yl)- N-hydroxyacetamide [86] (572)	-105.8	-107.0	-112.6	-113.9	-106.8	-108.0	-106.9	-108.2	-104.4	-105.6	-104.9	-106.1	-	-
2-(3-Benzyl-5-bromoindol-1-yl)- N-hydroxyacetamide [86] (571)	-101.2	-102.3	-117.5	-118.9	-94.5	-95.6	-110.2	-111.4	-101.7	-102.9	-103.4	-104.5	-	-

^a Compounds shown in red font violate Lipinski's rule-of-five [62].

Several stilbenoid derivatives showed particularly strong docking to bacterial PDFs. The chalcone stilbenoids cochinchinenene B (396) docked well with EcPDF ($E_{dock} = -145.2 \text{ kJ/mol}$) and SaPDF ($E_{dock} = -130.4 \text{ kJ/mol}$); cochinchinenene C (397) docked well with EcPDF ($E_{dock} = -135.8 \text{ kJ/mol}$), MtPDF ($E_{dock} = -133.2 \text{ kJ/mol}$), and SaPDF ($E_{dock} = -133.7 \text{ kJ/mol}$); and cochinchinenene D (398) docked well with BcPDF ($E_{dock} = -127.5 \text{ kJ/mol}$) and EcPDF ($E_{dock} = -140.3 \text{ kJ/mol}$). However, these compounds also docked very well with human PDF ($E_{dock} = -156.8, -138.2, \text{ and } -245.0 \text{ kJ/mol}$, respectively). All three of the cochinchinenenes have shown antibacterial activity against *Helicobacter pylori* [87]. The geranylated benzofurans mulberrofuran D (408) and mulberrofuran Y (409) showed similar docking properties, docking strongly to EcPDF and PaPDF, but also to HsPDF. Both mulberrofuran D (408) and mulberrofuran Y (409) showed antibacterial activity against Gram-positive organisms, including MRSA [88]. Likewise, prenylated benzofuran eryvarin Q (402) docked strongly to EcPDF, PaPDF, SaPDF, and SpPDF, as well as HsPDF, and this compound has shown potent anti-MRSA activity [90] and this compound docked well to EcPDF and HsPDF.

Condensed and hydrolyzable tannins showed strong docking to bacterial PDFs, but these compounds violate Lipinski's rule of five [66], and are generally known to be non-selective protein complexing agents [91].

Gupta and Sahu have carried out molecular docking studies of 452 phytochemicals (308 antibacterial and 144 antiviral compounds) with *Leptospira interrogans* PDF using iGEMDOCK and AutoDock Vina [92]. These researchers found betulinic acid (168), carpaine, cycloartenol, ginkgolide A, glycyrrhetic acid, gossypol, nimbidin, oleanolic acid, procyanidins, quercetin (272), tomatidine (58), and ursolic acid to be strongly docking ligands. We found, using MolDock [57,59], the triterpenoid ligands betulinic acid (168), cycloartenol, glycyrrhetic acid, oleanolic acid (173), and ursolic acid to be much weaker docking ligands ($E_{dock} \sim -85$ to -99 kJ/mol) than polyphenolic ligands such as procyanidin B6 (386) ($E_{dock} = -131.3$ kJ/mol) or gossypol ($E_{dock} = -128.4$ kJ/mol), in apparent contradiction to the trend reported by Gupta and Sahu [92].

Note that although there are several phytochemical ligands that showed strong docking to bacterial PDFs, most of these did not show selective docking to this protein target. There are two notable exceptions; the prenylated flavonoids 5'-(1,1-dimethyl-2-propenyl)-2',4',5,7-tetrahydroxy-8-prenylflavanone (220) and 5'-(1,1-dimethyl-2-propenyl)-4',5,7-trihydroxy-2'-methoxy-8-prenylflavanone (221) both docked to EcPDF with docking energies (-131.3 and -132.8 kJ/mol) that were more exothermic than any other proteins examined. These two flavonoid ligands adopted very similar docking poses with EcPDF (see Figure 24).

For comparison, several synthetic bacterial PDF inhibitors were also investigated in this docking study. Compounds 06-1467 (567), 66-6976 (568), and 64-1811 (569) (Figure 25) have been shown to inhibit EcPDF with IC₅₀ values of 0.006, 0.1, and 20 μ M, respectively [23]. These compounds showed docking energies of -122.7, -101.4, and -86.3 kJ/mol, respectively, correlating with their PDF inhibitory activities. Importantly, compound 06-1467 (567) also docked well to PaPDF (E_{dock} = -129.8 kJ/mol), which compares favorably to the better docking phytochemical ligands in this study. Likewise, the synthetic indoles, *N*-hydroxy-2-(5-methylsulfanyl-1*H*-indol-3-yl)acetamide (570) (EcPDF IC₅₀ = $0.312 \ \mu$ M), and 2-(1-benzyl-5-bromoindol-1-yl)-*N*-hydroxyacetamide (572) (EcPDF IC₅₀ = $0.021 \ \mu$ M) [86], showed docking energies with EcPDF of -101.6, -117.5, and $-112.6 \ k$ J/mol, respectively (i.e., they do not correlate with EcPDF inhibition as well as with *Bacillus subtilis* antibacterial MIC values [86].

Figure 24. Lowest-energy docked poses for 5'-(1,1-dimethyl-2-propenyl)-2',4',5,7-tetrahydroxy-8-prenylflavanone (220) (grey carbon skeleton) and 5'-(1,1-dimethyl-2-propenyl)-4',5,7-trihydroxy-2'-methoxy-8-prenylflavanone (221) (black carbon skeleton) with *Escherichia coli* peptide deformylase (EcPDF, PDB 2G2A). The Ni²⁺ cofactor in the catalytic site is shown as a green sphere.

Figure 25. Structures of the synthetic bacterial peptide deformylase inhibitors.

3.2. Bacterial Topoisomerase IV/Gyrase B

The MolDock docking energies for the phytochemical ligands with *E. coli* topoisomerase IV, *E. coli* gyrase B, and *M. tuberculosis* gyrase B are summarized in Table 3. The co-crystalized ligand for EcTopoIV and MtGyrB was phosphoaminophosphonic acid-adenylate ester, which crystallized in the ATP binding site of the proteins ($E_{dock} \sim -176 \text{ kJ/mol}$). The co-crystallized ligand for EcGyrB was novobiocin ($E_{dock} = -114.2 \text{ kJ/mol}$). (–)-Epicatechin gallate and (–)-epigallocatechin 3-gallate are known inhibitors of EcGyrB [93] and these compounds had docking energies of approximately -140 kJ/mol for EcTopoIV and MtGyrB (Table 3). There is a slight correlation between the docking energies of quercetin, epicatechin, epicatechin gallate, epigallocatechin, and epigallocatechin 3-gallate (–90.6, -87.6, -91.8, -90.8, and -94.1 kJ/mol, respectively) and the experimental dissociation constants (K_d) with EcGyrB (54, 36, 34, 23, and 15 μ M, respectively) [93]. Similarly, there is a correlation

between the experimental IC₅₀ values for quercetin (0.14 μ M), norfloxacin (0.09 μ M), and novobiocin (0.05 μ M) [94] and the docking energies with EcGyrB (-90.6, -94.0, and -114.2 kJ/mol, respectively). Plaper and co-workers have carried out a binding study of quercetin with *E. coli* DNA gyrase [95]. These researchers found that quercetin (272) binds to EcGyrB with a K_d of 15 μ M. Furthermore, they carried out a molecular modeling analysis using InsightII v. 97. The final orientation of quercetin in the binding site of EcGyrB is very different from the orientation of the lowest-energy docked pose in this MolDock study (Figure 26).

Figure 26. Lowest-energy docked pose of quercetin (272) (blue) in the novobiocin (green) binding site of *Escherichia coli* DNA gyrase B (PDB 1AJ6).

6-Geranyl-5,7-dihydroxy-8(2-methylbutanoyl)-4-phenylcoumarin (345) showed strong, as well as selective, docking to the ATP sites of EcTopoIV and MtGyrB with docking energies of -154.6 and -166.5 kJ/mol, respectively. This compound has shown antibacterial activity against antibiotic resistant strains of *S. aureus* [96].

Table 3. MolDock molecular docking energies (E_{dock} , kJ/mol) and normalized docking scores (DS_{norm}) for antibacterial phytochemical ligands with bacterial topoisomerases and bacterial protein tyrosine phosphatase.

Licend	ЕсТо	poIV	EcC	GyrB	MtC	GyrB	Mt	tPtp	HsPtp	
Ligand	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm
Indole Alkaloids										
1-Hydroxy-6,7-dimethoxy-3-methylcarbazole (1)	-96.8	-109.5	-86.9	-98.2	-94.7	-107.0	-82.8	-93.7	-86.9	-98.2
11-Methoxytubotaiwine (2)	-75.7	-76.9	-95.3	-96.8	-89.7	-91.2	-92.5	-94.0	-79.2	-80.5
12-Methoxy-4-methylvoachalotine (3)	-94.0	-90.9	-76.4	-73.8	-80.1	-77.5	-98.9	-95.6	-38.4	-37.1
3-Prenylindole (4)	-83.9	-105.9	-81.5	-102.8	-89.2	-112.5	-75.1	-94.7	-78.6	-99.1
Affinisine (5)	-102.0	-108.5	-76.4	-81.3	-103.2	-109.8	-82.9	-88.2	-74.1	-78.8
Apparicine (6)	-89.6	-100.3	-80.7	-90.4	-84.7	-94.9	-83.6	-93.6	-70.4	-78.9
Aristolactam I (7)	-103.7	-112.2	-93.6	-101.3	-100.5	-108.8	-93.8	-101.5	-88.4	-95.6
Clausenawalline A (8) ^a	-145.2	-126.9	-86.8	-75.9	-114.5	-100.1	-103.2	-90.2	-60.2	-52.6
Cryptoheptine (9)	-88.8	-99.7	-72.6	-81.5	-91.4	-102.6	-75.6	-84.9	-92.6	-104.1
Diploceline (10)	-105.2	-105.4	-82.8	-83.0	-97.7	-97.9	-90.2	-90.4	-50.8	-50.9
Discarine B (11)	-49.3	-42.6	-103.6	-89.7	-118.8	-102.8	-130.1	-112.6	-44.8	-38.8
Ibogamine (12)	-85.6	-94.0	-76.6	-84.1	-85.8	-94.2	-78.7	-86.5	-83.1	-91.2
Iboxygaine (13)	-91.8	-95.9	-76.2	-79.6	-94.5	-98.7	-81.4	-85.0	-83.7	-87.4
Isovoacangine (14)	-98.8	-99.1	-87.3	-87.5	-94.6	-94.9	-94.2	-94.4	-81.2	-81.4
Rugosanine B (15)	-118.2	-99.6	-93.1	-78.4	-64.4	-54.3	-137.2	-115.5	-91.8	-77.3
Suaveolindole (16)	-111.9	-113.8	-101.6	-103.3	-106.5	-108.3	-98.8	-100.5	-99.0	-100.6
Toussaintine B (17)	-99.8	-107.2	-85.1	-91.4	-99.9	-107.4	-87.5	-94.1	-85.4	-91.8
Isoquinoline Alkaloids										
8-Acetonyldihydroavicine (18)	-117.3	-113.9	-102.1	-99.2	-115.4	-112.1	-111.7	-108.5	-89.6	-87.0
8-Acetonyldihydronitidine (19)	-114.9	-113.1	-88.0	-86.7	-113.8	-112.0	-95.3	-93.8	-86.9	-85.6
Antofine (20)	-116.6	-117.4	-95.8	-96.5	-114.3	-115.2	-87.6	-88.3	-83.5	-84.1
Berbamine (24)	no dock	no dock	-59.9	-50.9	no dock	no dock	-106.8	-90.6	-57.1	-48.5
Berberine (21)	-117.4	-121.4	-98.5	-101.9	-109.1	-112.8	-83.6	-86.4	-44.3	-45.8
Bisnorthalphenine (22)	-103.0	-107.9	-84.2	-88.2	-102.3	-107.2	-85.5	-89.6	-72.6	-76.1
Cepharanthine (25)	no dock	no dock	-91.9	-78.1	no dock	no dock	-130.5	-110.8	-62.9	-53.4
Cryptopleurine (23)	-118.7	-118.1	-88.5	-88.1	-113.6	-113.0	-86.4	-86.0	-85.3	-84.8
Emetine (26)	-127.8	-117.3	-92.3	-84.7	-119.6	-109.8	-106.9	-98.1	-75.6	-69.4

Ligand	EcTo	opoIV	EcC	GyrB	MtC	GyrB	MtPtp		HsPtp	
Ligand	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}
Isoquinoline Alkaloids										
Hydrastine (27)	-127.0	-125.7	-97.5	-96.5	-124.8	-123.5	-96.8	-95.8	-76.1	-75.3
Isotrilobine (29)	-77.7	-67.1	-72.7	-62.8	-45.7	-39.5	-121.6	-105.0	-56.9	-49.1
Jatrorrhizine (28)	-110.6	-114.1	-97.1	-100.1	-107.4	-110.8	-79.2	-81.7	-60.3	-62.2
Lauroscholtzine (31)	-104.5	-107.5	-80.3	-82.6	-106.8	-109.9	-83.0	-85.4	-66.5	-68.4
Methothalistyline (30)	-17.3	-13.9	-70.6	-56.8	no dock	no dock	-123.1	-99.1	-50.7	-40.8
<i>N</i> -Demethylthalphenine (32)	-105.1	-108.6	-83.2	-85.9	-102.2	-105.6	-80.5	-83.2	-42.3	-43.7
Obamegine (34)	no dock	no dock	-60.6	-51.8	no dock	no dock	-105.8	-90.5	-59.9	-51.2
Oxyacanthine (35)	-42.8	-36.3	-65.6	-55.7	no dock	no dock	-110.2	-93.5	-54.6	-46.3
Pennsylvanine (36)	-145.7	-119.0	-113.8	-92.9	no dock	no dock	-116.7	-95.3	-81.9	-66.8
Thaliadanine (38)	-127.9	-102.9	-116.0	-93.2	-57.1	-45.9	-131.9	-106.0	-82.4	-66.3
Thalicarpine (37)	-141.3	-114.6	-89.6	-72.7	-14.4	-11.6	-131.6	-106.8	-45.1	-36.6
Thalidasine (39)	no dock	no dock	-73.1	-60.6	no dock	no dock	-98.4	-81.5	-47.3	-39.2
Thalistyline (40)	-74.8	-60.6	-98.4	-79.7	no dock	no dock	-114.6	-92.9	-77.3	-62.6
Thalmelatine (41)	-142.7	-116.5	-97.6	-79.7	-45.6	-37.3	-110.6	-90.3	-91.4	-74.6
Thalmirabine (42)	no dock	no dock	-93.9	-77.2	no dock	no dock	-97.7	-80.3	-48.5	-39.9
Thalphenine (33)	-105.2	-107.1	-80.6	-82.1	-100.3	-102.1	-83.6	-85.1	-48.2	-49.1
Thalrugosidine (43)	no dock	no dock	-84.6	-70.6	no dock	no dock	-92.2	-77.0	-58.8	-49.1
Thalrugosine (44)	no dock	no dock	-57.5	-48.7	no dock	no dock	-102.8	-87.2	-59.7	-50.7
Piperidine, Pyrrole, Pyrrolizidine, Quinoline, and Steroid	lal Alkaloids									
Aconicaramide (46)	-98.8	-117.3	-83.8	-99.5	-101.1	-120.1	-78.1	-92.7	-91.8	-108.9
Lasiocarpine (47)	-117.0	-113.1	-92.3	-89.2	-121.7	-117.6	-105.2	-101.7	-87.4	-84.5
Lasiocarpine <i>N</i> -oxide (48)	-120.3	-114.8	-79.4	-75.8	-123.5	-117.9	-102.5	-97.9	-71.1	-67.9
Piperine (45)	-109.9	-120.0	-93.3	-101.9	-100.9	-110.2	-86.5	-94.5	-89.3	-97.6
4-Methoxy-1-methyl-2(1 <i>H</i>)-quinolinone (49)	-76.4	-95.7	-65.4	-81.9	-77.4	-97.0	-61.3	-76.8	-64.6	-80.9
Cryptolepine (50)	-91.9	-107.4	-79.4	-92.8	-83.7	-97.9	-77.5	-90.7	-81.9	-95.8
Neocryptolepine (51)	-90.7	-106.1	-80.9	-94.6	-83.6	-97.8	-68.2	-79.8	-81.0	-94.7
Pteleine (52)	-98.4	-115.6	-82.2	-96.6	-93.1	-109.4	-73.4	-86.3	-79.9	-93.9
Veprisinium (53)	-101.5	-105.2	-56.8	-58.9	-97.3	-100.8	-81.9	-84.8	-74.0	-76.7
Conessine (54)	-100.0	-101.4	-70.6	-71.5	-90.6	-91.9	-84.6	-85.8	-58.1	-58.9
Irehdiamine A (55)	-102.9	-108.6	-86.4	-91.2	-99.9	-105.4	-78.9	-83.3	-25.3	-26.7
Solacassine (56)	-89.4	-84.3	-28.5	-26.9	-65.6	-61.9	-87.3	-82.4	-83.2	-78.5

Tionad	ЕсТо	poIV	EcC	GyrB	MtC	GyrB	MtPtp		HsPtp	
Ligand	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}
Piperidine, Pyrrole, Pyrrolizidine, Quinoline, and Steroidal Alkalo	oids									
Solanocapsine (57)	-95.8	-91.2	-74.5	-70.9	-85.6	-81.5	-83.0	-79.1	-52.8	-50.3
Tomatidine (58)	-101.5	-97.8	-70.7	-68.1	-89.2	-86.0	-63.6	-61.3	-61.9	-59.7
Miscellaneous Alkaloids										
2-(Methoxyamino)-4H-1-benzopyran-3,4,5,7-tetrol (59)	-87.0	-100.5	-75.4	-87.0	-89.0	-102.8	-86.9	-100.4	-86.0	-99.4
Abyssenine C (60)	-126.9	-119.6	-93.9	-88.5	-99.7	-93.9	-106.0	-99.8	-64.9	-61.2
Amphibine H (61)	-95.6	-81.2	-66.1	-56.2	-66.7	-56.7	-132.3	-112.4	-99.4	-84.5
Cepharatine A (62)	-88.6	-93.8	-78.0	-82.6	-89.8	-95.0	-75.9	-80.3	-68.5	-72.5
Curcamide (63)	-107.4	-123.2	-99.4	-114.0	-107.0	-122.8	-88.9	-102.0	-89.9	-103.2
Drodrenin (64)	-154.5	-139.4	-128.6	-116.1	-156.5	-141.2	-120.7	-109.0	-102.5	-92.5
Eschscholtzidine (65)	-117.3	-120.9	-81.7	-84.2	-108.4	-111.7	-89.9	-92.7	-83.8	-86.4
Jervine (66)	-88.0	-84.1	-95.1	-90.9	-49.8	-47.6	-90.7	-86.7	-31.3	-29.9
Matrine (67)	-87.0	-99.5	-76.3	-87.3	-81.9	-93.7	-73.8	-84.4	-75.9	-86.8
Mucronine H (68)	-99.1	-91.1	-114.9	-105.6	-98.2	-90.3	-108.2	-99.5	-61.7	-56.7
N-Benzoylmescaline (69)	-120.9	-127.7	-107.5	-113.6	-122.1	-129.0	-94.6	-99.9	-85.5	-90.4
Nummularine B (70)	-83.6	-71.6	-123.6	-105.9	-62.9	-53.9	-133.1	-114.0	-103.8	-88.9
Nummularine S (71)	-116.4	-104.1	-111.3	-99.4	-139.9	-125.1	-109.6	-97.9	-95.8	-85.6
Scutianine B (72)	-133.8	-116.1	-103.3	-89.6	-55.9	-48.5	-130.4	-113.2	-96.9	-84.1
Shahidine (73)	-115.2	-126.7	-94.7	-104.2	-119.6	-131.6	-87.7	-96.5	-88.2	-97.0
Thaliglucinone (74)	-118.3	-119.0	-116.5	-117.2	-119.9	-120.5	-98.3	-98.9	-83.1	-83.6
Triisopenylguanidine (75)	-109.6	-122.0	-100.4	-111.7	-105.1	-117.0	-89.1	-99.2	-91.9	-102.3
Tuberine (76)	-126.0	-116.6	-112.6	-104.1	-114.3	-105.8	-109.6	-101.4	-80.2	-74.2
Monoterpenoids										
Linalool (77)	-75.4	-101.1	-70.3	-94.3	-74.4	-99.8	-66.2	-88.7	-77.1	-103.3
Thymol (78)	-70.3	-95.1	-64.1	-86.7	-69.5	-94.0	-58.9	-79.7	-65.0	-88.0
Thymoquinol (79)	-75.1	-98.2	-66.1	-86.5	-73.9	-96.7	-67.7	-88.6	-67.1	-87.7
β-Dolabrin (80)	-74.8	-98.7	-66.0	-87.0	-81.8	-107.9	-70.5	-92.9	-78.1	-103.0
β-Thujaplicin (81)	-80.3	-105.5	-63.2	-82.9	-81.2	-106.6	-72.0	-94.5	-76.9	-101.0
Sesquiterpenoids										
11,13-Dehydroeriolin (82)	-83.6	-93.7	-72.6	-81.3	-88.5	-99.1	-79.4	-89.0	-70.7	-79.2
2,10-Bisaboladien-1-one (83)	-87.3	-104.0	-91.8	-109.3	-89.1	-106.1	-78.7	-93.6	-78.0	-92.8

T ! J	EcTo	opoIV	EcGyrB		MtGyrB		MtPtp		HsPtp	
Ligand	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}
Sesquiterpenoids										
2-Hydroxycalamenene (84)	-73.5	-87.8	-68.8	-82.2	-68.3	-81.6	-71.6	-85.5	-64.3	-76.7
2-Methoxyfurano-9-guaien-8-one (85)	-92.6	-104.2	-86.5	-97.4	-88.3	-99.4	-82.9	-93.3	-79.4	-89.5
4α,10α-Dihydroxy-1,11(13)guaiadien-12,8-olide (93)	-86.6	-97.1	-79.9	-89.6	-86.1	-96.5	-80.0	-89.6	-63.9	-71.6
4α,10β-Dihydroxy-1,11(13)guaiadien-12,8-olide (89)	-42.4	-47.5	-79.9	-89.5	-75.9	-85.0	-84.0	-94.1	-67.5	-75.6
Alantolactone (86)	-80.0	-93.6	-67.5	-78.9	-80.6	-94.3	-71.5	-83.6	-54.3	-63.6
Alliacol A (87)	-76.6	-85.8	-72.3	-81.0	-79.6	-89.2	-73.9	-82.8	-56.6	-63.4
Alliacol B (88)	-81.2	-91.0	-73.9	-82.8	-86.6	-97.0	-78.0	-87.4	-55.4	-62.0
Artemisinic acid (113)	-100.5	-117.1	-75.6	-88.1	-105.8	-123.4	-79.4	-92.6	-76.5	-89.2
Baileyolin (90)	-104.9	-105.8	-96.9	-97.7	-90.2	-90.9	-84.1	-84.9	-86.1	-86.9
Bilobalide A (91)	-89.9	-93.9	-83.7	-87.4	-82.1	-85.7	-87.6	-91.5	-62.7	-65.5
Confertin (92)	-89.3	-102.1	-83.6	-95.7	-96.2	-110.0	-76.3	-87.3	-68.3	-78.1
Cyperenal (94)	-59.6	-71.2	-61.1	-72.9	-64.6	-77.1	-63.5	-75.8	-45.2	-54.0
Cyperenol (95)	-62.2	-74.1	-61.8	-73.5	-63.5	-75.6	-65.3	-77.7	-47.9	-57.0
Furanodienone (97)	-86.5	-101.4	-80.0	-93.9	-85.0	-99.7	-81.0	-95.0	-67.6	-79.2
Ganodermycin (96)	-109.3	-120.1	-93.1	-102.3	-111.4	-122.4	-106.3	-116.7	-104.1	-114.4
Helenalin (98)	-83.6	-93.9	-75.7	-85.0	-87.3	-98.0	-76.9	-86.4	-67.5	-75.8
Hydrogrammic acid (99)	-93.0	-104.7	-77.9	-87.7	-85.0	-95.8	-88.9	-100.1	-51.5	-58.0
Isoalantolactone (100)	-73.3	-85.7	-62.6	-73.3	-78.9	-92.3	-70.7	-82.7	-53.3	-62.3
Ivaxillin (101)	-83.2	-93.0	-77.4	-86.5	-88.7	-99.2	-79.9	-89.3	-53.1	-59.3
Petrovin A (102)	-78.8	-90.1	-78.0	-89.3	-76.8	-87.9	-79.6	-91.0	-54.1	-61.9
Petrovin B (103)	-81.7	-93.3	-81.4	-92.9	-96.3	-109.8	-74.4	-84.9	-82.9	-94.6
Polygodial (104)	-83.2	-97.0	-79.9	-93.2	-84.0	-98.0	-73.7	-86.0	-22.2	-25.9
Rishitin (105)	-81.4	-96.6	-72.7	-86.3	-82.1	-97.5	-76.5	-90.8	-83.0	-98.5
Xanthorrhizol (106)	-85.4	-102.0	-87.4	-104.4	-85.6	-102.2	-81.7	-97.6	-82.4	-98.3
α-Amorphene (107)	-85.8	-104.8	-66.2	-80.8	-82.0	-100.1	-66.2	-80.9	-50.6	-61.8
α-Cadinene (108)	-74.0	-90.4	-68.0	-83.0	-68.2	-83.2	-66.4	-81.1	-76.0	-92.8
α-Copaene (110)	-70.2	-87.7	-59.9	-74.9	-70.3	-87.8	-65.8	-82.2	-52.9	-66.1
α-Muurolene (109)	-77.1	-94.1	-69.5	-84.9	-71.0	-86.7	-71.7	-87.6	-65.5	-80.0
γ-Cadinene (112)	-77.7	-94.8	-67.1	-82.0	-80.6	-98.4	-63.8	-77.9	-59.0	-72.1

	EcTo	opoIV	EcGyrB		Mt	GyrB	MtPtp		HsPtp	
Ligand	Edock	DS _{norm}	Edock	DS _{norm}						
Diterpenoids										
1,12-Diacetyljativatriol (114)	-76.8	-74.6	-82.2	-79.9	-64.7	-62.9	-98.0	-95.3	-36.1	-35.1
12-Oxo-3,13(16)-clerodadien-15-oic acid (115)	-97.1	-102.2	-104.6	-110.1	-103.2	-108.7	-93.7	-98.7	-86.1	-90.6
12-Oxo-8,13(16)-clerodadien-15-oic acid (116)	-108.4	-114.1	-99.0	-104.2	-104.1	-109.6	-98.8	-104.1	-82.1	-86.4
13-Epimanoyl oxide (117)	-71.9	-78.0	-67.1	-72.8	-81.1	-88.0	-72.9	-79.1	-43.0	-46.7
13-Episclareol (118)	-92.2	-98.1	-94.2	-100.2	-87.7	-93.3	-87.4	-93.0	-61.2	-65.1
3,4-Seco-4(18)-trachyloben-3-oic acid (120)	-87.4	-93.7	-75.1	-80.5	-86.4	-92.5	-79.6	-85.3	-66.5	-71.3
3-Hydroxytotarol (119)	-90.5	-96.9	-75.9	-81.3	-87.6	-93.9	-81.5	-87.3	-73.6	-78.8
7,13-Labdadien-15-ol acetate (121)	-106.6	-110.6	-94.9	-98.4	-111.9	-116.1	-97.3	-101.0	-86.2	-89.5
7,13-Labdadien-15-ol malonate (122)	-122.6	-122.1	-88.7	-88.4	-115.6	-115.1	-106.2	-105.8	-82.4	-82.1
Acetylcrinipellin A (125)	-105.4	-105.4	-72.1	-72.0	-74.1	-74.1	-96.4	-96.3	-50.4	-50.4
Aethiopinone (123)	-101.0	-108.9	-96.9	-104.5	-106.0	-114.3	-82.1	-88.6	-86.2	-92.9
Andrographolide (124)	-100.6	-102.6	-90.9	-92.7	-110.8	-113.0	-98.4	-100.3	-97.9	-99.9
Biflorin (126)	-104.5	-113.0	-91.7	-99.1	-100.8	-108.9	-89.2	-96.4	-91.2	-98.6
Continentalic acid (127)	-77.1	-82.6	-53.9	-57.7	-85.3	-91.4	-81.8	-87.6	no dock	no dock
Crinipellin A (129)	-82.2	-85.5	-81.9	-85.1	-93.9	-97.6	-93.5	-97.2	-69.9	-72.7
Cryptobeilic acid A (128)	-118.0	-124.5	-98.9	-104.4	-114.2	-120.5	-97.6	-103.0	-65.6	-69.3
Cryptobeilic acid C (130)	-129.4	-130.3	-108.7	-109.5	-128.7	-129.5	-99.4	-100.1	-62.3	-62.8
Cryptobeilic acid D (131)	-120.3	-129.2	-100.7	-108.1	-122.0	-130.9	-99.2	-106.5	-89.2	-95.8
Effusanin A (132)	-49.0	-50.1	-73.9	-75.6	-47.5	-48.5	-80.5	-82.2	-39.7	-40.5
Effusanin B (133)	-73.0	-71.8	-58.5	-57.6	-40.4	-39.8	-84.6	-83.2	no dock	no dock
Effusanin C (134)	-64.2	-62.4	-77.6	-75.3	-33.6	-32.6	-95.8	-93.0	-51.2	-49.7
Effusanin D (135)	-75.2	-70.6	-73.7	-69.3	-63.7	-59.8	-101.7	-95.5	-51.9	-48.7
Effusanin E (136)	-46.4	-46.7	-69.0	-69.5	-31.3	-31.5	-78.0	-78.5	-18.3	-18.4
Grandiflorenic acid (137)	-60.0	-64.4	-59.6	-64.0	-73.7	-79.2	-73.4	-78.8	-35.3	-37.8
Haplociliatic acid (138)	-99.3	-102.7	-94.1	-97.2	-105.1	-108.6	-110.8	-114.5	-92.2	-95.3
Hypargenin A (139)	-84.2	-87.6	-89.5	-93.1	-84.5	-87.9	-80.0	-83.2	-75.5	-78.5
Hypargenin B (140)	-82.2	-86.7	-85.9	-90.7	-88.6	-93.4	-82.6	-87.2	-91.9	-96.9
Hypargenin D (141)	-91.4	-98.4	-94.0	-101.2	-91.0	-97.9	-77.5	-83.3	-26.9	-29.0
Hypargenin F (142)	-96.9	-100.7	-73.0	-76.0	-87.2	-90.7	-76.0	-79.0	-27.4	-28.5
Isodomedin (143)	-70.3	-69.1	-64.6	-63.5	-80.5	-79.0	-93.9	-92.2	no dock	no dock

Licend	EcTo	poIV	EcGyrB		MtGyrB		MtPtp		HsPtp	
Ligand	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Diterpenoids										
Kamebanin (144)	-65.8	-68.1	-67.3	-69.7	-60.0	-62.1	-79.4	-82.2	no dock	no dock
Lasiokaurin (145)	-63.1	-61.1	-73.1	-70.8	-52.7	-51.0	-86.0	-83.4	no dock	no dock
Longikaurin A (146)	-56.8	-58.1	-56.4	-57.6	-61.1	-62.4	-76.1	-77.8	-36.8	-37.6
Longikaurin B (147)	-71.1	-69.0	-72.4	-70.3	-21.4	-20.7	-94.1	-91.3	-57.5	-55.8
Longikaurin C (148)	-67.0	-65.9	-76.5	-75.3	-22.4	-22.0	-96.8	-95.2	-51.2	-50.4
Longikaurin D (149)	-76.1	-73.8	-77.1	-74.8	-51.8	-50.3	-98.5	-95.6	-58.0	-56.3
Longikaurin E (150)	-61.6	-62.9	-62.6	-63.9	-41.2	-42.1	-77.2	-78.9	-53.5	-54.6
Longikaurin F (151)	-83.9	-78.8	-88.5	-83.1	-72.8	-68.4	-106.9	-100.4	-73.6	-69.1
Longikaurin G (152)	-64.3	-64.8	-49.3	-49.6	-27.9	-28.1	-76.3	-76.8	-17.5	-17.6
Lupulin E (153)	-104.1	-92.9	-64.9	-58.0	-94.7	-84.5	-117.7	-105.1	-83.1	-74.2
Lupulin F (154)	-75.2	-67.0	-75.4	-67.2	-93.3	-83.2	-117.1	-104.4	-71.0	-63.3
Methyl seconidoresedate (155)	-103.9	-108.2	-94.7	-98.7	-107.1	-111.6	-96.7	-100.8	-82.8	-86.3
Pisiferol (156)	-60.9	-65.3	-93.6	-100.2	-84.6	-90.6	-76.3	-81.7	-78.5	-84.0
Salvic acid (157)	-90.6	-94.9	-84.1	-88.1	-99.2	-104.0	-93.3	-97.9	-90.2	-94.6
Salvic acid acetate (158)	-107.8	-108.5	-85.4	-86.0	-113.4	-114.2	-94.9	-95.6	-87.9	-88.4
Shikokianin (159)	-72.3	-67.9	-68.7	-64.5	-12.7	-11.9	-95.0	-89.2	-15.9	-15.0
Strictic acid (160)	-85.4	-90.3	-75.1	-79.4	-99.8	-105.6	-108.1	-114.3	-67.3	-71.2
Taxodione (161)	-93.6	-99.0	-92.8	-98.1	-90.6	-95.8	-82.5	-87.3	-40.1	-42.4
Trichodonin (162)	-11.3	-11.0	-75.1	-73.0	-36.5	-35.5	-90.5	-88.0	-60.6	-59.0
Umbrosin A (163)	-57.6	-59.6	-68.5	-71.0	-59.6	-61.7	-77.0	-79.7	no dock	no dock
Umbrosin B (164)	-69.2	-71.8	-42.6	-44.2	-69.1	-71.7	-78.2	-81.1	no dock	no dock
Yuexiandajisu A (165)	-82.8	-87.2	-73.8	-77.8	-65.3	-68.7	-90.4	-95.2	-52.3	-55.1
Triterpenoids										
Alisol A 24-acetate (166)	-102.3	-90.7	-77.4	-68.6	-45.9	-40.7	-101.7	-90.2	-49.3	-43.7
Alisol B 23-acetate (167)	-82.2	-73.8	-102.3	-91.8	-80.5	-72.2	-117.7	-105.6	19.5	17.5
Betulinic acid (168)	-26.4	-24.7	-75.5	-70.5	-34.3	-32.1	-101.3	-94.5	-25.6	-23.9
Entagenic acid (169)	no dock	no dock	no dock	no dock	no dock	no dock	-99.2	-90.6	33.3	30.4
Lantic acid (170)	-21.3	-19.7	-76.7	-70.9	no dock	no dock	-89.7	-82.9	16.4	15.2
Mahmoodin (171)	no dock	no dock	-73.9	-65.8	no dock	no dock	-125.8	-112.0	-10.2	-9.1
Maslinic acid (172)	-59.5	-54.9	-63.1	-58.2	no dock	no dock	-105.2	-97.1	-32.2	-29.7
Oleanolic acid (173)	-60.7	-56.7	-79.9	-74.6	no dock	no dock	-100.3	-93.6	-14.1	-13.2

Ligand	ЕсТо	poIV	EcC	GyrB	MtC	GyrB	MtPtp		HsPtp	
Liganu	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}
Triterpenoids										
Pristimerin (174)	-35.5	-33.0	-81.1	-75.3	-25.4	-23.6	-82.3	-76.4	-54.2	-50.3
Rubrinol (175)	no dock	no dock	-84.3	-79.5	no dock	no dock	-99.2	-93.5	-28.9	-27.2
Tingenone (176)	-37.6	-36.0	-68.2	-65.5	-24.1	-23.1	-90.7	-87.1	-57.6	-55.2
Chalcones										
1-(2,6-Dihydroxy-4-methoxyphenyl)-3-phenyl-1-propanone (177)	-112.2	-124.4	-97.3	-107.9	-112.3	-124.6	-82.8	-91.9	-87.7	-97.3
2'-Hydroxy-2,3,4',6'-tetramethoxychalcone (178)	-127.2	-130.4	-92.7	-95.0	-127.3	-130.6	-91.9	-94.3	-84.8	-87.0
3'''',5'''',5'''''-Tribenzyl-2'''',2'''''',2''''''-trihydroxyisodiuvaretin (180)	-84.3	-65.2	-120.6	-93.3	no dock	no dock	-127.4	-98.5	-105.3	-81.5
4'-Hydroxychalcone (179)	-92.5	-109.5	-85.8	-101.6	-92.5	-109.4	-82.7	-97.9	-87.9	-104.0
5 ^{''} ,5 ^{''''} ,5 ^{'''''} -Tribenzyl-2 ^{''''} ,2 ^{'''''} -trihydroxyisodiuvaretin (181)	-52.4	-40.5	-128.6	-99.5	no dock	no dock	-159.7	-123.5	-116.6	-90.2
Angusticornin B (182)	-154.9	-148.2	-79.5	-76.0	-151.8	-145.2	-127.3	-121.8	-97.1	-92.9
Balsacone A (183)	-144.0	-138.2	-107.4	-103.1	-143.1	-137.3	-113.8	-109.3	-107.6	-103.3
Balsacone B (184)	-139.9	-134.3	-113.4	-108.8	-144.0	-138.2	-116.0	-111.4	-107.8	-103.5
Balsacone C (185)	-132.9	-130.7	-107.2	-105.5	-133.6	-131.4	-112.5	-110.7	-109.0	-107.3
Bartericin C (186)	-118.5	-114.8	-66.2	-64.1	-104.8	-101.5	-112.8	-109.3	-68.4	-66.3
Bavachalcone (187)	-137.5	-141.9	-101.8	-105.1	-136.4	-140.8	-103.1	-106.4	-92.8	-95.8
Broussochalcone B (188)	-127.2	-133.1	-107.7	-112.7	-130.5	-136.5	-103.6	-108.4	-105.3	-110.2
Corylifol B (189)	-138.2	-142.3	-113.7	-117.0	-140.0	-144.2	-107.5	-110.7	-107.2	-110.4
Erythbidin C (190)	-122.4	-129.7	-96.7	-102.5	-121.2	-128.4	-102.6	-108.7	-102.7	-108.9
Helichrysone A (191)	-124.8	-126.8	-109.9	-111.7	-125.4	-127.4	-102.7	-104.3	-98.7	-100.3
Isobavachalcone (192)	-127.7	-133.7	-110.6	-115.7	-133.8	-140.0	-100.7	-105.3	-103.3	-108.1
Kanzonol C (193)	-151.6	-148.8	-119.0	-116.9	-159.8	-156.9	-111.8	-109.8	-88.1	-86.5
Kuraridin (194)	-148.2	-140.3	-122.1	-115.5	-145.9	-138.1	-121.3	-114.8	-104.2	-98.7
Myrigalone G (195)	-111.4	-121.5	-98.3	-107.3	-115.0	-125.5	-91.9	-100.3	-88.3	-96.3
Piperaduncin A (196)	-137.5	-125.3	-113.2	-103.2	-134.3	-122.5	-119.7	-109.1	-82.7	-75.4
Piperaduncin B (197)	-134.6	-121.4	-124.5	-112.3	-152.4	-137.5	-122.3	-110.3	-102.4	-92.4
Piperaduncin C (198)	-134.1	-117.2	-130.8	-114.3	-112.3	-98.1	-128.3	-112.1	-78.9	-68.9
Psorachalcone A (199)	-130.1	-134.0	-112.2	-115.6	-137.6	-141.7	-96.9	-99.8	-99.3	-102.2
Xanthoangelol (200)	-143.1	-140.5	-113.3	-111.2	-140.1	-137.6	-110.2	-108.2	-93.1	-91.4
Xanthoangelol F (201)	-147.0	-142.7	-123.4	-119.7	-133.1	-129.2	-116.5	-113.1	-101.2	-98.3

Licend	ЕсТо	poIV	EcGyrB		MtC	GyrB	MtPtp		HsPtp	
Ligand –	Edock	DS _{norm}								
Flavonoids										
2',5,5',7-Tetrahydroxyflavanone (202)	-102.5	-111.6	-87.5	-95.2	-96.1	-104.6	-86.1	-93.7	-91.4	-99.5
2',7-Dimethoxyflavone (203)	-105.9	-116.1	-90.8	-99.5	-103.5	-113.5	-79.5	-87.1	-81.0	-88.8
3''''-(2-Hydroxybenzyl)isouvarinol (218)	-158.3	-129.4	-157.9	-129.0	-115.6	-94.4	-130.8	-106.9	-126.0	-103.0
3''''-(2-Hydroxybenzyl)uvarinol (217)	-155.5	-127.1	-153.1	-125.1	-125.1	-102.2	-152.8	-124.9	-93.3	-76.3
3'-Methylpelargonidin (204)	-97.6	-106.6	-88.0	-96.1	-94.6	-103.3	-87.6	-95.7	-90.2	-98.6
3'-O-Methyldiplacone (205)	-134.5	-127.3	-107.4	-101.7	-130.8	-123.8	-115.3	-109.1	-104.7	-99.1
4',5,7-Trihydroxy-6-methyl-8-prenylflavanone (207)	-116.4	-118.2	-101.1	-102.7	-110.0	-111.8	-90.9	-92.4	-104.2	-105.9
4',5,7-Trihydroxy-8-methyl-6-prenylflavanone (206)	-110.4	-112.2	-110.1	-111.8	-110.4	-112.1	-94.5	-96.0	-105.6	-107.3
4',5-Dihydroxy-7-methoxy-6-prenylflavanone (208)	-126.1	-128.2	-109.3	-111.1	-120.3	-122.3	-96.3	-97.8	-100.4	-102.0
4′,6,7-Trihydroxy-3′,5′-dimethoxyflavone (209)	-115.1	-119.7	-109.5	-113.9	-110.4	-114.8	-96.2	-100.1	-99.7	-103.7
4′,7-Dihydroxy-8-methylflavan (210)	-88.8	-100.6	-82.8	-93.7	-83.5	-94.5	-77.6	-87.9	-85.2	-96.4
4'-Hydroxy-5,7-dimethoxyflavone (211)	-104.1	-112.0	-84.7	-91.2	-109.3	-117.6	-88.6	-95.3	-94.1	-101.2
5 ^{''} -(2-Hydroxybenzyl)isouvarinol (216)	-184.9	-151.1	-136.0	-111.2	-140.6	-114.9	-137.1	-112.0	-143.1	-116.9
5'-(1,1-Dimethyl-2-propenyl)-2',4',5,7-tetrahydroxy-6-prenylflavanone (219)	-128.0	-122.4	-106.4	-101.8	-116.3	-111.3	-98.5	-94.2	-68.6	-65.6
5'-(1,1-Dimethyl-2-propenyl)-2',4',5,7-tetrahydroxy-8- prenylflavanone (220)	-127.0	-121.5	-96.0	-91.8	-114.5	-109.5	-99.4	-95.1	-84.4	-80.8
5'-(1,1-Dimethyl-2-propenyl)-4',5,7-trihydroxy-2'-methoxy- 8-prenylflavanone (221)	-114.9	-108.8	-75.8	-71.7	-124.0	-117.3	-96.2	-91.0	-96.9	-91.7
5,6-Dihydroxy-4',7,8-trimethoxyflavone (212)	-108.6	-111.4	-92.7	-95.1	-109.6	-112.5	-74.3	-76.2	-33.0	-33.8
5-Hydroxy-2',4',5',7-Tetramethoxyflavone (213)	-115.1	-116.5	-103.7	-104.9	-123.3	-124.8	-91.7	-92.8	-56.8	-57.5
6,7-Dihydroxyflavone (214)	-98.1	-111.3	-90.2	-102.4	-89.5	-101.6	-88.1	-100.0	-94.5	-107.3
8-Methoxycirsilineol (215)	-124.1	-123.8	-111.2	-110.9	-111.1	-110.8	-88.7	-88.5	-99.3	-99.1
9,10-Dihydro-9,10-diacetoxy-3-methoxy-8,8-dimethyl-2-phenyl- 4 <i>H</i> ,8 <i>H</i> -benzo[1,2- <i>b</i> :3,4- <i>b'</i>]dipyran-4-one (222)	-81.8	-76.6	-73.8	-69.1	-76.4	-71.5	-113.3	-106.1	-75.8	-71.0
Abyssinone I (223)	-105.9	-111.0	-71.8	-75.3	-100.1	-104.9	-86.2	-90.4	-95.7	-100.4
Abyssinone IV (224)	-139.9	-137.4	-96.2	-94.5	-135.9	-133.4	-93.4	-91.7	-117.7	-115.6
Astragalin (225)	-136.8	-128.5	-103.9	-97.6	-127.6	-119.8	-103.7	-97.5	-107.4	-100.9
Bavachinin (226)	-119.3	-123.1	-111.3	-114.9	-118.8	-122.5	-96.5	-99.5	-100.8	-104.0
Betuletol (227)	-110.9	-115.3	-94.6	-98.4	-104.6	-108.8	-83.3	-86.6	-79.5	-82.7
Bonannione A (228)	-130.5	-126.4	-96.3	-93.3	-131.5	-127.5	-108.1	-104.7	-107.2	-103.9

	EcTe	opoIV	EcC	GyrB	MtC	GyrB	MtPtp		HsPtp	
Ligand	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}
Flavonoids										
Brosimone I (229)	-120.0	-115.1	-105.0	-100.7	-128.0	-122.8	-97.2	-93.3	-110.4	-106.0
Cassiaflavan (230)	-85.4	-98.4	-80.9	-93.3	-86.0	-99.2	-82.0	-94.6	-85.6	-98.7
Cerasinone (231)	-108.4	-112.7	-88.3	-91.8	-111.6	-116.1	-85.6	-89.1	-77.3	-80.4
Chrysin (233)	-97.1	-110.2	-87.1	-98.9	-89.5	-101.6	-84.9	-96.3	-88.6	-100.5
Chrysoeriol (232)	-105.9	-113.7	-99.9	-107.2	-105.7	-113.5	-95.2	-102.2	-93.4	-100.3
Corniculatusin (234)	-109.2	-113.3	-100.2	-104.1	-102.3	-106.2	-93.0	-96.5	-103.3	-107.2
Cudraflavone A (235)	-109.6	-105.4	-100.2	-96.3	-109.4	-105.1	-93.8	-90.1	-102.9	-98.9
Dihydroquercetin (236)	-103.3	-110.4	-96.7	-103.4	-96.3	-103.0	-94.5	-101.0	-98.0	-104.7
Eucalyptin (237)	-109.3	-114.1	-91.8	-95.9	-102.6	-107.2	-75.3	-78.6	-82.7	-86.4
Euchrestaflavanone A (238)	-137.0	-132.7	-112.6	-109.1	-137.5	-133.3	-93.2	-90.3	-50.9	-49.3
Flavaprenin (239)	-115.7	-119.2	-99.5	-102.5	-112.5	-115.9	-95.0	-97.8	-105.3	-108.4
Flemiflavanone D (240)	-128.9	-123.3	-97.0	-92.8	-132.8	-127.0	-108.0	-103.3	-86.7	-83.0
Glabranin (241)	-116.1	-121.5	-95.5	-99.9	-108.9	-113.9	-84.3	-88.2	-97.1	-101.6
Isoorientin (243)	-126.3	-118.7	-118.7	-111.5	-124.4	-116.8	-103.0	-96.7	-109.4	-102.7
Isoscoparin (244)	-117.1	-108.9	-125.0	-116.2	-121.4	-112.8	-98.4	-91.5	-103.4	-96.1
Kaempferol (242)	-93.2	-101.7	-90.1	-98.3	-92.5	-100.9	-87.0	-94.9	-95.8	-104.5
Kushenol A (245)	-141.0	-136.6	-109.0	-105.6	-139.7	-135.4	-92.6	-89.7	-100.7	-97.6
Kushenol S (246)	-118.5	-122.1	-95.5	-98.4	-112.5	-115.8	-84.8	-87.3	-95.4	-98.3
Kushenol U (247)	-136.4	-130.7	-114.1	-109.3	-142.9	-136.9	-105.5	-101.1	-105.0	-100.6
Kushenol V (248)	-126.9	-123.8	-113.5	-110.7	-123.6	-120.5	-91.5	-89.3	-98.0	-95.6
Kushenol W (249)	-126.7	-125.1	-105.8	-104.4	-119.8	-118.3	-90.8	-89.7	-99.2	-97.9
Leachianone A (250)	-142.5	-134.9	-100.9	-95.5	-140.0	-132.5	-102.6	-97.1	-105.2	-99.6
Leachianone G (251)	-115.9	-117.6	-100.5	-101.9	-120.3	-122.0	-92.2	-93.5	-106.0	-107.5
Licoflavanone (252)	-116.0	-119.5	-96.0	-98.9	-121.6	-125.2	-100.7	-103.7	-100.1	-103.1
Licoflavone C (253)	-115.0	-118.7	-100.0	-103.2	-117.5	-121.3	-91.8	-94.7	-108.5	-112.0
Licoflavonol (254)	-118.6	-120.5	-109.3	-111.1	-118.6	-120.5	-99.0	-100.6	-105.3	-107.0
Lonchocarpol A (255)	-121.9	-118.1	-117.9	-114.2	-123.5	-119.6	-102.6	-99.4	-118.0	-114.3
Loranthin (256)	-127.5	-115.8	-118.2	-107.3	-128.5	-116.7	-114.6	-104.1	-109.2	-99.2
Loxophlebal A (257)	-128.6	-118.7	-104.0	-96.0	-119.5	-110.3	-104.6	-96.5	-92.0	-84.9
Lucenin 2 (258)	-86.0	-72.9	-103.5	-87.7	-108.6	-92.0	-134.2	-113.8	-123.9	-105.0
Macarangaflavanone A (259)	-138.2	-133.9	-104.3	-101.0	-135.6	-131.4	-107.5	-104.2	-81.3	-78.7
	EcTo	poIV	EcC	GyrB	MtC	GyrB	Mt	Ptp	Hs	Ptp
--------------------------------	---------	--------------------	--------	--------	---------	--------------------	--------	--------------------	--------	--------------------
Ligand	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Flavonoids										
Malvidin (260)	-113.5	-117.9	-96.3	-100.0	-107.1	-111.2	-102.2	-106.2	-92.5	-96.2
Myricetin (261)	-103.3	-108.8	-99.3	-104.5	-104.1	-109.6	-97.9	-103.1	-99.2	-104.5
Natsudaidain (262)	-123.4	-118.6	-112.1	-107.8	-118.4	-113.8	-90.4	-86.9	-45.0	-43.2
Nevadensin (263)	-119.8	-122.9	-96.6	-99.1	-113.7	-116.6	-85.7	-87.9	-67.8	-69.6
O-Methylpongaglabol (264)	-102.3	-110.8	-89.5	-97.0	-99.6	-107.9	-91.1	-98.7	-93.7	-101.6
Paratocarpin L (265)	-132.3	-128.2	-111.8	-108.3	-134.4	-130.2	-102.9	-99.7	-105.8	-102.6
Persicogenin (266)	-107.9	-113.8	-91.9	-96.9	-110.9	-117.0	-74.9	-79.0	-90.3	-95.2
Pilosanol A (267)	-136.9	-120.8	-118.8	-104.8	-128.4	-113.3	-114.8	-101.4	-98.6	-87.0
Pilosanol B (268)	-139.4	-124.1	-114.6	-102.1	-114.3	-101.8	-111.3	-99.1	-93.6	-83.4
Pilosanol C (269)	-140.8	-125.3	-123.9	-110.3	-126.6	-112.7	-116.7	-103.9	-108.7	-96.8
Pinocembrin (270)	-94.5	-107.0	-83.1	-94.1	-88.3	-99.9	-82.7	-93.6	-84.7	-95.9
Pongaflavone (271)	-99.7	-103.3	-78.6	-81.4	-103.1	-106.8	-89.6	-92.8	-101.2	-104.9
Quercetin (272)	-102.9	-110.3	-94.6	-101.4	-96.7	-103.6	-93.8	-100.5	-99.8	-106.9
Quercetin 3-methyl ether (273)	-100.4	-106.0	-91.7	-96.7	-96.5	-101.8	-94.0	-99.2	-104.6	-110.4
Remangiflavanone A (274)	-133.0	-127.4	-112.4	-107.6	-133.1	-127.5	-101.1	-96.9	-106.7	-102.2
Remangiflavanone B (275)	-136.4	-130.5	-109.2	-104.4	-142.3	-136.2	-105.7	-101.2	-104.0	-99.5
Sanggenon G (276)	-107.6	-87.3	-105.6	-85.7	-118.6	-96.3	-129.7	-105.3	-97.5	-79.2
Sigmoidin A (277)	-134.3	-128.5	-119.0	-113.8	-134.4	-128.6	-111.0	-106.2	-103.3	-98.8
Sigmoidin B (278)	-120.5	-122.2	-97.5	-98.9	-120.3	-122.0	-106.6	-108.1	-78.8	-79.9
Sigmoidin L (279)	-120.7	-120.8	-99.4	-99.5	-121.3	-121.4	-109.3	-109.5	-89.0	-89.1
Siraitiflavandiol (280)	-118.4	-120.1	-105.6	-107.0	-117.0	-118.6	-113.1	-114.7	-96.9	-98.3
Solophenol D (281)	-145.5	-137.7	-118.7	-112.3	-141.7	-134.1	-115.3	-109.1	-85.0	-80.4
Sophoraflavanone G (282)	-137.3	-131.3	-110.3	-105.5	-144.7	-138.4	-99.3	-95.0	-106.7	-102.1
Sternbin (283)	-101.5	-108.8	-93.7	-100.4	-106.8	-114.4	-95.3	-102.1	-96.1	-103.0
Sudachitin (284)	-120.7	-122.0	-112.6	-113.8	-118.2	-119.5	-83.4	-84.3	-101.0	-102.0
Uvarinol (285)	-153.4	-132.7	-122.7	-106.1	-149.9	-129.6	-119.7	-103.6	-135.1	-116.9
Vahliabiflavone (286)	no dock	no dock	-87.6	-75.9	no dock	no dock	-115.6	-100.2	-57.4	-49.8
Vitexin (287)	-129.6	-123.2	-97.8	-93.0	-129.8	-123.4	-99.0	-94.1	-114.9	-109.2
Wogonin (288)	-103.2	-112.8	-90.7	-99.2	-96.9	-106.0	-87.5	-95.7	-91.5	-100.0

	EcTo	opoIV	EcC	GyrB	MtC	GyrB	Mi	tPtp	Hs	Ptp
Ligand	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Isoflavonoids										
2 ^{''} ,3 ^{''} -Epoxybolusanthol B (289)	-126.2	-126.1	-94.8	-94.7	-123.8	-123.7	-98.9	-98.9	-95.6	-95.6
3',5,7-Trihydroxy-4'-methoxy-5',6-diprenylisoflavanone (290) 4''-Hydroxydiphysolone (292)	-131.8 -122.8	-124.7 -122.7	$-111.5 \\ -104.0$	$-105.5 \\ -103.9$	$-126.4 \\ -120.3$	-119.7 -120.2	-109.5 -98.7	-103.6 -98.6	$-102.4 \\ -100.7$	-96.9 -100.6
5,7-Dihydroxy-2'-methoxy-3',4'-methylenedioxyisoflavanone (293)	-119.3	-124.1	-91.5	-95.2	-116.5	-121.2	-77.2	-80.3	-79.8	-83.0
6a-Hydroxyphaseollin (291)	-103.5	-106.7	-86.7	-89.4	-92.0	-95.0	-91.2	-94.1	-83.2	-85.8
Amorphaquinone (294)	-114.3	-117.0	-82.7	-84.7	-112.4	-115.1	-83.7	-85.7	-83.1	-85.1
Asphodelin A (295)	-90.7	-100.9	-92.6	-103.0	-95.0	-105.7	-81.1	-90.2	-86.2	-95.9
Bidwillon A (296)	-125.7	-121.8	-110.5	-107.0	-126.3	-122.4	-103.4	-100.2	-111.6	-108.1
Bolucarpan A (297)	-110.0	-110.4	-96.3	-96.5	-101.1	-101.4	-73.2	-73.4	-71.7	-71.9
Bolucarpan B (298)	-106.3	-106.8	-97.9	-98.3	-96.6	-97.1	-77.0	-77.3	-72.4	-72.8
Bolucarpan D (299)	-87.5	-90.4	-91.6	-94.7	-79.7	-82.4	-76.7	-79.3	-63.6	-65.8
Bolusanthol B (300)	-124.5	-126.3	-99.8	-101.2	-124.6	-126.3	-102.3	-103.7	-102.4	-103.8
Cajanol (301)	-109.2	-115.2	-88.8	-93.7	-104.5	-110.3	-85.5	-90.3	-79.4	-83.7
Chandalone (302)	-118.7	-115.4	-104.3	-101.4	-119.5	-116.2	-100.4	-97.7	-63.3	-61.6
Dalversinol A (303)	-123.2	-117.9	-92.8	-88.8	-123.0	-117.7	-102.2	-97.8	-94.5	-90.4
Derrisin (304)	-87.0	-82.9	-73.4	-70.0	-63.7	-60.8	-78.5	-74.8	-18.9	-18.1
Erybraedin A (305)	-125.4	-123.1	-98.2	-96.5	-123.2	-121.0	-104.0	-102.1	-89.0	-87.4
Erybraedin D (306)	-129.2	-127.1	-94.8	-93.3	-126.3	-124.3	-92.7	-91.1	-80.0	-78.7
Erypoegin I (307)	-106.4	-106.5	-93.4	-93.5	-117.6	-117.7	-104.0	-104.2	-76.8	-76.9
Erysubin F (308)	-139.5	-137.2	-114.2	-112.3	-132.7	-130.6	-113.7	-111.8	-79.4	-78.1
Eryvarin V (309)	-104.7	-100.3	-99.6	-95.5	-96.9	-92.8	-107.9	-103.4	-86.3	-82.7
Eryvarin W (310)	-118.1	-116.2	-104.3	-102.6	-115.0	-113.1	-107.6	-105.9	-75.3	-74.1
Eryzerin C (311)	-128.1	-125.6	-104.9	-102.8	-127.7	-125.1	-104.6	-102.5	-114.6	-112.4
Eryzerin D (312)	-122.6	-120.4	-99.5	-97.7	-124.7	-122.4	-99.3	-97.5	-98.9	-97.1
Euchretin A (313)	-128.3	-116.1	-92.3	-83.5	-130.0	-117.6	-113.0	-102.2	-77.2	-69.9
Gancaonin C (314)	-113.0	-114.8	-97.2	-98.7	-115.8	-117.6	-102.6	-104.3	-107.4	-109.2
Genistein (315)	-95.8	-106.5	-87.7	-97.5	-96.8	-107.6	-84.2	-93.6	-93.6	-104.1
Glycyrrhisoflavone (316)	-121.6	-123.6	-98.9	-100.5	-122.2	-124.1	-100.7	-102.3	-95.8	-97.3
Hispaglabridin A (31 7)	-122.9	-120.7	-101.0	-99.2	-122.6	-120.4	-94.1	-92.4	-95.5	-93.8
Hispaglabridin B (318)	-112.8	-111.0	-31.1	-30.6	-107.5	-105.8	-84.8	-83.4	-61.9	-60.9
Hydroxycristacarpone (319)	-96.2	-96.3	-87.8	-87.9	-91.8	-91.9	-91.6	-91.7	-63.6	-63.7

Tional	ЕсТо	poIV	EcC	GyrB	MtC	GyrB	Mi	Ptp	Hs	Ptp
Liganu	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}	Edock	DS _{norm}
Isoflavonoids										
Isoneorautenol (320)	-109.2	-114.5	-75.7	-79.4	-114.0	-119.6	-81.1	-85.0	-72.2	-75.7
Lachnoisoflavone A (321)	-112.5	-114.5	-98.9	-100.6	-116.3	-118.3	-94.8	-96.5	-97.4	-99.1
Licoisoflavanone (322) Licoricidin (323)	-110.9 -136.7	$-112.7 \\ -130.7$	$-64.0 \\ -108.7$	$-65.1 \\ -104.0$	-98.6 -138.7	$-100.1 \\ -132.7$	$-92.6 \\ -108.4$	$-94.1 \\ -103.7$	-83.0 -107.1	$-84.4 \\ -102.4$
Lupinalbin C (324)	-113.1	-113.4	-104.1	-104.4	-110.9	-111.2	-92.0	-92.3	-93.9	-94.2
Mucronulatol (326)	-99.6	-106.7	-80.0	-85.8	-101.4	-108.6	-86.3	-92.5	-92.6	-99.2
Neomillinol (325)	-103.3	-107.9	-96.9	-101.1	-113.5	-118.5	-93.8	-98.0	-93.6	-97.8
Pendulone (327)	-107.6	-113.6	-79.4	-83.8	-105.6	-111.4	-92.9	-98.1	-74.3	-78.4
Phyllanone B (328)	-138.9	-131.4	-98.8	-93.5	-139.5	-132.0	-112.8	-106.8	-101.9	-96.5
Shinpterocarpin (329)	-97.7	-102.5	-81.2	-85.1	-95.2	-99.8	-95.3	-99.9	-79.1	-82.9
Neoflavonoids										
Inophyllum A (330)	-103.7	-100.8	-82.6	-80.3	-101.8	-99.0	-90.4	-87.9	-77.2	-75.1
Inophyllum C (331)	-111.3	-108.4	-97.1	-94.6	-107.6	-104.8	-87.4	-85.2	-71.3	-69.5
Mammea A/BA (332)	-127.9	-124.1	-110.5	-107.2	-117.2	-113.8	-100.8	-97.8	-112.0	-108.7
Mammea A/BB (333)	-123.4	-119.8	-101.6	-98.6	-118.6	-115.1	-95.0	-92.2	-104.6	-101.6
Mesuol (334)	-124.3	-122.1	-108.0	-106.1	-122.2	-120.0	-101.2	-99.4	-106.9	-105.0
Pterocarpans										
1-Methoxyphaseollidin (356)	-117.4	-119.3	-97.6	-99.2	-118.8	-120.7	-97.6	-99.2	-68.5	-69.6
Aracarpene 1 (357)	-105.0	-112.7	-84.6	-90.9	-105.1	-112.8	-87.7	-94.2	-89.8	-96.5
Aracarpene 2 (358)	-102.9	-110.5	-94.1	-101.1	-108.8	-116.9	-78.7	-84.5	-85.6	-91.9
Calopocarpin (360)	-111.9	-117.1	-103.9	-108.7	-113.2	-118.5	-102.7	-107.4	-99.3	-103.9
Cristacarpin (359)	-121.4	-123.4	-91.5	-92.9	-119.0	-120.9	-98.3	-99.8	-88.5	-89.9
Erythbidin D (362)	-103.0	-110.6	-93.5	-100.4	-112.8	-121.1	-88.4	-95.0	-80.6	-86.6
Eryzerin E (363)	-140.8	-135.0	-96.5	-92.4	-129.6	-124.2	-99.4	-95.2	-102.8	-98.5
Fuscacarpan B (364)	-116.4	-116.6	-88.4	-88.6	-118.6	-118.7	-99.2	-99.3	-88.9	-89.0
Fuscacarpan C (365)	-116.5	-116.7	-90.6	-90.7	-111.3	-111.4	-99.8	-99.9	-86.8	-86.9
Glycyrol (366)	-122.3	-122.9	-102.1	-102.6	-119.2	-119.7	-88.8	-89.2	-102.0	-102.4
Glycyrrhizol A (367)	-135.5	-130.0	-54.2	-52.0	-124.6	-119.6	-100.1	-96.1	-87.0	-83.5
Glycyrrhizol B (368)	-110.1	-112.3	-80.8	-82.4	-117.7	-120.1	-86.6	-88.4	-73.5	-75.0
Sandwicensin (369)	-115.6	-119.3	-103.1	-106.3	-116.4	-120.1	-94.8	-97.8	-98.5	-101.6
Variabilin (370)	-103.9	-111.5	-85.6	-91.9	-107.1	-115.0	-83.4	-89.5	-73.5	-78.9
ent-Sophoracarpan A (361)	-106.2	-114.0	-76.3	-82.0	-99.0	-106.2	-89.4	-96.0	-82.8	-88.9

	EcTo	opoIV	EcC	GyrB	MtC	GyrB	Mt	tPtp	Hs	Ptp
Ligand	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm
Chromones										
3-(3-Hydroxy-4-methoxybenzylidene)-6,7-dimethoxy-4-chromanone (371)	-123.1	-126.5	-98.9	-101.6	-116.1	-119.3	-86.7	-89.1	-75.0	-77.1
4′,5,7-Trihydroxy-6,8-dimethylhomoisoflavanone (372)	-102.9	-108.9	-93.5	-98.8	-97.9	-103.6	-83.4	-88.2	-84.3	-89.1
4',5,7-Trihydroxy-6-methylhomoisoflavanone (373)	-99.8	-107.1	-93.5	-100.4	-104.1	-111.8	-86.2	-92.6	-82.2	-88.2
7-O-Methylbonducellin (374)	-108.5	-117.0	-94.7	-102.1	-108.5	-117.0	-83.2	-89.8	-77.7	-83.8
8-Methylophiopogonanone B (375)	-113.2	-118.0	-91.8	-95.7	-110.5	-115.1	-82.9	-86.4	-77.3	-80.6
Bonducellin (376)	-102.6	-112.4	-88.3	-96.8	-104.4	-114.4	-94.8	-103.9	-85.8	-94.1
Odoratumone A (377)	-117.1	-120.2	-95.2	-97.7	-117.5	-120.6	-88.2	-90.5	-74.8	-76.8
Sappanone A 3',4'-methylene ether (378)	-110.6	-119.3	-96.3	-103.9	-109.0	-117.6	-96.1	-103.6	-90.8	-97.9
Sappanone A 4'-methyl ether (379)	-108.5	-116.7	-95.2	-102.4	-108.3	-116.6	-96.6	-104.0	-90.5	-97.4
Sappanone A trimethyl ether (380)	-123.0	-128.4	-103.8	-108.4	-123.7	-129.1	-87.5	-91.4	-85.4	-89.2
Condensed Tannins										
GB 1 (381)	no dock	no dock	-35.1	-30.7	-37.2	-32.5	-103.7	-90.5	-79.9	-69.8
Proanthocyanidin A ₁ (382)	-80.6	-69.6	-104.7	-90.5	-41.3	-35.7	-111.7	-96.5	-96.1	-83.0
Proanthocyanidin A ₂ (383)	-70.8	-61.1	-94.8	-81.9	-21.3	-18.4	-107.4	-92.8	-104.1	-89.9
Procyanidin B ₄ (384)	-66.7	-57.6	-97.2	-83.9	no dock	no dock	-119.8	-103.3	-65.5	-56.5
Procyanidin B ₅ (385)	-68.4	-59.1	-61.6	-53.1	-41.8	-36.0	-115.2	-99.4	-88.3	-76.2
Procyanidin B ₆ (386)	-74.6	-64.4	no dock	no dock	-47.5	-41.0	-119.6	-103.2	-104.0	-89.7
Teatannin (387)	-139.2	-131.4	-62.8	-59.3	-143.4	-135.3	-116.0	-109.5	-108.3	-102.2
Coumarins										
4,5',8'-Trihydroxy-5-methyl-3,7'-bicoumarin (344)	-109.2	-111.2	-104.3	-106.2	-112.1	-114.1	-94.5	-96.2	-93.1	-94.7
6-Geranyl-5,7-dihydroxy-8(2-methylbutanoyl)-4-phenylcoumarin (345)	-154.6	-142.5	-112.3	-103.6	-166.5	-153.4	-113.8	-104.9	-120.1	-110.7
(–)-Heliettin (354)	-79.0	-100.9	-66.0	-84.4	-79.6	-101.7	-81.8	-104.6	-77.4	-98.9
Aesculin (347)	-115.1	-118.5	-108.7	-112.0	-115.1	-118.5	-89.2	-91.9	-93.3	-96.1
Alloimperatorin (346)	-103.5	-115.1	-95.0	-105.7	-103.4	-115.0	-93.1	-103.6	-95.9	-106.6
Anofinic acid (348)	-86.1	-105.1	-75.2	-91.8	-90.1	-110.0	-75.7	-92.5	-88.4	-108.0
Calaustralin (349)	-125.0	-121.5	-95.8	-93.2	-120.0	-116.6	-92.8	-90.2	-101.5	-98.7
Calophyllolide (350)	-112.3	-108.1	-85.2	-82.0	-114.2	-110.0	-99.2	-95.5	-12.5	-12.0
Dicoumarol (351)	-114.7	-118.6	-80.0	-82.7	-115.5	-119.4	-88.1	-91.1	-85.1	-88.0
Dipetalolactone (352)	-100.0	-106.2	-83.5	-88.7	-89.6	-95.2	-84.0	-89.2	-75.1	-79.8
Glycycoumarin (353)	-116.4	-116.7	-110.0	-110.3	-124.0	-124.3	-103.9	-104.2	-101.6	-101.9
Marmesin (355)	-96.2	-110.3	-81.6	-93.6	-96.9	-111.1	-94.6	-108.5	-93.4	-107.1

Licond	ЕсТо	poIV	EcC	GyrB	MtC	GyrB	Mt	Ptp	Hs	Ptp
Liganu	Edock	DS _{norm}	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm
Stilbenoids										
2-(2,4-Dihydroxyphenyl-5-(1-propenyl)benzofurans (388)	-106.3	-118.8	-98.6	-110.2	-111.2	-124.3	-90.3	-100.9	-94.9	-106.1
Albanol A (389)	no dock	no dock	-85.8	-74.8	no dock	no dock	-117.8	-102.6	-97.4	-84.8
Albanol B (390)	-124.6	-108.8	-99.3	-86.7	-77.3	-67.5	-114.8	-100.2	-87.8	-76.7
Amorfrutin A (391)	-121.4	-125.0	-111.8	-115.1	-117.7	-121.2	-100.0	-103.0	-97.4	-100.3
Cajaninstilbene acid (392)	-122.8	-126.7	-117.7	-121.4	-117.5	-121.2	-96.0	-99.0	-96.4	-99.4
Calodenin B (393)	-160.9	-143.4	-143.2	-127.7	-143.4	-127.8	-138.4	-123.4	-124.1	-110.6
Centrolobofuran (394)	-95.5	-108.1	-100.9	-114.2	-100.1	-113.4	-89.5	-101.4	-92.8	-105.0
Cochinchinenene A (395)	-134.0	-118.3	-87.8	-77.5	-97.1	-85.7	-124.2	-109.6	-99.0	-87.3
Cochinchinenene B (396)	-147.2	-132.2	-118.2	-106.2	-151.4	-136.0	-126.2	-113.3	-98.9	-88.9
Cochinchinenene C (397)	-142.5	-129.2	-104.2	-94.5	-139.6	-126.5	-115.1	-104.4	-90.8	-82.3
Cochinchinenene D (398)	-140.2	-128.3	-98.1	-89.8	-134.9	-123.5	-107.7	-98.6	-109.3	-100.1
Egonol (399)	-126.3	-131.8	-111.4	-116.3	-123.3	-128.8	-108.9	-113.8	-97.6	-102.0
Erypoegin F (400)	-128.1	-130.4	-121.7	-123.9	-133.4	-135.8	-97.8	-99.6	-114.0	-116.0
Erythbidin E (401)	-99.8	-112.9	-94.8	-107.3	-99.3	-112.4	-89.2	-101.0	-92.2	-104.3
Eryvarin Q (402)	-143.2	-139.0	-121.3	-117.7	-134.3	-130.4	-108.5	-105.4	-65.7	-63.8
Gancaonin I (403)	-125.3	-127.3	-105.9	-107.6	-124.1	-126.1	-102.0	-103.6	-104.0	-105.7
Glyinflanin H (404)	-110.0	-117.0	-86.0	-91.5	-106.9	-113.7	-93.1	-99.0	-92.1	-98.1
Kuwanol A (405)	no dock	no dock	-94.5	-82.2	-33.8	-29.4	-91.3	-79.4	-97.8	-85.0
Licobenzofuran (406)	-134.2	-136.3	-111.7	-113.5	-129.4	-131.5	-114.2	-116.1	-86.1	-87.5
Licocoumarone (407)	-122.8	-126.4	-102.4	-105.5	-121.4	-125.0	-100.6	-103.6	-103.9	-107.0
Mulberrofuran D (408)	-150.0	-141.1	-137.9	-129.8	-151.2	-142.2	-118.1	-111.1	-101.6	-95.5
Mulberrofuran Y (409)	-153.9	-149.2	-127.2	-123.2	-146.2	-141.7	-124.5	-120.7	-115.6	-112.0
Pinosylvin (410)	-86.0	-103.7	-83.5	-100.6	-84.6	-102.0	-81.6	-98.3	-88.2	-106.3
Schweinfurthin A (411)	-48.3	-42.4	no dock	no dock	no dock	no dock	-133.1	-116.9	-76.9	-67.5
Shanciguol 3-methyl ether (412)	-130.9	-123.5	-113.4	-107.0	-123.4	-116.4	-112.2	-105.9	-102.5	-96.7
Stemofuran R (413)	-117.3	-122.2	-90.5	-94.3	-115.9	-120.8	-84.2	-87.7	-79.7	-83.1
Stilbostemin S (414)	-100.6	-109.5	-100.4	-109.3	-106.4	-115.8	-89.5	-97.4	-80.6	-87.7
Thunberginol F (415)	-96.1	-106.9	-95.4	-106.1	-101.3	-112.6	-96.9	-107.8	-98.8	-109.8
(7 <i>E</i> ,7′ <i>R</i> ,8′ <i>R</i>)-ε-Viniferin (416)	-121.2	-113.4	-113.6	-106.3	-108.8	-101.8	-108.8	-101.7	-109.2	-102.1
(7 <i>E</i> ,7′ <i>S</i> ,8′ <i>S</i>)-ε-Viniferin (41 7)	-133.0	-124.4	-95.4	-89.3	-127.6	-119.3	-111.9	-104.6	-114.7	-107.2

	ЕсТо	poIV	EcC	GyrB	MtC	GyrB	M	Ptp	Hs	Ptp
Ligand	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}
Phenylpropanoids and Lignans										
(E)-Cinnamaldehyde (418)	-72.2	-101.8	-60.9	-86.0	-73.9	-104.3	-64.7	-91.3	-65.9	-93.0
3,4-Dimethylcinnamaldehyde (419)	-79.6	-105.4	-70.3	-93.1	-82.3	-109.0	-69.9	-92.6	-73.9	-97.8
Methyleugenol (422)	-79.9	-102.1	-73.4	-93.7	-82.3	-105.2	-70.5	-90.1	-75.4	-96.3
<i>p</i> -Coumaraldehyde (420)	-76.9	-104.4	-65.4	-88.9	-77.5	-105.3	-69.2	-94.1	-73.4	-99.8
<i>p</i> -Methoxycinnamaldehyde (421)	-76.9	-101.4	-72.3	-95.3	-80.3	-105.8	-69.4	-91.5	-73.4	-96.8
(-)-Asarinin (423)	-137.5	-139.7	-103.8	-105.4	-134.7	-136.8	-101.8	-103.5	-98.2	-99.8
Nordihydroguaiaretic acid (424)	-112.3	-120.3	-94.7	-101.5	-110.9	-118.8	-97.6	-104.5	-95.1	-101.8
Xanthones										
2-Deoxy-4-Hydroxycudratricusxanthone D (425)	-126.3	-123.8	-93.9	-92.1	-112.0	-109.8	-92.4	-90.6	-96.8	-94.9
Calozeyloxanthone (426)	-81.7	-81.2	-87.9	-87.4	-99.7	-99.1	-80.5	-80.0	-72.2	-71.7
Cycloartobiloxanthone (427)	-106.3	-100.9	-47.1	-44.7	-107.5	-102.0	-94.5	-89.7	-67.6	-64.2
Formoxanthone C (428)	-118.9	-116.4	-103.8	-101.6	-122.4	-119.8	-101.7	-99.5	-102.5	-100.4
Garciniacowone (429)	-131.0	-121.5	-85.4	-79.2	-110.7	-102.6	-115.1	-106.7	-103.2	-95.6
Globulixanthone C (430)	-100.1	-104.5	-77.5	-80.9	-103.0	-107.6	-79.4	-83.0	-90.1	-94.1
Globulixanthone D (431)	-107.6	-110.6	-98.8	-101.5	-109.6	-112.6	-84.6	-87.0	-94.7	-97.3
Globulixanthone E (432)	-61.5	-51.9	-96.8	-81.7	-68.4	-57.7	-107.1	-90.4	-91.6	-77.3
Morellin (433)	no dock	no dock	no dock	no dock	no dock	no dock	-115.0	-101.2	-48.8	-42.9
Nigrolineaxanthone N (434)	-128.2	-125.3	-104.0	-101.6	-126.4	-123.5	-100.6	-98.3	-106.0	-103.6
Pinselin (435)	-98.0	-105.2	-87.3	-93.8	-95.7	-102.8	-78.1	-83.8	-83.0	-89.1
Scortechinone B (436)	no dock	no dock	-65.1	-55.7	no dock	no dock	-125.7	-107.6	-104.2	-89.2
Symphonin (437)	-134.9	-126.4	-112.2	-105.0	-125.9	-118.0	-96.7	-90.6	-93.1	-87.2
Hydrolyzable Tannins										
1,2,3,4,6-Pentagalloylglucose (335)	-65.6	-48.1	-137.4	-100.9	-16.9	-12.4	-170.4	-125.0	-130.1	-95.4
Aceritannin (438)	-151.6	-140.3	-116.8	-108.1	-158.1	-146.4	-118.4	-109.6	-118.4	-109.6
Ginnalin B (439)	-108.1	-114.1	-99.8	-105.3	-113.7	-120.0	-97.2	-102.6	-100.9	-106.5
Ginnalin C (440)	-105.5	-111.3	-99.0	-104.4	-105.8	-111.7	-94.3	-99.5	-104.0	-109.7
Panconoside A (441)	-141.1	-116.6	-118.4	-97.9	-99.7	-82.4	-129.1	-106.7	-85.0	-70.3
Miscellaneous Phenolics										
1,3,7,9-Tetrahydroxy-4,6-dimethyl-2,8-bis(2-methyl-propanoyl)- dibenzofuran (442)	-114.8	-112.0	-89.7	-87.5	-110.1	-107.4	-97.0	-94.7	-58.8	-57.4
2',4'-Dihydroxy-6'-methoxy-3'-methylacetophenone (443)	-85.3	-105.5	-69.2	-85.6	-83.8	-103.7	-69.5	-85.9	-70.6	-87.3

	EcTo	poIV	EcC	GyrB	MtC	GyrB	Mt	Ptp	Hs	Ptp
Ligano	Edock	DS _{norm}								
Miscellaneous Phenolics										
3',4'-Dihydroxyacetophenone (444)	-71.3	-96.0	-63.9	-86.1	-72.2	-97.2	-74.8	-100.7	-73.4	-98.9
4'-O-Methylhonokiol (446)	-109.1	-119.9	-99.7	-109.6	-108.3	-119.0	-85.9	-94.4	-94.2	-103.5
4-Deoxyadhumulone 2 ^{''} ,3 ^{''} -epoxide (445)	-115.3	-116.3	-98.6	-99.4	-111.3	-112.3	-93.3	-94.0	-104.3	-105.1
7-(3,4-Dihydroxy-5-methoxyphenyl)-1-phenyl-4-hepten-3-one (447)	-123.7	-129.2	-100.1	-104.5	-128.8	-134.5	-99.2	-103.6	-100.6	-105.0
Agrimol C (449)	-120.0	-98.6	-101.9	-83.8	-115.8	-95.2	-129.7	-106.7	-84.1	-69.1
Agrimol F (450)	-144.8	-120.7	-113.8	-94.9	-123.0	-102.5	-121.3	-101.2	-98.9	-82.5
Agrimol G (451)	-153.5	-126.2	-95.4	-78.4	-109.1	-89.7	-123.7	-101.7	-95.6	-78.6
Arzanol (452)	-133.2	-129.7	-94.5	-92.0	-132.9	-129.4	-106.5	-103.7	-113.5	-110.5
Aspidinol C (448)	-89.1	-105.5	-76.8	-90.9	-92.4	-109.3	-69.0	-81.7	-79.4	-93.9
Bruguierol C (453)	-81.4	-99.1	-69.5	-84.6	-81.2	-98.8	-81.3	-98.9	-76.9	-93.6
Cearoin (454)	-97.6	-112.3	-89.7	-103.2	-98.3	-113.0	-79.1	-91.0	-87.8	-101.0
Citrusnin A (455)	-102.4	-119.7	-89.3	-104.4	-104.3	-122.0	-87.5	-102.4	-93.3	-109.2
Cochinchinenin B (456)	-155.4	-137.0	-125.2	-110.3	-140.5	-123.9	-145.8	-128.6	-112.3	-99.0
Cochinchinenin C (457)	-155.7	-137.3	-117.3	-103.4	-143.2	-126.3	-135.2	-119.2	-106.1	-93.5
Drummondin D (458)	-112.1	-101.8	-102.5	-93.0	-89.6	-81.4	-118.0	-107.2	-91.9	-83.4
Drummondin E (459)	-147.2	-133.5	-117.7	-106.8	-112.3	-101.8	-116.4	-105.5	-99.6	-90.3
Eleutherol (460)	-90.3	-103.9	-83.8	-96.4	-84.7	-97.4	-76.4	-87.9	-63.0	-72.4
Ellagicacid (461)	-103.2	-110.6	-91.7	-98.3	-100.7	-107.9	-85.7	-91.8	-74.6	-80.0
Epicoccolide A (462)	-105.3	-105.1	-94.6	-94.3	-111.8	-111.6	-88.6	-88.4	-45.9	-45.8
Gibbilimbol A (464)	-99.1	-115.9	-87.7	-102.6	-102.4	-119.8	-85.1	-99.5	-84.9	-99.3
Gibbilimbol B (465)	-95.8	-112.0	-87.8	-102.6	-102.3	-119.7	-82.8	-96.8	-87.4	-102.2
Grifolin (466)	-127.7	-133.1	-98.6	-102.7	-130.6	-136.0	-106.6	-111.1	-90.8	-94.7
Hyperbrasilol A (467)	-126.0	-109.4	-97.7	-84.8	-128.1	-111.1	-113.9	-98.9	-99.3	-86.2
Hyperbrasilol B (468)	-129.5	-113.4	-74.5	-65.2	-95.0	-83.3	-105.4	-92.4	-97.0	-85.0
Hyperbrasilol C (469)	-97.7	-85.5	-122.7	-107.4	-121.5	-106.3	-110.2	-96.5	-108.5	-94.9
Isodrummondin D (470)	-117.5	-106.7	-91.0	-82.6	-106.3	-96.5	-108.8	-98.8	-88.1	-80.0
Isohyperbrasilol B (471)	-129.2	-113.2	-110.1	-96.4	-119.5	-104.7	-116.1	-101.7	-83.9	-73.5
Isouliginosin B (472)	-117.3	-106.4	-110.7	-100.3	-122.5	-111.1	-118.8	-107.8	-84.6	-76.7
Italipyrone (473)	-126.0	-122.9	-100.0	-97.6	-130.7	-127.5	-112.3	-109.6	-91.9	-89.6
Knerachelin A (474)	-122.6	-131.6	-108.9	-117.0	-121.2	-130.1	-94.5	-101.5	-92.3	-99.0
Knerachelin B (475)	-110.8	-123.2	-99.8	-111.0	-111.1	-123.5	-84.2	-93.6	-90.8	-101.0

	EcTo	opoIV	EcC	GyrB	MtC	GyrB	Mt	Ptp	Hs	Ptp
Ligand	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}
Miscellaneous Phenolics										
Magnolol (476)	-101.7	-113.7	-92.5	-103.3	-103.1	-115.2	-87.0	-97.2	-79.1	-88.4
Myrtucommulone A (477)	-94.6	-77.7	-82.4	-67.8	no dock	no dock	-129.0	-106.1	-106.7	-87.7
Myrtucommulone B (478)	-42.0	-40.5	-77.0	-74.2	-49.4	-47.6	-74.2	-71.6	-76.5	-73.8
Obovatol (479)	-111.1	-121.8	-87.1	-95.5	-109.0	-119.4	-93.3	-102.3	-85.5	-93.7
Oenostacin (480)	-112.5	-125.7	-101.7	-113.6	-110.6	-123.6	-99.4	-111.1	-106.0	-118.4
Paeonol (481)	-80.1	-104.8	-65.8	-86.1	-78.0	-102.0	-74.2	-97.1	-76.4	-99.9
Perlatolic acid (482)	-144.5	-136.1	-112.3	-105.8	-140.9	-132.7	-121.1	-114.1	-109.0	-102.7
Plicatipyrone (483)	-114.3	-109.9	-93.0	-89.4	-120.6	-116.0	-101.0	-97.1	-79.5	-76.4
Propterol (484)	-92.7	-106.6	-85.4	-98.2	-96.4	-110.9	-83.7	-96.2	-87.8	-101.0
Pulverulentone B (485)	-99.5	-115.3	-80.5	-93.3	-100.2	-116.2	-73.4	-85.1	-79.1	-91.7
Quinquangulin (486)	-103.2	-112.6	-93.4	-101.9	-102.6	-111.9	-78.3	-85.4	-80.9	-88.3
Rhodomyrtone (487)	-75.2	-71.0	-94.6	-89.3	-39.1	-36.9	-100.6	-94.9	-96.9	-91.4
Rosmarinic acid (488)	-126.0	-127.3	-112.1	-113.3	-136.8	-138.2	-107.2	-108.3	-106.5	-107.6
Rubanthrone A (489)	-113.5	-112.8	-96.5	-96.0	-114.8	-114.2	-99.7	-99.1	-88.0	-87.5
Sampsone A (490)	-102.4	-101.3	-102.1	-100.9	-71.2	-70.4	-89.3	-88.3	-67.7	-67.0
Sarothralen B (491)	-40.1	-34.8	-99.2	-86.2	-96.1	-83.5	-99.6	-86.6	-70.4	-61.2
Sarothralen C (492)	-54.5	-46.8	-31.4	-27.0	-115.6	-99.4	-115.3	-99.1	-61.0	-52.4
Sarothralen D (493)	-127.3	-109.5	-130.9	-112.6	-119.5	-102.7	-117.1	-100.7	-104.1	-89.5
Shikonofuran C (494)	-133.7	-135.3	-103.4	-104.7	-123.6	-125.1	-102.4	-103.7	-109.1	-110.4
Shikonofuran D (495)	-126.6	-129.9	-110.3	-113.1	-126.9	-130.1	-103.4	-106.1	-105.3	-108.0
Shikonofuran E (496)	-126.6	-128.4	-113.5	-115.1	-134.9	-136.8	-105.2	-106.7	-109.5	-111.1
Sinapic acid (497)	-100.7	-119.2	-83.6	-98.9	-106.4	-125.9	-89.9	-106.4	-92.4	-109.4
Walrycin A (498)	-75.6	-97.4	-66.0	-85.0	-75.8	-97.5	-64.8	-83.4	-71.6	-92.2
Quinones										
2,6-Dimethoxy-1,4-benzoquinone (336)	-77.5	-101.0	-66.2	-86.3	-80.9	-105.4	-61.5	-80.1	-63.7	-82.9
2-Methyl-6-prenyl-1,4-benzoquinone (337)	-86.8	-108.5	-80.2	-100.3	-90.5	-113.1	-81.8	-102.2	-78.9	-98.7
Omphalone (499)	-91.7	-115.1	-79.2	-99.3	-87.4	-109.7	-78.2	-98.2	-81.9	-102.7
Primin (500)	-88.9	-107.9	-89.0	-108.0	-92.3	-112.0	-79.0	-95.8	-78.6	-95.4
1,4-Naphthoquinone (338)	-71.2	-94.6	-64.6	-85.9	-69.4	-92.2	-57.8	-76.8	-66.9	-88.9
2-Acetylnaphtho[2,3- <i>b</i>]furan-4,9-dione (339)	-98.4	-113.8	-91.9	-106.3	-97.3	-112.6	-82.4	-95.3	-93.1	-107.7
Alkannin (340)	-103.1	-112.2	-94.3	-102.6	-97.0	-105.5	-88.4	-96.2	-60.7	-66.1

Linend	EcTo	opoIV	EcC	GyrB	MtC	GyrB	M	tPtp	Hs	Ptp
Ligand	Edock	DS _{norm}								
Quinones										
Isobutyrylshikonin (341)	-122.6	-124.1	-101.9	-103.2	-115.6	-117.0	-90.3	-91.4	-74.4	-75.3
Lapachol (501)	-95.5	-110.1	-90.4	-104.3	-91.7	-105.8	-75.2	-86.7	-86.9	-100.3
Mamegakinone (502)	-112.2	-111.9	-89.4	-89.2	-111.0	-110.7	-87.8	-87.6	-83.8	-83.6
Menadione (503)	-75.5	-97.6	-70.0	-90.4	-72.4	-93.6	-61.6	-79.6	-70.6	-91.3
Rhinacanthin C (504)	-145.5	-140.7	-99.2	-96.0	-143.5	-138.8	-104.8	-101.4	-97.3	-94.1
Rhinacanthin D (505)	-145.7	-141.2	-98.3	-95.2	-151.8	-147.1	-104.8	-101.6	-107.6	-104.2
Rhinacanthin G (506)	-142.4	-136.0	-111.1	-106.2	-147.4	-140.8	-102.9	-98.3	-95.8	-91.5
Rhinacanthin H (507)	-155.9	-148.9	-107.4	-102.6	-140.9	-134.6	-104.7	-100.0	-101.1	-96.6
Rhinacanthin I (508)	-142.1	-135.7	-119.4	-114.1	-146.1	-139.6	-104.6	-99.9	-108.7	-103.9
Rhinacanthin J (509)	-137.0	-131.1	-98.0	-93.7	-153.2	-146.5	-110.6	-105.8	-111.7	-106.9
Rhinacanthin K (510)	-145.0	-136.6	-108.8	-102.5	-142.7	-134.4	-113.5	-106.9	-104.8	-98.7
Rhinacanthin L (511)	-146.7	-136.6	-102.7	-95.6	-146.1	-136.0	-110.6	-103.0	-97.9	-91.2
Rhinacanthin M (512)	-133.5	-134.4	-110.1	-110.8	-131.2	-132.1	-94.2	-94.8	-92.3	-93.0
Shikonin acetate (513)	-110.7	-115.2	-91.7	-95.3	-109.2	-113.6	-99.7	-103.7	-89.0	-92.5
β,β-Dimethylacrylshikonin (514)	-125.9	-126.0	-106.0	-106.2	-122.4	-122.6	-99.5	-99.7	-77.4	-77.5
β-Hydroxyisovaleryshikonin (515)	-123.2	-121.4	-104.1	-102.6	-124.3	-122.5	-101.6	-100.1	-99.3	-97.9
1-Hydroxy-3-hydroxymethylanthraquinone (516)	-95.5	-108.4	-84.0	-95.3	-92.7	-105.2	-79.7	-90.5	-84.5	-95.9
Aloeemodin (518)	-96.3	-107.1	-85.3	-94.9	-96.2	-107.0	-80.0	-89.0	-85.6	-95.2
Islandicin (519)	-91.5	-101.7	-80.1	-89.1	-87.7	-97.6	-75.2	-83.6	-70.8	-78.8
Newbouldiaquinone (521)	-95.3	-93.4	-93.4	-91.6	-96.9	-95.0	-93.8	-92.0	-86.7	-85.0
Newbouldiaquinone A (520)	-132.6	-128.3	-88.9	-86.0	-133.8	-129.5	-106.6	-103.1	-94.9	-91.9
Rhein (522)	-101.3	-110.8	-91.0	-99.5	-101.3	-110.8	-80.8	-88.4	-95.8	-104.8
15,16-Dihydrotanshinone I (517)	-96.1	-105.8	-80.7	-88.9	-93.2	-102.6	-74.5	-82.1	-72.5	-79.8
Acetylene, Glucoside, and Other Miscellaneous Phytochemicals										
1,7-Diphenyl-4-(2-phenylethyl)-1-heptene-3,5-dione (530)	-138.6	-137.3	-108.3	-107.3	-135.2	-133.9	-115.7	-114.6	-103.7	-102.8
1,7-Diphenyl-5-hepten-3-one (531)	-107.5	-120.4	-100.8	-112.9	-110.4	-123.7	-88.4	-99.0	-87.3	-97.8
3'-Demothexycyclocurcumin (532)	-122.3	-126.2	-91.0	-93.9	-121.0	-124.9	-112.7	-116.2	-99.0	-102.2
5,7-Dihydroxyphthalide (533)	-74.6	-97.6	-64.7	-84.6	-75.0	-98.1	-72.3	-94.5	-73.2	-95.7
6-Methyl-4,5-dithia-2-octene (534)	-66.5	-87.6	-60.1	-79.2	-67.5	-89.0	-57.5	-75.8	-61.2	-80.7
7-Epiclusianone (535)	-105.3	-95.2	-102.8	-92.9	-101.1	-91.4	-105.1	-95.1	-97.4	-88.1

Ligand	EcTo	opoIV	EcC	GyrB	MtC	GyrB	Mi	Ptp	Hs	Ptp
Ligand	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}
Acetylene, Glucoside, and Other Miscellaneous Phytochemicals										
Allamandin (536)	-103.4	-110.1	-101.6	-108.1	-99.3	-105.7	-95.2	-101.3	-81.8	-87.1
Allicin (537)	-72.4	-95.4	-61.9	-81.6	-69.8	-92.0	-59.7	-78.6	-65.3	-86.0
Amadannulen (538)	-110.1	-109.6	-102.9	-102.5	-82.5	-82.1	-99.7	-99.3	-110.5	-110.0
Anemonin (539)	-86.9	-108.3	-65.0	-81.0	-90.4	-112.7	-80.5	-100.3	-41.5	-51.7
Antibiotic CZ 34 (540)	-85.8	-102.2	-83.0	-98.8	-87.1	-103.7	-79.5	-94.6	-80.2	-95.4
Argutone (541)	-83.6	-105.3	-68.8	-86.6	-81.2	-102.3	-77.0	-97.0	-78.7	-99.1
Bakuchiol (542)	-103.0	-116.6	-90.8	-102.8	-103.6	-117.2	-89.6	-101.4	-94.5	-107.0
Brasiliensophyllic acid A (543)	-101.8	-88.7	-101.7	-88.7	-93.0	-81.1	-121.4	-105.8	-72.6	-63.3
Brasiliensophyllic acid C (544)	-110.4	-95.4	-108.3	-93.6	-96.8	-83.7	-129.6	-112.1	-105.9	-91.6
Centrolobin (545)	-116.5	-123.4	-94.4	-100.0	-119.7	-126.8	-88.9	-94.2	-93.5	-99.0
Chamone I (546)	-102.3	-88.6	-107.6	-93.3	-109.9	-95.3	-111.1	-96.3	-97.7	-84.7
Chamone II (547)	-109.3	-94.9	-104.3	-90.5	no dock	no dock	-108.4	-94.1	-66.3	-57.5
Champanone A (548)	-105.8	-119.8	-91.8	-104.0	-105.5	-119.5	-86.2	-97.5	-91.8	-103.9
Dhelwangin (549)	-94.5	-111.9	-94.5	-111.8	-100.7	-119.2	-78.0	-92.3	-82.8	-98.0
Garcinoic acid (550)	-148.8	-142.1	-106.8	-102.0	-151.0	-144.2	-131.6	-125.7	-103.9	-99.3
Ginkgolide A (551)	-48.2	-46.7	-91.8	-88.9	-51.4	-49.8	-96.8	-93.8	-36.7	-35.6
Guttiferone E (552)	-90.7	-77.2	-119.6	-101.8	-116.8	-99.4	-136.4	-116.1	-102.5	-87.3
Helipyrone B (553)	-102.4	-109.2	-94.8	-101.1	-104.1	-111.0	-78.7	-84.0	-77.0	-82.1
Helipyrone C (554)	-97.0	-105.1	-91.3	-98.9	-98.0	-106.1	-73.2	-79.3	-64.0	-69.3
Ialibinone A (555)	-86.5	-88.8	-84.5	-86.7	-85.0	-87.2	-87.0	-89.2	-77.9	-79.9
Ialibinone B (556)	-56.5	-57.9	-81.3	-83.4	-30.3	-31.0	-87.6	-89.9	-70.1	-71.9
Ialibinone C (557)	-93.8	-94.9	-89.0	-90.1	-94.0	-95.1	-94.9	-96.0	-87.7	-88.7
Ialibinone D (558)	-38.3	-38.8	-91.8	-92.9	-81.6	-82.6	-86.5	-87.6	-79.8	-80.8
Isobrasiliensophyllic acid A (559)	-97.3	-84.8	-103.3	-90.0	-96.0	-83.7	-131.0	-114.2	-83.2	-72.6
Moskachan C (560)	-92.1	-109.3	-90.5	-107.5	-95.0	-112.8	-86.1	-102.2	-83.4	-99.0
Nimbolide (561)	-37.6	-34.9	-77.1	-71.4	-67.9	-63.0	-107.4	-99.5	-82.6	-76.6
Pectinolide H (562)	-112.0	-124.8	-98.6	-109.9	-117.0	-130.4	-93.2	-103.9	-97.7	-108.9
Propolone A (563)	-107.8	-97.5	-100.7	-91.1	-70.1	-63.4	-108.5	-98.1	-78.0	-70.6
Sellovicine B (564)	-98.7	-115.1	-93.4	-108.9	-98.2	-114.5	-79.9	-93.2	-88.5	-103.2
Simonin A (565)	-109.7	-105.6	-94.3	-90.8	-102.8	-99.0	-113.8	-109.5	-85.5	-82.3

Ligand	ЕсТо	poIV	EcC	GyrB	MtC	GyrB	Mt	Ptp	Hs	Ptp
Liganu	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm
Acetylene, Glucoside, and Other Miscellaneous Phytochemicals										
Tenulin (566)	-102.9	-109.7	-74.4	-79.4	-101.6	-108.3	-82.0	-87.5	-66.7	-71.1
Atractylodin (522)	-93.5	-118.6	-86.5	-109.6	-92.2	-116.9	-75.8	-96.1	-80.7	-102.4
Atractylodinol (523)	-100.8	-124.3	-91.0	-112.2	-97.4	-120.1	-84.5	-104.2	-85.4	-105.3
Capillene (342)	-71.8	-96.3	-68.5	-91.8	-70.1	-94.0	-65.1	-87.2	-71.6	-96.0
Peniophorin A (524)	-116.7	-127.9	-97.5	-106.9	-112.5	-123.3	-95.5	-104.7	-89.5	-98.1
Peniophorin B (525)	-97.9	-118.0	-89.8	-108.3	-104.4	-125.8	-86.9	-104.8	-88.6	-106.8
Thiarubrin A (526)	-93.0	-109.4	-92.0	-108.2	-90.0	-105.8	-73.2	-86.1	-75.1	-88.4
Arbutin (527)	-93.4	-103.6	-86.0	-95.4	-89.1	-98.9	-87.1	-96.6	-90.3	-100.2
Aucubin (528)	-105.2	-107.7	-98.2	-100.5	-110.1	-112.7	-93.1	-95.3	-79.9	-81.8
Diospyrodin (529)	-122.2	-129.2	-101.7	-107.5	-105.4	-111.5	-97.3	-102.9	-96.2	-101.8
Known/Synthetic Inhibitors										
(–)-Epicatechin	-95.4	-103.6	-90.6	-98.3	-93.5	-101.6	-	-	-	-
(–)-Epicatechin gallate	-140.4	-132.5	-87.6	-82.6	-143.4	-135.3	-	-	-	-
(–)-Epigallocatechin	-95.9	-102.3	-91.8	-97.9	-98.5	-105.0	-	-	-	-
(–)-Epigallocatechin 3-gallate	-141.3	-131.8	-90.8	-84.7	-142.9	-133.3	-	-	-	-
Norfloxacin	-123.6	-130.0	-94.0	-98.9	-112.3	-118.2	-	-	-	-
Novobiocin	-119.7	-101.2	-114.2	-96.6	-120.7	-102.1	-	-	-	-
Quercetin (272)	-102.9	-110.3	-94.1	-100.8	-96.8	-103.7	-	-	-	-
3461-2296 [97] (573)	-	-	-	-	-	-	-99.3	-102.5	-	-
4236-0754 [97] (574)	-	-	-	-	-	-	-102.1	-101.3	-	-
5591-1074 [97] (575)	-	-	-	-	-	-	-115.1	-110.7	-	-
C609-0168 [97] (576)	-	-	-	-	-	-	-104.2	-98.4	-	-
C609-0177 [97] (577)	-	-	-	-	-	-	-110.9	-100.0	-	-
C609-0383 [97] (578)	-	-	-	-	-	-	-128.2	-117.5	-	-

^a Compounds shown in red font violate Lipinski's rule-of-five [62].

Several phytochemical ligands that showed strong docking to bacterial PDFs (see above) also docked strongly to the ATP-binding sites of EcTopoIV or MtGyrB. Angusticornin B (182), kanzonol C (193), and mulberrofuran D (408) docked well with both EcTopoIV ($E_{dock} = -154.9$, -151.6, and -150.0 kJ/mol, respectively) and MtGyrB ($E_{dock} = -151.8$, -159.8, and -151.2 kJ/mol, respectively). Likewise, piperaduncin B (197), garcinoic acid (550), and cochinchinenene B (396) docked to MtGyrB with $E_{dock} = -152.4$, -151.0, and -151.5 kJ/mol, respectively. Rhinacanthin H (507) and mulberrofuran Y (409) docked to EcTopoIV with docking energies of -155.9 and -153.9 kJ/mol, respectively. The Rhinacanthins showed general docking selectivity for the ATP site of either EcTopoIV or MtGyrB.

Wu and co-workers have examined the *E. coli* gyrase B inhibitory activity of several flavonoids [98]. Although none of the flavonoids were strong inhibitors, kaempferol (242) was the best with $IC_{50} = 0.037 \text{ mg/mL}$, followed by quercetin (272) ($IC_{50} = 0.076 \text{ mg/mL}$), chrysin (233) ($IC_{50} = 0.18 \text{ mg/mL}$), and myricetin (261) ($IC_{50} = 1.18 \text{ mg/mL}$). There is no correlation between these gyrase inhibitions and the docking energies to EcgyrB ($E_{dock} = -90.1, -94.6, -87.1, \text{ and } -99.3 \text{ kJ/mol}$, respectively), except that these compounds are all relatively poor docking flavonoids and are also weak EcGyrB inhibitors.

3.3. Protein Tyrosine Phosphatase

Docking scores for antibacterial phytochemical ligands with *M. tuberculosis* protein tyrosine phosphatase (Ptp) are summarized in Table 3. A number of synthetic *M. tuberculosis* Ptp inhibitors have previously been described [97]. Several of these compounds have been docked into the crystal structure of MtPtp (Figure 27, Table 3). The strongest docking of these was compound C609-0383 (578) ($E_{dock} = -128.2 \text{ kJ/mol}$). Except for the outlier, compound 4236-0754 (574) ($IC_{50} = 1.2 \mu M$, $E_{dock} = -107.7 \text{ kJ/mol}$), the docking scores for the ligands paralleled the experimental enzyme inhibitory data. Only two phytochemical ligands showed docking scores comparable to compound C609-0383 (578); angusticornin B (182) ($E_{dock} = -127.3 \text{ kJ/mol}$) and garcinoic acid (550) ($E_{dock} = -131.6 \text{ kJ/mol}$). Both of these ligands, however, are shown to be promiscuous docking compounds, strongly docking to many of the proteins investigated.

Figure 27. Structures of the synthetic protein tyrosine phosphatase inhibitors.

3.4. UDP-Galactopyranose Mutase

Three phenolic ligands showed strong, selective docking to *M. tuberculosis* UGM (Table 4). Drummondin D (458) and drummondin E (459) had docking energies of -134.4 and -138.3 kJ/mol, respectively, which were not as strong as the docking energy of the substrate (UDP-D-galactopyranose,

 $E_{dock} = -162.1 \text{ kJ/mol}$, but were stronger than known synthetic inhibitors of MtUGM (Figure 28), (4-chlorophenyl)-[1-(4-chlorophenyl)-3-hydroxy-5-methyl-1*H*-pyrazol-4-yl]-methanone (579) ($E_{dock} = -103.7 \text{ kJ/mol}$), 3-(4-iodophenyl)-2-[4-(3,4-dichlorophenyl)-thiazol-2-ylamino]-propionic acid (580) ($E_{dock} = -112.3 \text{ kJ/mol}$) [99], and 3-phenyl-2-[5-(3-chlorobenzylidene)-2-thioxo-4-thiazolidinone] -propionic acid (581) ($E_{dock} = -120.5 \text{ kJ/mol}$) [100]. Both drummondin D (458) and E (459) showed excellent antibacterial activities against *Staphylococcus aureus*, *Bacillus subtilis*, and *Mycobacterium smegmatis* [101]. Although it violates the rule-of-five for drug likeness [66], hyperbrasilol C (469) (MW = 554.67) also showed strong selective docking to MtUGM with a docking energy of -149.3 kJ/mol; this compound showed antibacterial activity against *Bacillus subtilis* [102].

Figure 28. Structures of synthetic UDP-galactopyranose mutase inhibitors.

3.5. Cytochrome P450 CYP121

 ε -Viniferin (416, 417) showed good docking properties with MtCYP121 (E_{dock} = -134.4 and -134.6 kJ/mol, respectively), stronger than the co-crystallized ligand, 4-[5-amino-4-(3'-amino [1,1'-biphenyl]-3-yl)-1*H*-pyrazol-3-yl]phenol (585) (E_{dock} = -124.2 kJ/mol), or the synthetic MtCYP121 inhibitor, 4,4'-{3-[(4-hydroxyphenyl)-amino]-1*H*-pyrazole-4,5-diyl}diphenol (583) [53] (Figure 29, E_{dock} = -119.2 kJ/mol). However, these ε -viniferin diastereomers also docked well with EcPDF (Edock = -134.0 and -134.3 kJ/mol, respectively). 3'''-(2-Hydroxybenzyl)isouvarinol (218) was selective for MtCYP121 (Edock = -179.4 kJ/mol), but violates the rule-of-five (MW = 680.74, 6 hydroxyl groups).

Figure 29. Structures of the synthetic cytochrome P450 CYP121 inhibitors.

Licend	MtU	JGM	MtC	YP121	EcL	igA	Mtl	LigA	SaI	ligA
Ligand	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Indole Alkaloids										
1-Hydroxy-6,7-dimethoxy-3-methylcarbazole (1)	-80.2	-90.7	-93.5	-105.7	-91.7	-103.7	-84.7	-95.7	-99.7	-112.7
11-Methoxytubotaiwine (2)	-82.4	-83.7	-91.6	-93.0	-113.5	-115.3	-86.8	-88.2	-88.9	-90.3
12-Methoxy-4-methylvoachalotine (3)	-98.3	-95.0	-91.6	-88.6	-103.3	-99.8	-68.4	-66.1	-88.4	-85.5
3-Prenylindole (4)	-77.8	-98.1	-84.1	-106.1	-78.8	-99.4	-82.0	-103.4	-86.8	-109.5
Affinisine (5)	-84.8	-90.2	-83.4	-88.8	-97.0	-103.2	-66.4	-70.7	-89.9	-95.7
Apparicine (6)	-82.4	-92.3	-78.8	-88.2	-87.2	-97.7	-78.1	-87.5	-82.9	-92.8
Aristolactam I (7)	-95.0	-102.8	-98.9	-107.1	-101.9	-110.3	-91.4	-98.9	-107.1	-115.9
Clausenawalline A ^a (8)	no dock	no dock	-110.2	-96.3	-103.7	-90.7	-64.2	-56.1	-90.4	-79.0
Cryptoheptine (9)	-85.2	-95.7	-82.6	-92.8	-88.4	-99.2	-67.3	-75.6	-95.6	-107.3
Diploceline (10)	-82.0	-82.1	-97.4	-97.6	-112.5	-112.8	-96.5	-96.7	-54.6	-54.7
Discarine B (11)	-91.2	-78.9	-138.3	-119.7	-55.6	-48.1	-89.1	-77.1	-116.2	-100.5
Ibogamine (12)	-84.5	-92.8	-83.5	-91.7	-88.9	-97.6	-87.7	-96.4	-87.5	-96.1
Iboxygaine (13)	-101.4	-105.8	-96.1	-100.3	-104.7	-109.3	-98.0	-102.3	-103.3	-107.9
Isovoacangine (14)	-94.8	-95.0	-96.3	-96.6	-106.1	-106.4	-82.0	-82.3	-88.9	-89.2
Rugosanine B (15)	-45.3	-38.2	-139.7	-117.7	-128.5	-108.2	-111.9	-94.2	-123.4	-104.0
Suaveolindole (16)	-103.3	-105.1	-102.6	-104.4	-109.3	-111.2	-99.0	-100.7	-98.4	-100.1
Toussaintine B (17)	-92.9	-99.8	-87.6	-94.2	-97.4	-104.7	-94.5	-101.6	-108.3	-116.4
Isoquinoline Alkaloids										
8-Acetonyldihydroavicine (18)	-103.4	-100.4	-101.8	-98.8	-108.6	-105.5	-99.1	-96.3	-101.6	-98.7
8-Acetonyldihydronitidine (19)	-96.2	-94.7	-102.1	-100.5	-116.2	-114.5	-90.8	-89.4	-99.6	-98.0
Antofine (20)	-67.2	-67.7	-103.0	-103.7	-112.8	-113.7	-96.1	-96.9	-116.8	-117.7
Berbamine (24)	no dock	no dock	-48.9	-41.5	-80.8	-68.6	-58.9	-50.0	-64.0	-54.3
Berberine (21)	-100.6	-104.0	-96.1	-99.4	-95.5	-98.8	-97.8	-101.1	-99.0	-102.3
Bisnorthalphenine (22)	-84.6	-88.6	-92.6	-97.0	-105.0	-110.0	-87.9	-92.1	-105.9	-111.0
Cepharanthine (25)	no dock	no dock	-107.2	-91.0	no dock	no dock	-84.3	-71.6	-80.0	-68.0
Cryptopleurine (23)	-71.2	-70.8	-101.3	-100.8	-109.7	-109.2	-91.6	-91.1	-116.1	-115.5
Emetine (26)	-99.7	-91.5	-111.8	-102.7	-115.3	-105.8	-97.0	-89.0	-78.6	-72.1
Hydrastine (27)	-108.1	-107.0	-108.0	-106.9	-113.9	-112.7	-108.4	-107.2	-106.8	-105.7

Table 4. MolDock molecular docking energies (E_{dock}, kJ/mol) and normalized docking scores (DS_{norm}) for the antibacterial phytochemical ligands with *Mycobacterium tuberculosis* UDP-galactopyranose mutase, *M. tuberculosis* cytochrome P450 CYP121, and bacterial DNA ligases.

Ligand	MtU	JGM	MtC	YP121	EcL	ligA	Mt	LigA	SaI	ligA
Ligand	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Isoquinoline Alkaloids										
Isotrilobine (29)	no dock	no dock	-140.7	-121.6	-75.4	-65.1	-66.2	-57.2	-61.9	-53.5
Jatrorrhizine (28)	-91.8	-94.8	-98.8	-101.9	-93.9	-96.9	-94.0	-97.0	-100.2	-103.4
Lauroscholtzine (31)	-90.5	-93.1	-92.2	-94.8	-102.7	-105.7	-87.3	-89.9	-95.3	-98.1
Methothalistyline (30)	-99.6	-80.1	-141.2	-113.7	-110.4	-88.8	-96.0	-77.3	-113.7	-91.5
N-Demethylthalphenine (32)	-83.8	-86.6	-84.4	-87.1	-106.8	-110.3	-93.1	-96.2	-106.7	-110.2
Obamegine (34)	no dock	no dock	-105.4	-90.1	-41.8	-35.8	-82.4	-70.4	-72.2	-61.7
Oxyacanthine (35)	no dock	no dock	-125.4	-106.4	-85.8	-72.8	-58.8	-49.9	-88.1	-74.7
Pennsylvanine (36)	-76.5	-62.4	-134.2	-109.6	-140.8	-114.9	-101.2	-82.6	-124.9	-102.0
Thaliadanine (38)	-98.9	-79.5	-132.1	-106.2	-155.7	-125.2	-103.6	-83.3	-139.6	-112.2
Thalicarpine (37)	-75.0	-60.8	-110.1	-89.3	-119.0	-96.5	-96.2	-78.0	-124.3	-100.8
Thalidasine (39)	no dock	no dock	-103.1	-85.4	no dock	no dock	-64.0	-53.0	-96.6	-80.1
Thalistyline (40)	-58.8	-47.7	-159.7	-129.4	-145.7	-118.1	-101.9	-82.6	-116.1	-94.1
Thalmelatine (41)	-44.0	-36.0	-130.7	-106.7	-134.7	-109.9	-102.3	-83.6	-115.7	-94.5
Thalmirabine (42)	no dock	no dock	-20.7	-17.0	no dock	no dock	-101.7	-83.6	-70.2	-57.7
Thalphenine (33)	-86.5	-88.0	-94.8	-96.5	-110.8	-112.8	-86.7	-88.3	-113.7	-115.8
Thalrugosidine (43)	no dock	no dock	-96.5	-80.6	no dock	no dock	-78.1	-65.2	-93.4	-78.0
Thalrugosine (44)	no dock	no dock	-119.6	-101.5	-47.1	-40.0	-89.9	-76.3	-73.9	-62.7
Piperidine, Pyrrole, Pyrrolizidine, Quinoline, and Steroidal Alkaloids										
Aconicaramide (46)	-79.7	-94.6	-83.7	-99.4	-84.2	-99.9	-83.0	-98.6	-95.6	-113.4
Lasiocarpine (47)	-119.3	-115.3	-123.0	-118.9	-119.0	-115.0	-95.6	-92.4	-118.7	-114.8
Lasiocarpine <i>N</i> -oxide (48)	-122.3	-116.7	-106.5	-101.7	-122.5	-116.9	-89.5	-85.4	-114.0	-108.8
Piperine (45)	-94.7	-103.4	-105.3	-115.0	-100.4	-109.7	-99.8	-109.0	-105.8	-115.5
4-Methoxy-1-methyl-2(1 <i>H</i>)-quinolinone (49)	-61.8	-77.4	-75.7	-94.8	-70.9	-88.8	-61.3	-76.8	-75.2	-94.1
Cryptolepine (50)	-70.3	-82.2	-84.6	-99.0	-89.9	-105.1	-73.6	-86.1	-85.1	-99.5
Neocryptolepine (51)	-73.3	-85.7	-84.7	-99.0	-84.0	-98.2	-72.4	-84.6	-87.5	-102.3
Pteleine (52)	-75.0	-88.1	-76.8	-90.3	-81.8	-96.1	-78.3	-92.0	-88.1	-103.5
Veprisinium (53)	-93.4	-96.7	-79.4	-82.2	-102.1	-105.7	-82.7	-85.6	-92.4	-95.8
Conessine (54)	-94.3	-95.6	-92.2	-93.5	-88.0	-89.3	-76.3	-77.4	-78.5	-79.6
Irehdiamine A (55)	-87.0	-91.8	-90.3	-95.2	-84.5	-89.1	-79.0	-83.4	-82.6	-87.1
Solacassine (56)	-59.2	-55.9	-88.1	-83.1	-105.2	-99.2	-73.6	-69.4	-71.9	-67.8
Solanocapsine (57)	-72.0	-68.6	-100.0	-95.2	-104.4	-99.4	-83.9	-79.9	-83.6	-79.6
Tomatidine (58)	-63.1	-60.9	-86.8	-83.7	-94.0	-90.6	-84.5	-81.5	-85.2	-82.2

Ligand	MtU	JGM	MtC	YP121	EcL	ligA	Mtl	LigA	SaI	ligA
Ligand	Edock	DSnorm	Edock	DSnorm	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Miscellaneous Alkaloids										
2-(Methoxyamino)-4H-1-benzopyran-3,4,5,7-tetrol (59)	-86.1	-99.4	-91.0	-105.1	-88.4	-102.1	-84.3	-97.4	-92.5	-106.8
Abyssenine C (60)	-86.7	-81.7	-108.1	-101.8	-112.6	-106.0	-89.2	-84.0	-98.3	-92.6
Amphibine H (61)	-13.3	-11.3	-146.3	-124.3	-99.4	-84.5	-99.4	-84.5	-70.2	-59.7
Cepharatine A (62)	-87.5	-92.7	-85.6	-90.6	-93.4	-98.9	-70.2	-74.3	-95.2	-100.7
Curcamide (63)	-94.1	-107.9	-97.6	-111.9	-97.1	-111.4	-101.0	-115.8	-108.6	-124.6
Drodrenin (64)	-148.0	-133.6	-133.2	-120.2	-144.1	-130.1	-138.5	-125.0	-158.0	-142.6
Eschscholtzidine (65)	-88.2	-90.9	-91.0	-93.8	-97.0	-100.0	-86.0	-88.6	-94.4	-97.3
Jervine (66)	-32.2	-30.8	-87.8	-84.0	-80.0	-76.4	-94.9	-90.7	-89.5	-85.5
Matrine (67)	-75.9	-86.9	-65.2	-74.6	-86.2	-98.6	-71.9	-82.3	-89.5	-102.4
Mucronine H (68)	-69.0	-63.4	-118.4	-108.8	-126.1	-115.9	-95.6	-87.9	-119.6	-109.9
N-Benzoylmescaline (69)	-97.8	-103.3	-100.3	-106.0	-104.6	-110.5	-97.8	-103.3	-115.5	-122.0
Nummularine B (70)	no dock	no dock	-148.7	-127.4	-135.6	-116.2	-101.4	-86.9	-81.5	-69.8
Nummularine S (71)	-37.6	-33.6	-122.1	-109.2	-131.4	-117.4	-109.9	-98.2	-114.2	-102.1
Scutianine B (72)	-20.2	-17.5	-127.6	-110.8	-86.5	-75.1	-95.8	-83.1	-93.0	-80.7
Shahidine (73)	-94.7	-104.2	-104.7	-115.2	-104.5	-114.9	-109.1	-120.0	-116.1	-127.7
Thaliglucinone (74)	-96.8	-97.3	-106.1	-106.7	-125.1	-125.8	-96.4	-97.0	-123.8	-124.5
Triisopenylguanidine (75)	-94.6	-105.4	-91.8	-102.2	-98.7	-109.8	-103.8	-115.5	-107.9	-120.1
Tuberine (76)	-133.6	-123.6	-124.6	-115.3	-124.3	-115.0	-122.7	-113.5	-126.7	-117.2
Monoterpenoids										
Linalool (77)	-64.8	-86.9	-66.7	-89.4	-64.7	-86.7	-72.4	-97.0	-73.5	-98.5
Thymol (78)	-60.7	-82.1	-60.7	-82.0	-63.7	-86.2	-63.3	-85.7	-72.7	-98.3
Thymoquinol (79)	-65.8	-86.1	-66.8	-87.4	-70.0	-91.6	-65.9	-86.2	-78.1	-102.1
β-Dolabrin (80)	-70.7	-93.2	-73.0	-96.2	-73.8	-97.4	-73.3	-96.6	-76.0	-100.2
β-Thujaplicin (81)	-70.5	-92.6	-71.8	-94.3	-71.7	-94.1	-73.4	-96.4	-75.1	-98.6
Sesquiterpenoids										
11,13-Dehydroeriolin (82)	-91.9	-103.0	-77.5	-86.9	-82.3	-92.2	-73.4	-82.3	-81.8	-91.6
2,10-Bisaboladien-1-one (83)	-80.7	-96.1	-84.0	-100.0	-84.1	-100.1	-87.4	-104.1	-93.1	-110.9
2-Hydroxycalamenene (84)	-71.5	-85.4	-67.2	-80.2	-76.4	-91.2	-66.6	-79.5	-74.3	-88.7
2-Methoxyfurano-9-guaien-8-one (85)	-85.7	-96.5	-71.7	-80.8	-94.1	-106.0	-83.7	-94.3	-90.2	-101.6

Ligand	Mt	JGM	MtC	YP121	Ecl	LigA	Mt	LigA	SaI	LigA
Ligand	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Sesquiterpenoids										
4α,10α-Dihydroxy-1,11(13)guaiadien-12,8-olide (93)	-89.3	-100.1	-80.6	-90.3	-83.3	-93.3	-79.6	-89.1	-82.7	-92.6
4α,10β-Dihydroxy-1,11(13)guaiadien-12,8-olide (89)	-91.6	-102.7	-78.9	-88.4	-85.9	-96.2	-77.3	-86.5	-81.0	-90.8
Alantolactone (86)	-73.4	-85.9	-65.7	-76.8	-73.9	-86.4	-55.5	-65.0	-46.6	-54.5
Alliacol A (87)	-76.5	-85.8	-70.3	-78.8	-78.1	-87.5	-68.3	-76.6	-67.6	-75.8
Alliacol B (88)	-76.7	-85.9	-74.6	-83.6	-81.0	-90.8	-67.0	-75.1	-73.5	-82.4
Artemisinic acid (113)	-78.3	-91.3	-71.3	-83.1	-76.3	-88.9	-76.2	-88.8	-75.1	-87.6
Baileyolin (90)	-99.8	-100.6	-99.9	-100.7	-105.9	-106.8	-96.8	-97.7	-88.2	-88.9
Bilobalide A (91)	-90.1	-94.1	-84.9	-88.7	-93.5	-97.6	-59.4	-62.0	-67.4	-70.3
Confertin (92)	-88.6	-101.4	-70.8	-81.0	-79.5	-91.0	-60.7	-69.4	-74.3	-85.0
Cyperenal (94)	-70.5	-84.2	-56.1	-67.0	-65.5	-78.2	-52.8	-63.0	-48.1	-57.5
Cyperenol (95)	-71.6	-85.3	-59.7	-71.0	-68.2	-81.1	-55.3	-65.8	-45.0	-53.6
Furanodienone (97)	-88.7	-104.0	-77.1	-90.5	-84.2	-98.8	-67.9	-79.6	-73.5	-86.2
Ganodermycin (96)	-101.0	-110.9	-90.2	-99.1	-97.0	-106.6	-97.4	-107.0	-111.3	-122.3
Helenalin (98)	-90.4	-101.6	-70.3	-78.9	-84.6	-95.0	-67.2	-75.5	-54.8	-61.5
Hydrogrammic acid (99)	-87.2	-98.2	-80.1	-90.2	-88.2	-99.3	-83.5	-94.0	-83.5	-94.0
Isoalantolactone (100)	-78.2	-91.4	-65.3	-76.4	-74.7	-87.4	-54.7	-64.0	-70.6	-82.6
Ivaxillin (101)	-88.1	-98.4	-76.0	-84.9	-80.6	-90.1	-72.5	-81.1	-77.1	-86.1
Petrovin A (102)	-87.4	-100.0	-70.5	-80.6	-71.9	-82.3	-74.8	-85.6	-66.6	-76.2
Petrovin B (103)	-81.9	-93.4	-78.5	-89.5	-73.2	-83.5	-76.1	-86.8	-56.3	-64.3
Polygodial (104)	-78.2	-91.2	-67.9	-79.2	-76.6	-89.4	-67.8	-79.0	-73.3	-85.5
Rishitin (105)	-72.7	-86.3	-79.0	-93.8	-87.2	-103.5	-78.5	-93.1	-86.6	-102.8
Xanthorrhizol (106)	-82.0	-97.9	-82.2	-98.1	-82.1	-98.0	-87.1	-104.0	-92.7	-110.7
α-Amorphene (107)	-67.1	-81.9	-64.6	-78.8	-68.5	-83.6	-71.7	-87.5	-62.8	-76.7
α-Cadinene (108)	-68.9	-84.2	-72.5	-88.5	-73.1	-89.2	-66.9	-81.6	-73.3	-89.5
α-Copaene (110)	-61.0	-76.3	-56.4	-70.5	-56.3	-70.4	-56.4	-70.5	-54.4	-68.0
α-Muurolene (109)	-68.1	-83.1	-72.2	-88.2	-68.8	-84.0	-66.3	-80.9	-68.9	-84.2
γ-Cadinene (112)	-70.6	-86.2	-69.5	-84.8	-74.0	-90.3	-72.1	-88.0	-71.3	-87.1
Diterpenoids										
1,12-Diacetyljativatriol (114)	-82.4	-80.1	-92.1	-89.5	-112.9	-109.7	-82.5	-80.2	-85.1	-82.8
12-Oxo-3,13(16)-clerodadien-15-oic acid (115)	-99.6	-104.9	-87.3	-91.9	-97.4	-102.6	-88.6	-93.3	-89.0	-93.7
12-Oxo-8,13(16)-clerodadien-15-oic acid (116)	-98.8	-104.0	-90.9	-95.7	-95.2	-100.2	-94.8	-99.8	-89.6	-94.3

Ligand	MtU	JGM	MtC	YP121	EcI	ligA	Mtl	LigA	SaI	ligA
Ligana	Edock	DS _{norm}								
Diterpenoids										
13-Epimanoyl oxide (117)	-79.6	-86.4	-68.1	-74.0	-73.9	-80.2	-59.1	-64.1	-55.8	-60.6
13-Episclareol (118)	-91.9	-97.8	-80.1	-85.3	-90.2	-96.0	-84.7	-90.1	-39.4	-41.9
3,4-Seco-4(18)-trachyloben-3-oic acid (120)	-88.2	-94.5	-88.4	-94.6	-80.7	-86.4	-86.1	-92.3	-80.0	-85.7
3-Hydroxytotarol (119)	-78.8	-84.4	-79.9	-85.5	-85.9	-92.0	-64.1	-68.7	-81.2	-87.0
7,13-Labdadien-15-ol acetate (121)	-100.2	-104.0	-99.5	-103.3	-105.7	-109.7	-95.8	-99.4	-101.8	-105.7
7,13-Labdadien-15-ol malonate (122)	-117.9	-117.4	-109.5	-109.1	-120.5	-120.0	-113.1	-112.6	-96.1	-95.6
Acetylcrinipellin A (125)	-103.7	-103.6	-92.8	-92.7	-107.7	-107.7	-78.2	-78.2	-64.8	-64.8
Aethiopinone (123)	-94.6	-102.0	-87.8	-94.7	-108.2	-116.7	-93.2	-100.6	-109.1	-117.6
Andrographolide (124)	-103.2	-105.3	-95.2	-97.0	-104.8	-106.9	-97.1	-99.0	-99.2	-101.2
Biflorin (126)	-94.4	-102.0	-93.1	-100.7	-107.5	-116.2	-90.6	-97.9	-107.8	-116.5
Continentalic acid (127)	-78.1	-83.6	-75.9	-81.3	-85.1	-91.1	-61.4	-65.8	-84.7	-90.7
Crinipellin A (129)	-108.9	-113.3	-84.7	-88.0	-98.4	-102.4	-71.3	-74.1	-73.5	-76.4
Cryptobeilic acid A (128)	-103.4	-109.1	-98.0	-103.4	-103.1	-108.8	-97.9	-103.3	-118.1	-124.6
Cryptobeilic acid C (130)	-107.1	-107.8	-114.2	-114.9	-117.9	-118.7	-102.6	-103.3	-120.3	-121.0
Cryptobeilic acid D (131)	-98.3	-105.5	-99.7	-107.0	-103.1	-110.7	-102.5	-110.0	-107.0	-114.8
Effusanin A (132)	-78.1	-79.8	-73.1	-74.7	-81.6	-83.4	-70.9	-72.5	-43.9	-44.9
Effusanin B (133)	-75.8	-74.5	-78.2	-76.9	-92.7	-91.2	-89.9	-88.4	-65.7	-64.6
Effusanin C (134)	-95.9	-93.1	-82.0	-79.6	-96.1	-93.2	-44.8	-43.5	-61.5	-59.7
Effusanin D (135)	-88.4	-83.0	-96.4	-90.5	-109.0	-102.3	-72.8	-68.4	-71.0	-66.7
Effusanin E (136)	-81.2	-81.7	-72.7	-73.2	-83.7	-84.3	-55.0	-55.4	-42.0	-42.2
Grandiflorenic acid (137)	-76.5	-82.1	-77.4	-83.1	-77.2	-82.8	-73.2	-78.6	-49.8	-53.5
Haplociliatic acid (138)	-99.7	-103.1	-95.2	-98.5	-105.8	-109.3	-88.8	-91.8	-85.9	-88.8
Hypargenin A (139)	-82.5	-85.8	-83.6	-87.0	-94.0	-97.7	-77.1	-80.2	-74.1	-77.1
Hypargenin B (140)	-84.1	-88.7	-81.6	-86.1	-88.3	-93.2	-75.2	-79.3	-84.8	-89.4
Hypargenin D (141)	-79.9	-86.0	-82.1	-88.3	-88.6	-95.3	-76.0	-81.7	-88.5	-95.2
Hypargenin F (142)	-88.3	-91.8	-86.1	-89.5	-87.4	-90.9	-70.0	-72.8	-77.2	-80.3
Isodomedin (143)	-78.2	-76.8	-84.8	-83.3	-76.2	-74.8	-75.0	-73.7	-89.1	-87.5
Kamebanin (144)	-91.3	-94.5	-74.0	-76.7	-79.4	-82.2	-45.6	-47.2	-51.5	-53.3
Lasiokaurin (145)	-81.6	-79.1	-84.7	-82.1	-93.6	-90.7	-86.7	-84.0	-52.1	-50.5
Longikaurin A (146)	-83.1	-84.9	-71.8	-73.4	-78.1	-79.8	-66.7	-68.2	-62.9	-64.2
Longikaurin B (147)	-90.7	-88.1	-89.9	-87.3	-94.5	-91.7	-81.4	-79.0	-46.1	-44.7

Ligand	MtU	JGM	MtC	YP121	EcL	ligA	Mtl	LigA	SaI	ligA
Ligand	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Diterpenoids										
Longikaurin C (148)	-80.8	-79.5	-87.8	-86.4	-96.6	-95.0	-51.6	-50.8	-72.9	-71.7
Longikaurin D (149)	-85.3	-82.8	-88.0	-85.4	-100.5	-97.6	-80.9	-78.6	-55.0	-53.4
Longikaurin E (150)	-83.4	-85.2	-72.7	-74.3	-81.0	-82.8	-64.5	-65.9	-33.4	-34.1
Longikaurin F (151)	-95.6	-89.8	-92.7	-87.1	-103.8	-97.5	-91.1	-85.6	-82.0	-77.1
Longikaurin G (152)	-86.7	-87.3	-75.6	-76.1	-81.9	-82.5	-71.8	-72.3	-62.5	-62.9
Lupulin E (153)	-103.9	-92.7	-111.5	-99.5	-124.8	-111.4	-89.3	-79.7	-91.8	-82.0
Lupulin F (154)	-44.3	-39.5	-108.0	-96.3	-124.3	-110.8	-77.5	-69.1	-91.1	-81.2
Methyl seconidoresedate (155)	-110.4	-115.0	-103.5	-107.8	-110.7	-115.3	-92.0	-95.8	-88.2	-91.9
Pisiferol (156)	-83.1	-89.0	-80.9	-86.6	-85.7	-91.7	-81.2	-87.0	-82.2	-88.1
Salvic acid (157)	-97.4	-102.1	-88.6	-92.9	-97.3	-102.0	-95.9	-100.6	-86.0	-90.2
Salvic acid acetate (158)	-96.2	-96.9	-94.6	-95.2	-109.2	-109.9	-99.3	-100.0	-96.0	-96.7
Shikokianin (159)	-59.4	-55.8	-86.5	-81.2	-101.4	-95.2	-83.1	-78.0	-57.1	-53.6
Strictic acid (160)	-104.7	-110.7	-98.2	-103.9	-108.4	-114.6	-89.8	-94.9	-88.5	-93.5
Taxodione (161)	-85.4	-90.3	-81.4	-86.0	-98.6	-104.3	-80.0	-84.6	-91.9	-97.2
Trichodonin (162)	-89.3	-86.8	-92.5	-89.9	-94.2	-91.6	-72.4	-70.4	-60.4	-58.7
Umbrosin A (163)	-85.9	-88.9	-76.1	-78.8	-81.7	-84.6	-55.3	-57.3	-61.1	-63.2
Umbrosin B (164)	-89.7	-93.1	-75.2	-78.0	-81.6	-84.7	-42.6	-44.3	-44.2	-45.8
Yuexiandajisu A (165)	-75.2	-79.2	-86.1	-90.6	-96.9	-102.1	-88.0	-92.6	-77.6	-81.7
Triterpenoids										
Alisol A 24-acetate (166)	-95.7	-84.9	-109.9	-97.5	-123.5	-109.5	-91.2	-80.9	-111.1	-98.5
Alisol B 23-acetate (167)	-79.4	-71.2	-112.2	-100.7	-114.5	-102.7	-99.8	-89.5	-107.9	-96.8
Betulinic acid (168)	-65.7	-61.3	-94.9	-88.6	-97.4	-90.9	no dock	no dock	-41.3	-38.6
Entagenic acid (169)	-24.8	-22.6	-96.6	-88.2	-82.1	-74.9	-61.4	-56.1	-38.4	-35.1
Lantic acid (170)	-31.6	-29.2	-83.6	-77.3	-92.6	-85.6	-57.1	-52.8	-35.8	-33.1
Mahmoodin (171)	-51.0	-45.4	-116.5	-103.7	-93.6	-83.4	-79.9	-71.2	-76.3	-67.9
Maslinic acid (172)	-54.7	-50.5	-94.9	-87.6	-83.1	-76.7	-64.1	-59.2	-67.9	-62.7
Oleanolic acid (173)	-29.6	-27.7	-92.0	-85.9	-75.2	-70.2	-34.9	-32.6	-59.6	-55.7
Pristimerin (174)	-72.9	-67.7	-104.7	-97.2	-79.8	-74.1	-36.1	-33.5	-78.1	-72.5
Rubrinol (175)	-36.0	-34.0	-86.7	-81.8	-94.3	-89.0	-23.0	-21.7	-37.9	-35.7
Tingenone (176)	-50.0	-48.0	-89.1	-85.5	-84.2	-80.8	-21.4	-20.6	-78.8	-75.7

	MtU	JGM	MtC	YP121	EcL	ligA	Mtl	LigA	SaI	ligA
Ligand	Edock	DS _{norm}								
Chalcones										
1-(2,6-Dihydroxy-4-methoxyphenyl)-3-phenyl-1-propanone (177)	-89.0	-98.7	-85.2	-94.5	-95.8	-106.3	-96.7	-107.3	-111.7	-123.9
2'-Hydroxy-2,3,4',6'-tetramethoxychalcone (178)	-111.5	-114.4	-107.3	-110.0	-123.4	-126.6	-92.2	-94.6	-128.4	-131.7
3'''',5''',5'''''-Tribenzyl-2'''',2'''''',2'''''-trihydroxyisodiuvaretin (180)	-122.3	-94.6	-158.0	-122.3	-70.8	-54.7	-124.0	-95.9	-129.4	-100.1
4'-Hydroxychalcone (179)	-80.9	-95.7	-87.4	-103.4	-88.6	-104.8	-90.7	-107.3	-99.2	-117.5
5",5"",5"",5"",2"",2",2",2",2",2",1",2",2",1",2",1",2",1",2",1",2",2",2",2",2",2",2",2",2",2",2",2",2"	-166.5	-128.8	-163.7	-126.6	-150.9	-116.8	-78.4	-60.6	-193.6	-149.8
Angusticornin B (182)	-133.8	-128.0	-147.1	-140.7	-149.2	-142.7	-127.8	-122.3	-150.4	-143.8
Balsacone A (183)	-126.9	-121.8	-138.3	-132.7	-140.6	-134.9	-123.4	-118.5	-157.2	-150.9
Balsacone B (184)	-128.3	-123.1	-144.8	-138.9	-143.3	-137.6	-122.8	-117.8	-155.1	-148.9
Balsacone C (185)	-126.1	-124.1	-132.9	-130.7	-134.9	-132.7	-114.8	-113.0	-143.7	-141.4
Bartericin C (186)	-111.4	-107.9	-113.1	-109.6	-119.2	-115.5	-106.9	-103.6	-114.2	-110.7
Bavachalcone (187)	-117.0	-120.7	-115.7	-119.4	-122.7	-126.6	-120.0	-123.8	-135.9	-140.2
Broussochalcone B (188)	-111.7	-116.9	-119.9	-125.5	-120.7	-126.3	-122.2	-127.9	-128.5	-134.4
Corylifol B (189)	-114.0	-117.4	-115.5	-118.9	-125.8	-129.6	-124.0	-127.7	-130.9	-134.8
Erythbidin C (190)	-108.0	-114.5	-104.4	-110.7	-111.8	-118.5	-109.7	-116.2	-119.5	-126.6
Helichrysone A (191)	-119.4	-121.3	-113.1	-114.9	-114.7	-116.5	-119.3	-121.2	-130.6	-132.7
Isobavachalcone (192)	-113.7	-119.0	-111.7	-116.9	-118.6	-124.1	-121.3	-126.9	-124.8	-130.6
Kanzonol C (193)	-132.3	-129.9	-136.2	-133.8	-140.2	-137.7	-135.3	-132.8	-144.8	-142.2
Kuraridin (194)	-132.0	-125.0	-141.7	-134.1	-148.8	-140.8	-129.7	-122.7	-150.7	-142.6
Myrigalone G (195)	-91.9	-100.2	-91.9	-100.3	-100.4	-109.5	-90.9	-99.2	-109.9	-119.9
Piperaduncin A (196)	-140.3	-127.9	-130.4	-118.8	-146.9	-133.9	-78.6	-71.7	-137.3	-125.2
Piperaduncin B (197)	-136.1	-122.7	-136.6	-123.2	-137.8	-124.3	-113.4	-102.3	-138.1	-124.5
Piperaduncin C (198)	-128.9	-112.6	-150.2	-131.3	-157.3	-137.5	-106.9	-93.4	-125.1	-109.3
Psorachalcone A (199)	-112.7	-116.1	-117.2	-120.7	-121.4	-125.0	-109.4	-112.7	-125.7	-129.4
Xanthoangelol (200)	-132.8	-130.4	-130.8	-128.4	-137.8	-135.3	-135.9	-133.4	-153.0	-150.3
Xanthoangelol F (201)	-132.6	-128.7	-122.4	-118.8	-143.9	-139.7	-114.5	-111.2	-142.7	-138.5
Flavonoids										
2',5,5',7-Tetrahydroxyflavanone (202)	-89.2	-97.1	-94.0	-102.3	-99.1	-107.9	-86.6	-94.3	-101.8	-110.8
2',7-Dimethoxyflavone (203)	-86.1	-94.4	-94.0	-103.0	-95.3	-104.4	-94.8	-103.9	-100.0	-109.7
3''''-(2-Hydroxybenzyl)isouvarinol (218)	-151.2	-123.6	-179.4	-146.7	-143.0	-116.9	-130.3	-106.5	-143.3	-117.2
3''''-(2-Hydroxybenzyl)uvarinol (217)	-152.4	-124.6	-157.7	-128.9	-148.8	-121.6	-135.0	-110.4	-159.7	-130.6

Tionad	MtU	JGM	MtC	YP121	EcI	ligA	Mtl	LigA	SaL	ligA
Ligand	Edock	DS _{norm}								
Flavonoids										
3'-Methylpelargonidin (204)	-90.7	-99.1	-99.7	-108.9	-98.5	-107.6	-88.3	-96.5	-103.4	-113.0
3'-O-Methyldiplacone (205)	-136.8	-129.5	-131.4	-124.3	-139.0	-131.5	-122.3	-115.8	-140.4	-132.9
4',5,7-Trihydroxy-6-methyl-8-prenylflavanone (207)	-102.0	-103.6	-97.2	-98.7	-109.0	-110.7	-100.4	-102.0	-121.6	-123.5
4',5,7-Trihydroxy-8-methyl-6-prenylflavanone (206)	-109.4	-111.1	-98.9	-100.5	-113.4	-115.2	-95.2	-96.7	-119.2	-121.1
4',5-Dihydroxy-7-methoxy-6-prenylflavanone (208)	-111.2	-113.0	-104.8	-106.5	-112.4	-114.2	-101.1	-102.7	-118.5	-120.4
4',6,7-Trihydroxy-3',5'-dimethoxyflavone (209)	-103.7	-107.8	-108.4	-112.7	-108.5	-112.9	-100.8	-104.8	-110.7	-115.1
4',7-Dihydroxy-8-methylflavan (210)	-81.4	-92.2	-84.4	-95.5	-89.1	-100.9	-83.8	-94.8	-99.0	-112.0
4'-Hydroxy-5,7-dimethoxyflavone (211)	-93.2	-100.3	-101.0	-108.7	-100.1	-107.7	-95.9	-103.2	-104.9	-112.9
5 ^{''} -(2-Hydroxybenzyl)isouvarinol (216)	-127.0	-103.8	-161.5	-132.0	-174.9	-142.9	-109.8	-89.7	-164.2	-134.2
5'-(1,1-Dimethyl-2-propenyl)-2',4',5,7-tetrahydroxy-6-prenylflavanone (219)	-126.8	-121.3	-117.1	-112.1	-115.9	-110.8	-115.3	-110.3	-136.9	-131.0
5'-(1,1-Dimethyl-2-propenyl)-2',4',5,7-tetrahydroxy-8-prenylflavanone (220)	-116.8	-111.7	-114.4	-109.4	-122.1	-116.8	-96.8	-92.6	-120.9	-115.7
5'-(1,1-Dimethyl-2-propenyl)-4',5,7-trihydroxy-2'-methoxy-8-prenylflavanone (221)	-125.1	-118.4	-109.1	-103.2	-122.9	-116.3	-101.4	-96.0	-115.4	-109.2
5,6-Dihydroxy-4',7,8-trimethoxyflavone (212)	-97.6	-100.1	-95.6	-98.1	-111.0	-113.9	-98.9	-101.4	-112.6	-115.5
5-Hydroxy-2',4',5',7-Tetramethoxyflavone (213)	-108.2	-109.5	-111.3	-112.7	-112.5	-113.9	-103.4	-104.6	-109.8	-111.1
6,7-Dihydroxyflavone (214)	-80.2	-91.0	-91.6	-103.9	-94.2	-106.9	-86.1	-97.7	-98.0	-111.2
8-Methoxycirsilineol (215)	-107.5	-107.2	-98.5	-98.3	-115.2	-114.9	-98.1	-97.9	-111.5	-111.2
9,10-Dihydro-9,10-diacetoxy-3-methoxy-8,8-dimethyl-2-phenyl-4 <i>H,8H</i> - benzo[1,2- <i>b</i> :3,4- <i>b</i> ']dipyran-4-one (222)	-84.0	-78.7	-102.4	-95.9	-118.3	-110.8	-93.6	-87.6	-100.3	-93.9
Abyssinone I (223)	-101.6	-106.5	-106.0	-111.1	-105.4	-110.5	-105.2	-110.4	-101.4	-106.3
Abyssinone IV (224)	-116.2	-114.1	-128.5	-126.2	-128.3	-126.0	-117.6	-115.5	-135.9	-133.5
Astragalin (225)	-118.8	-111.6	-114.5	-107.6	-143.0	-134.3	-118.3	-111.2	-136.1	-127.8
Bavachinin (226)	-106.7	-110.1	-104.6	-107.9	-112.1	-115.7	-94.8	-97.8	-117.6	-121.3
Betuletol (227)	-94.4	-98.2	-106.6	-110.8	-111.8	-116.3	-97.8	-101.7	-118.6	-123.4
Bonannione A (228)	-119.7	-116.0	-125.3	-121.4	-130.6	-126.5	-123.2	-119.4	-132.1	-128.0
Brosimone I (229)	-104.1	-99.9	-116.1	-111.4	-117.4	-112.7	-97.0	-93.1	-146.3	-140.4
Cassiaflavan (230)	-78.8	-90.9	-83.3	-96.1	-84.0	-96.9	-80.7	-93.0	-90.9	-104.8
Cerasinone (231)	-97.3	-101.2	-103.0	-107.1	-112.0	-116.5	-98.2	-102.1	-116.2	-120.9
Chrysin (233)	-82.6	-93.8	-91.7	-104.1	-94.7	-107.4	-86.3	-97.9	-95.1	-107.9
Chrysoeriol (232)	-95.7	-102.8	-100.3	-107.7	-109.1	-117.2	-97.8	-105.0	-106.7	-114.6
Corniculatusin (234)	-103.0	-106.9	-98.9	-102.7	-114.6	-119.0	-96.3	-100.0	-113.5	-117.8
Cudraflavone A (235)	-103.0	-99.0	-109.7	-105.5	-107.3	-103.2	-90.8	-87.3	-110.1	-105.8

Ligand	MtU	JGM	MtC	YP121	EcL	ligA	Mtl	LigA	SaL	igA
Ligand	Edock	DS _{norm}								
Flavonoids										
Dihydroquercetin (236)	-99.2	-106.1	-98.4	-105.2	-103.5	-110.7	-92.6	-98.9	-103.6	-110.8
Eucalyptin (237)	-92.2	-96.3	-93.7	-97.9	-100.8	-105.3	-95.3	-99.5	-110.5	-115.4
Euchrestaflavanone A (238)	-123.0	-119.2	-115.6	-112.0	-139.0	-134.7	-115.0	-111.4	-123.5	-119.7
Flavaprenin (239)	-104.9	-108.0	-95.7	-98.6	-114.3	-117.7	-101.9	-104.9	-116.5	-120.0
Flemiflavanone D (240)	-129.1	-123.5	-117.3	-112.2	-139.5	-133.5	-112.4	-107.5	-126.6	-121.2
Glabranin (241)	-100.5	-105.2	-91.5	-95.7	-114.4	-119.7	-94.1	-98.4	-109.6	-114.7
Isoorientin (243)	-97.3	-91.4	-125.8	-118.2	-124.7	-117.2	-101.7	-95.6	-129.4	-121.6
Isoscoparin (244)	-103.1	-95.9	-134.5	-125.0	-125.6	-116.8	-98.8	-91.8	-127.7	-118.8
Kaempferol (242)	-94.3	-102.8	-97.6	-106.5	-101.8	-111.1	-87.0	-95.0	-101.9	-111.1
Kushenol A (245)	-104.3	-101.1	-112.1	-108.6	-127.3	-123.4	-108.5	-105.2	-122.3	-118.5
Kushenol S (246)	-105.3	-108.5	-99.3	-102.3	-114.3	-117.7	-96.0	-98.8	-109.2	-112.5
Kushenol U (247)	-105.2	-100.8	-113.5	-108.8	-123.2	-118.0	-116.2	-111.4	-136.7	-130.9
Kushenol V (248)	-127.2	-124.1	-119.1	-116.2	-126.1	-123.1	-56.4	-55.0	-115.9	-113.1
Kushenol W (249)	-115.2	-113.7	-105.6	-104.2	-121.5	-119.9	-107.3	-105.9	-120.3	-118.7
Leachianone A (250)	-107.2	-101.4	-116.6	-110.4	-131.1	-124.0	-112.3	-106.3	-128.0	-121.1
Leachianone G (251)	-106.5	-108.0	-106.8	-108.3	-116.6	-118.3	-101.6	-103.0	-118.4	-120.1
Licoflavanone (252)	-110.8	-114.1	-115.6	-119.0	-117.8	-121.3	-110.4	-113.7	-114.5	-117.9
Licoflavone C (253)	-107.5	-110.9	-97.1	-100.2	-117.2	-121.0	-104.9	-108.2	-118.0	-121.7
Licoflavonol (254)	-110.0	-111.7	-109.2	-110.9	-119.7	-121.7	-98.1	-99.7	-125.9	-127.9
Lonchocarpol A (255)	-126.3	-122.4	-116.9	-113.3	-127.3	-123.4	-107.7	-104.4	-134.0	-129.9
Loranthin (256)	-135.7	-123.2	-143.8	-130.6	-128.2	-116.4	-111.7	-101.5	-132.5	-120.3
Loxophlebal A (257)	-121.0	-111.7	-107.6	-99.3	-120.3	-111.0	-95.7	-88.3	-96.3	-88.9
Lucenin 2 (258)	-96.6	-81.8	-132.8	-112.6	-153.2	-129.8	-133.3	-113.0	-143.1	-121.3
Macarangaflavanone A (259)	-131.3	-127.2	-134.3	-130.1	-136.6	-132.3	-121.9	-118.2	-137.5	-133.2
Malvidin (260)	-104.1	-108.2	-106.4	-110.6	-106.6	-110.7	-92.8	-96.4	-107.8	-112.0
Myricetin (261)	-100.0	-105.3	-101.0	-106.4	-103.9	-109.4	-97.0	-102.1	-104.0	-109.5
Natsudaidain (262)	-110.5	-106.2	-95.6	-91.9	-118.7	-114.1	-88.0	-84.6	-116.6	-112.1
Nevadensin (263)	-95.0	-97.4	-99.8	-102.4	-110.0	-112.8	-98.7	-101.3	-118.4	-121.4
O-Methylpongaglabol (264)	-93.6	-101.4	-95.6	-103.5	-104.4	-113.1	-90.0	-97.5	-101.2	-109.7
Paratocarpin L (265)	-132.0	-127.9	-131.3	-127.2	-128.6	-124.6	-118.4	-114.7	-139.7	-135.3
Persicogenin (266)	-98.0	-103.4	-98.6	-104.0	-103.2	-108.9	-97.2	-102.6	-108.3	-114.3
Pilosanol A (267)	-123.9	-109.4	-127.5	-112.6	-147.3	-130.0	-101.4	-89.5	-118.5	-104.6

Ligand	MtU	JGM	MtC	YP121	EcI	ligA	Mtl	LigA	SaL	ligA
Ligand	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}
Flavonoids										
Pilosanol B (268)	-120.6	-107.4	-120.9	-107.6	-143.6	-127.9	-100.7	-89.7	-133.9	-119.2
Pilosanol C (269)	-116.3	-103.6	-121.9	-108.6	-141.3	-125.8	-106.8	-95.1	-143.1	-127.4
Pinocembrin (270)	-80.9	-91.6	-91.6	-103.6	-93.1	-105.3	-79.9	-90.5	-94.1	-106.5
Pongaflavone (271)	-98.7	-102.2	-85.2	-88.2	-95.9	-99.3	-84.8	-87.9	-94.0	-97.4
Quercetin (272)	-97.5	-104.4	-98.2	-105.2	-106.8	-114.5	-93.6	-100.2	-106.4	-114.0
Quercetin 3-methyl ether (273)	-102.0	-107.6	-95.2	-100.4	-108.0	-114.0	-98.6	-104.0	-107.9	-113.8
Remangiflavanone A (274)	-103.2	-98.9	-115.7	-110.9	-130.9	-125.4	-108.9	-104.4	-132.9	-127.3
Remangiflavanone B (275)	-106.4	-101.8	-115.6	-110.6	-125.8	-120.4	-120.7	-115.5	-128.9	-123.3
Sanggenon G (276)	no dock	no dock	-174.6	-141.8	-126.9	-103.0	-124.0	-100.6	-170.1	-138.1
Sigmoidin A (277)	-116.3	-111.3	-120.4	-115.2	-125.9	-120.5	-121.9	-116.6	-135.0	-129.2
Sigmoidin B (278)	-114.3	-115.9	-121.1	-122.8	-117.3	-119.0	-115.0	-116.6	-120.2	-121.9
Sigmoidin L (279)	-114.4	-114.5	-117.4	-117.5	-126.1	-126.3	-115.8	-116.0	-116.5	-116.6
Siraitiflavandiol (280)	-105.8	-107.3	-99.4	-100.8	-110.9	-112.4	-109.9	-111.4	-114.0	-115.6
Solophenol D (281)	-131.5	-124.5	-127.8	-121.0	-143.8	-136.1	-127.1	-120.2	-139.4	-132.0
Sophoraflavanone G (282)	-104.0	-99.5	-117.4	-112.3	-127.9	-122.3	-116.2	-111.2	-127.6	-122.1
Sternbin (283)	-92.5	-99.1	-97.8	-104.8	-98.6	-105.6	-91.9	-98.5	-99.1	-106.1
Sudachitin (284)	-108.2	-109.3	-98.7	-99.7	-116.4	-117.6	-102.3	-103.4	-116.1	-117.3
Uvarinol (285)	-131.4	-113.6	-135.7	-117.3	-164.7	-142.5	-124.4	-107.6	-148.9	-128.7
Vahliabiflavone (286)	-70.2	-60.8	-111.4	-96.6	-77.8	-67.5	-95.0	-82.4	-83.5	-72.4
Vitexin (287)	-95.2	-90.5	-114.4	-108.8	-138.3	-131.5	-116.5	-110.7	-123.8	-117.7
Wogonin (288)	-88.2	-96.4	-87.6	-95.8	-100.6	-110.0	-87.6	-95.8	-100.5	-109.9
Isoflavonoids										
2",3"-Epoxybolusanthol B (289)	-101.0	-100.9	-104.3	-104.2	-114.6	-114.5	-110.1	-110.0	-111.1	-111.1
3',5,7-Trihydroxy-4'-methoxy-5',6-diprenylisoflavanone (290)	-128.1	-121.3	-122.6	-116.0	-128.6	-121.7	-121.9	-115.4	-134.3	-127.1
4 ^{''} -Hydroxydiphysolone (292)	-118.0	-118.0	-107.9	-107.9	-121.9	-121.8	-93.8	-93.7	-121.7	-121.6
5,7-Dihydroxy-2'-methoxy-3',4'-methylenedioxyisoflavanone (293)	-98.4	-102.4	-98.4	-102.4	-102.7	-106.8	-99.0	-103.0	-115.0	-119.6
6a-Hydroxyphaseollin (291)	-96.4	-99.5	-90.7	-93.6	-90.3	-93.2	-93.7	-96.6	-91.6	-94.5
Amorphaquinone (294)	-99.4	-101.8	-89.3	-91.4	-100.6	-103.0	-69.6	-71.3	-106.4	-108.9
Asphodelin A (295)	-87.0	-96.8	-86.4	-96.1	-90.3	-100.5	-83.0	-92.3	-91.9	-102.2
Bidwillon A (296)	-115.7	-112.1	-128.3	-124.3	-122.4	-118.6	-120.6	-116.9	-125.8	-121.9
Bolucarpan A (297)	-93.9	-94.2	-87.2	-87.5	-97.9	-98.2	-79.5	-79.8	-61.3	-61.5
Bolucarpan B (298)	-98.9	-99.4	-88.0	-88.4	-98.3	-98.7	-79.3	-79.6	-76.3	-76.7

Ligand	MtU	JGM	MtC	YP121	EcL	ligA	Mtl	LigA	SaI	ligA
Ligand	Edock	DS _{norm}								
Isoflavonoids										
Bolucarpan D (299)	-88.2	-91.2	-85.6	-88.5	-91.7	-94.8	-67.2	-69.4	-71.1	-73.5
Bolusanthol B (300)	-97.2	-98.6	-101.4	-102.8	-112.0	-113.5	-108.2	-109.7	-111.7	-113.2
Cajanol (301)	-91.9	-97.0	-87.6	-92.4	-97.6	-103.0	-101.5	-107.1	-107.1	-113.0
Chandalone (302)	-119.9	-116.6	-124.1	-120.7	-124.5	-121.1	-113.8	-110.6	-130.9	-127.3
Dalversinol A (303)	-120.3	-115.1	-111.4	-106.6	-123.2	-117.9	-79.6	-76.2	-118.2	-113.1
Derrisin (304)	-81.0	-77.2	-88.8	-84.7	-98.8	-94.2	-66.7	-63.6	-82.4	-78.6
Erybraedin A (305)	-109.4	-107.4	-104.4	-102.5	-116.5	-114.4	-74.9	-73.6	-109.3	-107.3
Erybraedin D (306)	-98.5	-96.9	-99.9	-98.3	-105.7	-104.0	-73.3	-72.1	-97.4	-95.9
Erypoegin I (307)	-108.7	-108.8	-95.7	-95.8	-110.1	-110.2	-95.9	-96.0	-103.0	-103.2
Erysubin F (308)	-123.6	-121.6	-135.4	-133.2	-126.5	-124.4	-125.2	-123.2	-128.9	-126.8
Eryvarin V (309)	-105.6	-101.2	-101.7	-97.4	-110.4	-105.7	-110.2	-105.6	-125.3	-120.0
Eryvarin W (310)	-120.3	-118.3	-115.2	-113.4	-128.6	-126.5	-106.3	-104.6	-118.6	-116.7
Eryzerin C (311)	-115.2	-113.0	-120.4	-118.0	-117.2	-114.9	-112.0	-109.8	-131.7	-129.1
Eryzerin D (312)	-106.5	-104.6	-116.4	-114.3	-113.9	-111.8	-98.4	-96.7	-120.7	-118.5
Euchretin A (313)	-42.4	-38.3	-127.9	-115.7	-144.2	-130.4	-117.4	-106.2	-141.5	-127.9
Gancaonin C (314)	-108.6	-110.3	-107.5	-109.2	-109.9	-111.7	-106.4	-108.1	-116.1	-117.9
Genistein (315)	-83.6	-93.0	-87.7	-97.5	-93.6	-104.1	-78.7	-87.6	-100.1	-111.3
Glycyrrhisoflavone (316)	-113.9	-115.7	-116.0	-117.8	-113.6	-115.4	-108.8	-110.6	-124.3	-126.3
Hispaglabridin A (31 7)	-103.5	-101.6	-115.5	-113.4	-116.1	-114.0	-108.9	-106.9	-116.0	-113.9
Hispaglabridin B (318)	-12.3	-12.1	-88.8	-87.4	-103.6	-101.9	-100.8	-99.1	-107.7	-105.9
Hydroxycristacarpone (319)	-101.4	-101.6	-95.9	-96.0	-109.3	-109.4	-89.6	-89.7	-103.1	-103.2
Isoneorautenol (320)	-86.4	-90.6	-86.8	-91.0	-96.5	-101.2	-55.5	-58.2	-109.7	-115.1
Lachnoisoflavone A (321)	-103.1	-104.9	-101.4	-103.2	-110.5	-112.4	-99.6	-101.4	-123.9	-126.1
Licoisoflavanone (322)	-95.8	-97.4	-96.5	-98.1	-114.9	-116.7	-104.0	-105.6	-100.2	-101.8
Licoricidin (323)	-119.0	-113.9	-126.1	-120.6	-135.0	-129.1	-118.8	-113.6	-127.4	-121.9
Lupinalbin C (324)	-96.8	-97.1	-105.3	-105.6	-104.4	-104.7	-89.3	-89.5	-119.0	-119.3
Mucronulatol (326)	-93.3	-99.9	-91.9	-98.4	-98.5	-105.5	-94.5	-101.3	-106.1	-113.7
Neomillinol (325)	-95.6	-99.9	-98.4	-102.8	-101.7	-106.2	-99.6	-104.0	-110.3	-115.2
Pendulone (327)	-94.6	-99.8	-88.5	-93.4	-98.8	-104.2	-85.9	-90.7	-101.5	-107.1
Phyllanone B (328)	-128.0	-121.2	-116.4	-110.2	-130.5	-123.5	-102.9	-97.4	-128.9	-122.0
Shinpterocarpin (329)	-92.0	-96.4	-95.6	-100.2	-98.6	-103.4	-80.0	-83.9	-100.8	-105.7

Ligand	MtU	JGM	MtC	YP121	EcL	ligA	Mtl	LigA	SaI	ligA
Ligand	Edock	DS _{norm}								
Neoflavonoids										
Inophyllum A (330)	-83.4	-81.1	-89.4	-86.9	-98.2	-95.5	-65.5	-63.6	-95.6	-93.0
Inophyllum C (331)	-69.8	-68.0	-90.5	-88.1	-111.3	-108.4	-82.8	-80.7	-92.6	-90.1
Mammea A/BA (332)	-111.4	-108.1	-102.7	-99.6	-125.5	-121.8	-114.4	-111.1	-126.0	-122.3
Mammea A/BB (333)	-120.0	-116.5	-104.3	-101.3	-116.1	-112.7	-115.5	-112.1	-124.5	-120.9
Mesuol (334)	-104.8	-102.9	-104.6	-102.7	-123.7	-121.5	-109.3	-107.4	-130.8	-128.4
Pterocarpans										
1-Methoxyphaseollidin (356)	-99.1	-100.7	-101.6	-103.2	-119.3	-121.3	-111.5	-113.3	-117.9	-119.8
Aracarpene 1 (357)	-87.3	-93.8	-95.1	-102.1	-105.2	-113.0	-82.9	-89.1	-102.9	-110.5
Aracarpene 2 (358)	-88.0	-94.5	-96.0	-103.1	-106.6	-114.4	-88.3	-94.8	-103.1	-110.7
Calopocarpin (360)	-99.5	-104.1	-104.3	-109.2	-101.6	-106.3	-104.8	-109.7	-110.9	-116.1
Cristacarpin (359)	-109.1	-110.9	-101.9	-103.5	-109.6	-111.3	-100.9	-102.5	-108.3	-110.0
Erythbidin D (362)	-94.8	-101.7	-95.5	-102.5	-95.5	-102.5	-91.2	-97.9	-104.1	-111.8
Eryzerin E (363)	-107.5	-103.0	-121.3	-116.2	-125.3	-120.0	-118.2	-113.3	-120.5	-115.4
Fuscacarpan B (364)	-100.7	-100.8	-101.0	-101.2	-105.8	-105.9	-101.5	-101.6	-101.5	-101.6
Fuscacarpan C (365)	-98.5	-98.6	-102.0	-102.1	-109.7	-109.9	-97.3	-97.4	-102.5	-102.7
Glycyrol (366)	-108.1	-108.6	-110.1	-110.6	-119.8	-120.4	-94.6	-95.1	-129.1	-129.8
Glycyrrhizol A (367)	-125.4	-120.4	-127.8	-122.6	-127.4	-122.3	-89.6	-85.9	-123.9	-118.9
Glycyrrhizol B (368)	-96.7	-98.6	-99.8	-101.8	-104.4	-106.4	-82.4	-84.1	-93.4	-95.3
Sandwicensin (369)	-97.6	-100.7	-103.9	-107.2	-110.9	-114.4	-97.1	-100.2	-112.0	-115.6
Variabilin (370)	-89.5	-96.1	-91.6	-98.4	-92.2	-99.0	-96.5	-103.6	-103.6	-111.2
ent-Sophoracarpan A (361)	-85.4	-91.7	-82.4	-88.5	-89.5	-96.1	-78.0	-83.7	-101.3	-108.7
Chromones										
3-(3-Hydroxy-4-methoxybenzylidene)-6,7-dimethoxy-4-chromanone (371)	-96.1	-98.8	-100.2	-102.9	-113.2	-116.4	-94.0	-96.6	-106.8	-109.8
4',5,7-Trihydroxy-6,8-dimethylhomoisoflavanone (372)	-91.4	-96.6	-94.3	-99.7	-102.7	-108.6	-74.9	-79.2	-117.4	-124.1
4',5,7-Trihydroxy-6-methylhomoisoflavanone (373)	-87.9	-94.4	-98.8	-106.1	-101.1	-108.6	-83.4	-89.5	-114.3	-122.7
7-O-Methylbonducellin (374)	-89.2	-96.2	-92.6	-99.8	-99.0	-106.8	-90.1	-97.2	-99.6	-107.4
8-Methylophiopogonanone B (375)	-95.4	-99.5	-95.4	-99.5	-103.5	-107.8	-89.3	-93.1	-123.3	-128.5
Bonducellin (376)	-86.9	-95.3	-92.9	-101.8	-101.9	-111.7	-85.9	-94.1	-98.8	-108.3
Odoratumone A (377)	-98.7	-101.3	-104.2	-106.8	-105.6	-108.3	-92.4	-94.7	-124.9	-128.1
Sappanone A 3',4'-methylene ether (378)	-94.0	-101.4	-97.7	-105.3	-107.7	-116.1	-90.7	-97.9	-104.7	-112.9

Ligand	MtU	JGM	MtC	YP121	EcI	ligA	Mtl	LigA	SaL	ligA
Ligand	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Chromones										
Sappanone A 4'-methyl ether (379)	-90.9	-97.9	-95.3	-102.6	-104.9	-112.9	-88.9	-95.7	-96.4	-103.7
Sappanone A trimethyl ether (380)	-92.4	-96.5	-101.6	-106.1	-110.3	-115.2	-78.7	-82.2	-102.3	-106.8
Condensed Tannins										
GB 1 (381)	-76.3	-66.6	-123.2	-107.6	-107.4	-93.8	-92.9	-81.1	-91.9	-80.2
Proanthocyanidin A ₁ (382)	-40.8	-35.2	-110.1	-95.1	-92.8	-80.2	-97.6	-84.3	-121.2	-104.7
Proanthocyanidin A ₂ (383)	-12.3	-10.6	-105.7	-91.3	-122.7	-106.0	-89.7	-77.5	-123.7	-106.9
Procyanidin B ₄ (384)	-111.1	-95.9	-145.7	-125.8	-120.6	-104.0	-120.5	-104.0	-99.6	-86.0
Procyanidin B ₅ (385)	-77.8	-67.1	-142.5	-123.0	-153.0	-132.1	-74.1	-63.9	-128.4	-110.8
Procyanidin B ₆ (386)	-41.1	-35.5	-148.1	-127.8	-131.9	-113.8	-89.6	-77.4	-161.6	-139.5
Teatannin (387)	-119.7	-112.9	-113.6	-107.2	-133.0	-125.5	-115.2	-108.7	-145.4	-137.2
Coumarins										
4,5',8'-Trihydroxy-5-methyl-3,7'-bicoumarin (344)	-106.7	-108.6	-103.0	-104.9	-107.6	-109.6	-94.2	-95.9	-105.2	-107.0
6-Geranyl-5,7-dihydroxy-8(2-methylbutanoyl)-4-phenylcoumarin (345)	-139.0	-128.2	-124.6	-114.8	-141.0	-130.0	-125.9	-116.0	-149.2	-137.6
(–)-Heliettin (354)	-71.0	-90.7	-73.4	-93.8	-74.5	-95.1	-67.3	-86.0	-75.4	-96.3
Aesculin (347)	-104.4	-107.6	-99.4	-102.4	-111.8	-115.1	-99.0	-102.0	-121.1	-124.7
Alloimperatorin (346)	-97.9	-108.9	-92.2	-102.6	-102.0	-113.4	-84.0	-93.5	-101.6	-113.0
Anofinic acid (348)	-71.4	-87.2	-71.4	-87.1	-80.1	-97.7	-82.0	-100.1	-79.9	-97.6
Calaustralin (349)	-115.4	-112.2	-104.9	-101.9	-121.1	-117.8	-101.9	-99.1	-109.5	-106.5
Calophyllolide (350)	-102.1	-98.3	-102.8	-98.9	-111.2	-107.1	-102.5	-98.7	-108.8	-104.8
Dicoumarol (351)	-95.1	-98.3	-93.1	-96.3	-102.9	-106.4	-95.2	-98.4	-118.7	-122.8
Dipetalolactone (352)	-84.1	-89.3	-80.4	-85.4	-105.9	-112.4	-86.3	-91.7	-104.6	-111.1
Glycycoumarin (353)	-107.2	-107.5	-112.6	-112.9	-118.7	-119.1	-106.0	-106.4	-122.7	-123.1
Marmesin (355)	-83.0	-95.2	-83.0	-95.2	-86.7	-99.4	-82.4	-94.6	-93.6	-107.4
Stilbenoids										
2-(2,4-Dihydroxyphenyl-5-(1-propenyl)benzofurans (388)	-94.3	-105.3	-95.4	-106.6	-102.1	-114.1	-95.9	-107.2	-104.4	-116.7
Albanol A (389)	no dock	no dock	-142.0	-123.7	no dock	no dock	-100.1	-87.2	-136.8	-119.2
Albanol B (390)	no dock	no dock	-106.6	-93.0	-75.9	-66.3	-110.2	-96.2	-135.2	-118.0
Amorfrutin A (391)	-114.0	-117.4	-105.8	-109.0	-113.2	-116.6	-97.0	-99.9	-126.9	-130.7
Cajaninstilbene acid (392)	-117.7	-121.4	-107.9	-111.3	-115.8	-119.4	-53.3	-55.0	-113.5	-117.1
Calodenin B (393)	-159.1	-141.9	-155.9	-139.0	-158.9	-141.6	-143.8	-128.2	-165.3	-147.4
Centrolobofuran (394)	-87.2	-98.7	-92.9	-105.1	-94.2	-106.6	-95.3	-107.9	-106.0	-120.0
Cochinchinenene A (395)	-112.8	-99.6	-143.0	-126.2	-123.9	-109.3	-112.9	-99.7	-137.4	-121.3

Timed	MtU	JGM	MtCYP121		EcLigA		MtLigA		SaLigA	
Ligand	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Stilbenoids										
Cochinchinenene B (396)	-122.7	-110.2	-142.7	-128.2	-131.4	-118.1	-127.9	-114.9	-136.1	-122.3
Cochinchinenene C (397)	-110.4	-100.1	-137.3	-124.5	-137.0	-124.2	-104.5	-94.8	-127.7	-115.8
Cochinchinenene D (398)	-119.6	-109.5	-140.6	-128.7	-135.7	-124.2	-122.6	-112.2	-127.6	-116.8
Egonol (399)	-114.9	-120.0	-116.0	-121.2	-116.8	-122.0	-107.2	-112.0	-120.4	-125.8
Erypoegin F (400)	-117.7	-119.8	-115.7	-117.8	-126.7	-128.9	-115.8	-117.9	-118.2	-120.3
Erythbidin E (401)	-89.9	-101.8	-95.4	-108.0	-98.2	-111.2	-92.7	-104.9	-103.3	-117.0
Eryvarin Q (402)	-137.9	-133.9	-122.7	-119.1	-135.8	-131.8	-136.1	-132.1	-140.3	-136.2
Gancaonin I (403)	-112.2	-114.0	-112.2	-114.0	-117.2	-119.0	-111.0	-112.7	-118.3	-120.2
Glyinflanin H (404)	-98.9	-105.3	-97.7	-104.0	-101.5	-108.1	-103.0	-109.6	-110.3	-117.4
Kuwanol A (405)	no dock	no dock	-149.0	-129.6	no dock	no dock	-48.6	-42.3	-142.3	-123.8
Licobenzofuran (406)	-115.9	-117.8	-128.7	-130.8	-119.7	-121.6	-119.7	-121.6	-123.9	-125.9
Licocoumarone (407)	-110.3	-113.6	-110.1	-113.4	-117.1	-120.6	-104.5	-107.6	-116.9	-120.4
Mulberrofuran D (408)	-135.0	-127.0	-142.6	-134.1	-153.3	-144.2	-126.6	-119.1	-148.9	-140.1
Mulberrofuran Y (409)	-121.9	-118.1	-129.1	-125.1	-143.6	-139.1	-130.2	-126.2	-134.1	-129.9
Pinosylvin (410)	-76.0	-91.6	-81.6	-98.3	-84.8	-102.2	-87.5	-105.5	-86.5	-104.2
Schweinfurthin A (411)	-84.9	-74.6	-139.0	-122.1	-123.4	-108.3	-133.1	-116.9	-134.6	-118.2
Shanciguol 3-methyl ether (412)	-123.9	-116.9	-130.4	-123.0	-133.7	-126.1	-121.4	-114.5	-129.6	-122.3
Stemofuran R (413)	-104.6	-109.0	-105.1	-109.5	-104.8	-109.2	-110.5	-115.2	-109.0	-113.6
Stilbostemin S (414)	-98.5	-107.2	-100.0	-108.9	-105.7	-115.1	-89.9	-97.8	-107.4	-116.9
Thunberginol F (415)	-90.2	-100.4	-94.5	-105.1	-100.3	-111.6	-98.7	-109.7	-111.0	-123.4
(7 <i>E</i> ,7′ <i>R</i> ,8′ <i>R</i>)-ε-Viniferin (416)	-104.3	-97.5	-134.4	-125.7	-89.7	-83.9	-111.9	-104.7	-121.5	-113.6
(7 <i>E</i> ,7′ <i>S</i> ,8′ <i>S</i>)-ε-Viniferin (417)	-106.1	-99.3	-134.6	-125.9	-134.2	-125.5	-116.2	-108.7	-128.6	-120.3
Phenylpropanoids and Lignans										
(E)-Cinnamaldehyde (418)	-59.6	-84.2	-64.5	-91.0	-69.6	-98.2	-62.4	-88.0	-70.9	-100.0
3,4-Dimethylcinnamaldehyde (419)	-68.2	-90.2	-73.0	-96.6	-75.0	-99.3	-72.9	-96.5	-82.0	-108.6
Methyleugenol (422)	-66.2	-84.6	-77.6	-99.2	-70.8	-90.4	-74.8	-95.5	-85.3	-109.0
<i>p</i> -Coumaraldehyde (420)	-66.1	-89.9	-71.4	-97.1	-66.4	-90.2	-67.0	-91.1	-74.8	-101.6
<i>p</i> -Methoxycinnamaldehyde (421)	-69.2	-91.2	-69.1	-91.1	-81.1	-106.9	-72.8	-96.0	-83.5	-110.1
(-)-Asarinin (423)	-107.5	-109.2	-111.5	-113.3	-114.5	-116.3	-115.6	-117.4	-111.4	-113.2
Nordihydroguaiaretic acid (424)	-107.9	-115.6	-104.4	-111.8	-103.3	-110.6	-98.0	-105.0	-115.6	-123.9

	MtU	JGM	MtCYP121		EcLigA		MtLigA		SaL	LigA
Ligand	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Xanthones										
2-Deoxy-4-Hydroxycudratricusxanthone D (425)	-101.5	-99.5	-106.9	-104.8	-111.1	-109.0	-99.0	-97.1	-112.2	-110.0
Calozeyloxanthone (426)	-95.4	-94.9	-88.9	-88.4	-101.4	-100.8	-100.6	-100.0	-81.5	-81.0
Cycloartobiloxanthone (427)	-122.5	-116.3	-101.7	-96.6	-100.2	-95.1	-83.5	-79.3	-100.7	-95.6
Formoxanthone C (428)	-102.4	-100.2	-100.5	-98.3	-121.3	-118.8	-101.7	-99.5	-112.7	-110.3
Garciniacowone (429)	-108.3	-100.4	-135.4	-125.5	-139.0	-128.9	-109.6	-101.6	-146.0	-135.3
Globulixanthone C (430)	-92.0	-96.1	-91.1	-95.1	-95.4	-99.7	-82.4	-86.1	-101.4	-105.9
Globulixanthone D (431)	-104.1	-107.0	-106.5	-109.4	-116.1	-119.3	-91.0	-93.5	-114.5	-117.7
Globulixanthone E (432)	-11.6	-9.7	-116.0	-97.9	-140.1	-118.2	-69.0	-58.2	-111.3	-93.9
Morellin (433)	-104.3	-91.9	-127.6	-112.3	-118.7	-104.5	-78.8	-69.4	-93.4	-82.3
Nigrolineaxanthone N (434)	-110.2	-107.6	-120.6	-117.9	-125.2	-122.4	-104.8	-102.4	-133.5	-130.4
Pinselin (435)	-86.6	-93.0	-92.7	-99.6	-94.3	-101.3	-80.8	-86.7	-101.7	-109.2
Scortechinone B (436)	-20.9	-17.9	-138.5	-118.6	-85.9	-73.5	-120.0	-102.7	-112.6	-96.4
Symphonin (437)	-110.8	-103.7	-105.9	-99.2	-120.7	-113.0	-101.8	-95.3	-110.4	-103.4
Hydrolyzable Tannins										
1,2,3,4,6-Pentagalloylglucose (335)	-74.0	-54.3	-194.4	-142.7	-122.4	-89.8	-98.8	-72.5	-175.1	-128.5
Aceritannin (438)	-142.1	-131.6	-142.0	-131.5	-146.2	-135.3	-133.5	-123.6	-138.3	-128.1
Ginnalin B (439)	-103.7	-109.4	-104.5	-110.2	-113.9	-120.2	-107.1	-113.1	-119.6	-126.2
Ginnalin C (440)	-104.5	-110.3	-107.2	-113.1	-107.1	-113.0	-101.3	-106.9	-117.4	-123.9
Panconoside A (441)	-99.9	-82.6	-140.4	-116.0	-166.3	-137.5	-98.5	-81.4	-164.5	-136.0
Miscellaneous Phenolics										
1,3,7,9-Tetrahydroxy-4,6-dimethyl-2,8-bis(2-methyl-propanoyl)dibenzofuran (442)	-111.5	-108.8	-111.0	-108.3	-109.4	-106.8	-104.8	-102.3	-128.2	-125.0
2',4'-Dihydroxy-6'-methoxy-3'-methylacetophenone (443)	-69.8	-86.3	-70.2	-86.8	-72.3	-89.4	-67.4	-83.4	-77.1	-95.4
3',4'-Dihydroxyacetophenone (444)	-62.5	-84.1	-62.0	-83.5	-72.1	-97.1	-64.4	-86.8	-72.7	-97.9
4'-O-Methylhonokiol (446)	-103.6	-113.8	-105.3	-115.7	-101.5	-111.5	-102.9	-113.0	-113.7	-124.9
4-Deoxyadhumulone 2 ^{''} ,3 ^{''} -epoxide (445)	-101.5	-102.4	-100.9	-101.7	-115.7	-116.6	-105.4	-106.3	-125.9	-127.0
7-(3,4-Dihydroxy-5-methoxyphenyl)-1-phenyl-4-hepten-3-one (447)	-115.0	-120.1	-112.9	-117.9	-113.5	-118.5	-109.6	-114.5	-122.4	-127.8
Agrimol C (449)	-108.6	-89.3	-130.9	-107.6	-128.1	-105.3	-101.8	-83.7	-164.9	-135.6
Agrimol F (450)	-105.7	-88.2	-133.1	-111.0	-146.5	-122.2	-91.4	-76.2	-152.2	-126.9
Agrimol G (451)	-16.9	-13.9	-146.7	-120.6	-146.0	-120.0	-101.2	-83.2	-153.9	-126.5
Arzanol (452)	-110.9	-108.0	-122.3	-119.1	-125.7	-122.4	-112.6	-109.7	-133.3	-129.9
Aspidinol C (448)	-81.8	-96.8	-78.0	-92.3	-79.0	-93.5	-77.5	-91.7	-87.3	-103.3
Bruguierol C (453)	-76.4	-93.0	-74.1	-90.1	-71.2	-86.7	-67.5	-82.2	-73.2	-89.0

		JGM	MtCYP121		EcLigA		MtLigA		SaLigA	
Ligand	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Miscellaneous Phenolics										
Cearoin (454)	-82.7	-95.1	-89.1	-102.5	-86.1	-99.1	-84.4	-97.1	-107.1	-123.1
Citrusnin A (455)	-90.1	-105.4	-99.2	-116.1	-89.1	-104.2	-100.0	-117.0	-107.2	-125.4
Cochinchinenin B (456)	-128.3	-113.1	-153.5	-135.3	-150.1	-132.3	-120.0	-105.8	-151.3	-133.4
Cochinchinenin C (457)	-133.8	-118.0	-155.2	-136.8	-167.6	-147.8	-85.7	-75.5	-151.0	-133.1
Drummondin D (458)	-134.4	-122.0	-117.8	-106.9	-129.1	-117.2	-99.6	-90.4	-107.1	-97.3
Drummondin E (459)	-138.3	-125.4	-128.9	-116.9	-136.5	-123.8	-96.9	-87.8	-128.4	-116.5
Eleutherol (460)	-79.3	-91.2	-89.8	-103.3	-89.0	-102.4	-74.5	-85.7	-91.3	-105.0
Ellagicacid (461)	-95.0	-101.7	-82.8	-88.7	-109.3	-117.1	-84.2	-90.2	-103.6	-111.0
Epicoccolide A (462)	-87.2	-87.0	-87.0	-86.8	-107.4	-107.2	-73.9	-73.7	-99.3	-99.1
Gibbilimbol A (464)	-93.0	-108.7	-91.6	-107.1	-95.0	-111.1	-95.1	-111.2	-105.8	-123.7
Gibbilimbol B (465)	-88.3	-103.3	-95.2	-111.3	-93.4	-109.2	-92.8	-108.6	-100.8	-117.9
Grifolin (466)	-112.5	-117.2	-115.3	-120.2	-118.4	-123.4	-100.7	-104.9	-128.3	-133.7
Hyperbrasilol A (467)	-87.1	-75.6	-137.0	-118.9	-121.2	-105.1	-79.6	-69.1	-88.8	-77.0
Hyperbrasilol B (468)	-129.4	-113.4	-127.0	-111.3	-139.0	-121.8	-97.3	-85.3	-115.4	-101.1
Hyperbrasilol C (469)	-149.3	-130.6	-129.2	-113.1	-147.7	-129.3	-77.3	-67.6	-143.4	-125.5
Isodrummondin D (470)	-107.9	-98.0	-125.7	-114.2	-142.8	-129.7	-77.9	-70.7	-117.5	-106.7
Isohyperbrasilol B (471)	-97.3	-85.2	-126.6	-110.9	-134.5	-117.8	-99.3	-87.0	-128.4	-112.5
Isouliginosin B (472)	-119.3	-108.2	-123.7	-112.1	-118.7	-107.7	-99.4	-90.1	-121.2	-109.9
Italipyrone (473)	-115.0	-112.1	-107.7	-105.0	-125.3	-122.2	-107.7	-105.0	-129.2	-126.0
Knerachelin A (474)	-104.9	-112.6	-96.8	-104.0	-106.5	-114.3	-103.3	-111.0	-123.9	-133.0
Knerachelin B (475)	-93.2	-103.6	-95.1	-105.7	-101.1	-112.5	-95.2	-105.9	-109.5	-121.8
Magnolol (476)	-97.3	-108.8	-102.5	-114.6	-97.0	-108.4	-99.1	-110.8	-107.3	-119.9
Myrtucommulone A (477)	-13.8	-11.4	-122.2	-100.5	-36.0	-29.6	-72.1	-59.2	no dock	no dock
Myrtucommulone B (478)	-68.2	-65.8	-96.1	-92.6	-106.3	-102.5	-77.3	-74.6	-85.1	-82.1
Obovatol (479)	-95.5	-104.7	-104.6	-114.7	-101.7	-111.5	-95.4	-104.6	-110.7	-121.3
Oenostacin (480)	-96.0	-107.3	-98.4	-110.0	-106.2	-118.7	-103.6	-115.8	-113.1	-126.4
Paeonol (481)	-62.1	-81.2	-66.5	-86.9	-72.6	-95.0	-69.1	-90.4	-83.7	-109.5
Perlatolic acid (482)	-137.2	-129.3	-127.1	-119.8	-145.4	-136.9	-119.9	-113.0	-145.6	-137.1
Plicatipyrone (483)	-106.6	-102.5	-104.3	-100.3	-118.2	-113.7	-100.8	-96.9	-130.9	-125.8
Propterol (484)	-89.5	-102.9	-91.0	-104.6	-91.9	-105.7	-89.7	-103.2	-101.7	-117.0
Pulverulentone B (485)	-80.0	-92.8	-83.0	-96.3	-82.9	-96.1	-68.2	-79.0	-93.5	-108.4

Ligand	MtU	JGM	MtCYP121		EcLigA		MtLigA		SaI	ligA
Ligand	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}	Edock	DSnorm	Edock	DS _{norm}
Miscellaneous Phenolics										
Quinquangulin (486)	-88.3	-96.3	-87.1	-95.0	-91.4	-99.7	-71.6	-78.1	-97.1	-105.9
Rhodomyrtone (487)	-94.4	-89.1	-105.1	-99.2	-96.8	-91.3	-84.8	-80.0	-91.4	-86.2
Rosmarinic acid (488)	-123.1	-124.4	-114.5	-115.7	-123.6	-124.9	-120.4	-121.6	-125.9	-127.3
Rubanthrone A (489)	-100.2	-99.6	-96.2	-95.6	-115.9	-115.2	-94.3	-93.7	-100.1	-99.5
Sampsone A (490)	-103.0	-101.9	-96.6	-95.6	-104.4	-103.2	-85.9	-84.9	-87.7	-86.7
Sarothralen B (491)	-131.8	-114.5	-137.7	-119.7	-145.5	-126.4	-115.6	-100.5	-129.2	-112.2
Sarothralen C (492)	-130.3	-112.0	-126.7	-108.9	-132.4	-113.9	-46.3	-39.8	-112.5	-96.7
Sarothralen D (493)	-104.1	-89.5	-142.6	-122.6	-128.7	-110.7	-110.6	-95.1	-135.2	-116.2
Shikonofuran C (494)	-118.9	-120.3	-120.8	-122.3	-120.1	-121.5	-116.3	-117.7	-128.2	-129.7
Shikonofuran D (495)	-115.6	-118.6	-119.1	-122.1	-122.3	-125.4	-106.0	-108.8	-130.0	-133.3
Shikonofuran E (496)	-123.0	-124.7	-122.9	-124.6	-125.9	-127.6	-104.1	-105.6	-132.3	-134.1
Sinapic acid (497)	-77.3	-91.5	-90.1	-106.6	-84.8	-100.3	-88.8	-105.1	-86.5	-102.3
Walrycin A (498)	-58.6	-75.5	-71.0	-91.4	-73.8	-95.0	-66.7	-85.9	-71.5	-92.1
Quinones										
2,6-Dimethoxy-1,4-benzoquinone (336)	-60.2	-78.5	-70.2	-91.5	-70.7	-92.1	-67.4	-87.8	-73.1	-95.2
2-Methyl-6-prenyl-1,4-benzoquinone (337)	-71.8	-89.7	-84.2	-105.3	-77.4	-96.7	-83.6	-104.5	-86.9	-108.6
Omphalone (499)	-73.3	-92.0	-79.3	-99.4	-84.8	-106.4	-79.5	-99.7	-86.6	-108.7
Primin (500)	-75.0	-91.0	-83.3	-101.0	-84.7	-102.8	-84.5	-102.5	-91.1	-110.5
1,4-Naphthoquinone (338)	-56.7	-75.4	-65.3	-86.8	-67.6	-89.9	-61.1	-81.3	-69.8	-92.8
2-Acetylnaphtho[2,3-b]furan-4,9-dione (339)	-78.6	-90.9	-90.9	-105.2	-89.5	-103.5	-85.9	-99.3	-95.6	-110.5
Alkannin (340)	-94.7	-103.1	-95.5	-104.0	-103.8	-113.0	-84.1	-91.6	-107.0	-116.5
Isobutyrylshikonin (341)	-108.3	-109.6	-99.7	-100.9	-116.8	-118.3	-82.1	-83.1	-120.5	-122.0
Lapachol (501)	-86.1	-99.3	-87.0	-100.3	-89.4	-103.1	-88.6	-102.2	-101.5	-117.1
Mamegakinone (502)	-86.8	-86.6	-92.1	-91.8	-103.5	-103.2	-82.5	-82.3	-93.5	-93.3
Menadione (503)	-61.8	-79.9	-71.4	-92.3	-71.9	-92.9	-64.0	-82.7	-73.0	-94.4
Rhinacanthin C (504)	-131.5	-127.2	-124.0	-119.9	-130.8	-126.5	-109.5	-105.9	-131.8	-127.5
Rhinacanthin D (505)	-126.1	-122.2	-122.4	-118.6	-127.4	-123.5	-104.4	-101.2	-122.5	-118.7
Rhinacanthin G (506)	-130.7	-124.8	-119.6	-114.2	-130.9	-125.1	-109.1	-104.2	-130.4	-124.6
Rhinacanthin H (507)	-129.7	-123.9	-128.1	-122.3	-127.5	-121.8	-108.5	-103.7	-128.1	-122.4
Rhinacanthin I (508)	-130.7	-124.8	-123.1	-117.6	-133.8	-127.8	-118.0	-112.7	-138.1	-131.9
Rhinacanthin J (509)	-127.4	-121.9	-120.2	-115.0	-128.5	-122.9	-107.8	-103.2	-135.3	-129.4

Ligand	MtU	JGM	MtCYP121		EcLigA		MtLigA		SaLigA	
Ligand	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Quinones										
Rhinacanthin K (510)	-134.8	-127.0	-117.4	-110.6	-129.1	-121.6	-96.9	-91.3	-142.2	-134.0
Rhinacanthin L (511)	-132.7	-123.5	-125.6	-117.0	-129.4	-120.5	-106.6	-99.2	-115.2	-107.2
Rhinacanthin M (512)	-118.0	-118.8	-104.0	-104.7	-113.1	-113.8	-100.7	-101.4	-128.3	-129.1
Shikonin acetate (513)	-103.6	-107.7	-104.0	-108.1	-112.4	-116.9	-81.5	-84.8	-118.5	-123.2
β,β-Dimethylacrylshikonin (514)	-121.4	-121.6	-113.3	-113.4	-125.9	-126.1	-91.0	-91.1	-123.3	-123.4
β-Hydroxyisovaleryshikonin (515)	-119.2	-117.4	-113.2	-111.6	-128.3	-126.5	-95.9	-94.5	-124.2	-122.4
1-Hydroxy-3-hydroxymethylanthraquinone (516)	-79.2	-89.9	-81.6	-92.6	-89.9	-102.0	-74.5	-84.5	-93.7	-106.3
Aloeemodin (518)	-85.2	-94.8	-86.5	-96.2	-95.6	-106.3	-75.5	-83.9	-96.6	-107.4
Islandicin (519)	-83.7	-93.1	-85.9	-95.5	-93.2	-103.6	-73.1	-81.3	-92.9	-103.3
Newbouldiaquinone (521)	-108.2	-106.1	-97.6	-95.7	-110.9	-108.7	-84.1	-82.5	-74.5	-73.0
Newbouldiaquinone A (520)	-104.8	-101.4	-113.2	-109.5	-120.0	-116.1	-82.8	-80.1	-140.9	-136.3
Rhein (522)	-86.4	-94.5	-89.6	-98.0	-98.6	-107.8	-77.4	-84.7	-100.0	-109.4
15,16-Dihydrotanshinone I (517)	-79.0	-87.0	-84.7	-93.3	-97.5	-107.3	-71.4	-78.6	-93.1	-102.6
Acetylene, Glucoside, and Other Miscellaneous Phytochemicals										
1,7-Diphenyl-4-(2-phenylethyl)-1-heptene-3,5-dione (530)	-126.7	-125.5	-113.3	-112.3	-129.5	-128.2	-117.8	-116.7	-139.8	-138.5
1,7-Diphenyl-5-hepten-3-one (531)	-102.0	-114.3	-94.3	-105.6	-97.9	-109.6	-96.6	-108.2	-108.7	-121.8
3'-Demothexycyclocurcumin (532)	-109.1	-112.6	-109.9	-113.4	-117.9	-121.7	-95.8	-98.9	-117.4	-121.2
5,7-Dihydroxyphthalide (533)	-62.8	-82.1	-69.7	-91.1	-72.8	-95.2	-65.9	-86.2	-71.7	-93.8
6-Methyl-4,5-dithia-2-octene (534)	-58.5	-77.1	-65.8	-86.7	-60.1	-79.1	-65.1	-85.7	-67.2	-88.6
7-Epiclusianone (535)	-92.4	-83.5	-116.5	-105.4	-113.6	-102.8	-107.3	-97.0	-88.4	-79.9
Allamandin (536)	-94.5	-100.6	-95.4	-101.5	-97.3	-103.5	-86.9	-92.5	-91.7	-97.6
Allicin (537)	-56.7	-74.8	-63.3	-83.4	-57.0	-75.1	-59.1	-77.8	-66.2	-87.3
Amadannulen (538)	-107.7	-107.3	-111.7	-111.2	-123.0	-122.5	-105.4	-105.0	-113.7	-113.2
Anemonin (539)	-71.7	-89.3	-76.0	-94.7	-70.8	-88.3	-64.7	-80.6	-65.9	-82.1
Antibiotic CZ 34 (540)	-83.7	-99.7	-75.6	-90.0	-77.9	-92.8	-85.9	-102.2	-84.8	-101.0
Argutone (541)	-70.1	-88.3	-74.7	-94.1	-76.8	-96.7	-76.6	-96.5	-79.7	-100.4
Bakuchiol (542)	-94.0	-106.3	-89.6	-101.4	-100.5	-113.7	-96.7	-109.4	-104.0	-117.7
Brasiliensophyllic acid A (543)	-110.8	-96.6	-124.8	-108.8	-127.0	-110.8	-94.8	-82.7	-122.3	-106.6
Brasiliensophyllic acid C (544)	-109.1	-94.4	-140.6	-121.6	-119.0	-102.9	-101.5	-87.8	-95.4	-82.5
Centrolobin (545)	-102.6	-108.8	-103.0	-109.2	-110.6	-117.2	-106.3	-112.7	-116.5	-123.5
Chamone I (546)	-107.6	-93.3	-125.2	-108.5	-106.2	-92.1	-106.2	-92.1	-103.3	-89.5
Chamone II (547)	-68.0	-59.0	-130.2	-113.0	-109.2	-94.8	-80.5	-69.9	-97.2	-84.3

Ligand	MtU	JGM	MtCYP121		EcLigA		MtLigA		SaLigA	
Ligand	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}	Edock	DS _{norm}
Acetylene, Glucoside, and Other Miscellaneous Phytochemicals										
Champanone A (548)	-87.4	-98.9	-93.3	-105.6	-95.2	-107.8	-97.3	-110.1	-103.7	-117.4
Dhelwangin (549)	-84.1	-99.5	-82.9	-98.1	-82.9	-98.1	-85.1	-100.7	-95.1	-112.6
Garcinoic acid (550)	-130.3	-124.5	-128.9	-123.1	-141.3	-134.9	-107.3	-102.5	-147.6	-141.0
Ginkgolide A (551)	-94.7	-91.8	-101.4	-98.3	-94.5	-91.5	-73.9	-71.6	-73.9	-71.6
Guttiferone E (552)	-119.4	-101.6	-139.9	-119.0	-117.5	-100.0	-109.1	-92.8	-97.4	-82.9
Helipyrone B (553)	-97.6	-104.1	-81.6	-87.1	-97.7	-104.2	-92.2	-98.3	-110.0	-117.3
Helipyrone C (554)	-90.2	-97.8	-78.8	-85.4	-92.2	-99.9	-84.7	-91.8	-105.0	-113.7
Ialibinone A (555)	-86.4	-88.6	-90.7	-93.0	-96.1	-98.6	-85.7	-87.9	-80.7	-82.8
Ialibinone B (556)	-82.0	-84.1	-85.4	-87.6	-96.0	-98.5	-81.4	-83.5	-78.5	-80.5
Ialibinone C (557)	-85.8	-86.8	-94.3	-95.4	-100.6	-101.8	-89.2	-90.3	-86.9	-88.0
Ialibinone D (558)	-87.2	-88.3	-94.0	-95.2	-100.4	-101.6	-84.3	-85.3	-82.1	-83.1
Isobrasiliensophyllic acid A (559)	-109.8	-95.7	-130.4	-113.7	-123.7	-107.9	-87.2	-76.1	-102.2	-89.1
Moskachan C (560)	-82.1	-97.5	-88.7	-105.3	-87.5	-103.9	-89.0	-105.6	-98.3	-116.6
Nimbolide (561)	-94.3	-87.5	-111.7	-103.5	-126.4	-117.2	-95.0	-88.0	-82.3	-76.3
Pectinolide H (562)	-98.3	-109.5	-89.0	-99.2	-98.5	-109.9	-102.4	-114.1	-109.9	-122.5
Propolone A (563)	-61.3	-55.4	-111.8	-101.1	-94.9	-85.8	-104.3	-94.3	-91.0	-82.3
Sellovicine B (564)	-84.5	-98.5	-86.5	-100.9	-85.2	-99.3	-86.9	-101.4	-99.8	-116.4
Simonin A (565)	-128.9	-124.1	-106.9	-103.0	-116.1	-111.8	-102.6	-98.8	-105.0	-101.1
Tenulin (566)	-87.5	-93.3	-82.7	-88.2	-85.7	-91.4	-74.8	-79.7	-76.7	-81.8
Atractylodin (522)	-78.7	-99.9	-83.4	-105.7	-80.7	-102.3	-83.6	-106.0	-87.2	-110.6
Atractylodinol (523)	-87.6	-108.1	-91.0	-112.2	-85.5	-105.4	-88.0	-108.5	-94.9	-117.0
Capillene (342)	-67.4	-90.4	-74.2	-99.4	-69.6	-93.3	-72.6	-97.3	-79.5	-106.6
Peniophorin A (524)	-99.3	-108.8	-104.0	-114.0	-98.8	-108.3	-103.7	-113.7	-117.1	-128.4
Peniophorin B (525)	-80.7	-97.2	-88.8	-107.0	-87.4	-105.4	-83.9	-101.1	-95.6	-115.3
Thiarubrin A (526)	-76.3	-89.8	-87.1	-102.5	-80.3	-94.5	-80.2	-94.4	-87.1	-102.4
Arbutin (527)	-90.2	-100.0	-92.1	-102.1	-95.5	-105.9	-88.1	-97.7	-98.7	-109.5
Aucubin (528)	-108.5	-111.1	-93.7	-96.0	-105.7	-108.2	-92.5	-94.7	-110.9	-113.6
Diospyrodin (529)	-108.2	-114.4	-91.4	-96.7	-94.4	-99.8	-89.7	-94.8	-116.6	-123.3

Licond	MtU	JGM	MtCYP121		EcLigA		MtLigA		Sal	ligA
Liganu	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm	Edock	DSnorm
Synthetic Inhibitors										
(4-chlorophenyl)-[1-(4-chlorophenyl)-3-hydroxy-5-methyl-1 <i>H</i> -pyrazol-4-yl]- methanone [99] (579)	-103.7	-106.1								
3-(4-iodophenyl)-2-[4-(3,4-dichlorophenyl)-thiazol-2-ylamino]-propionic acid [99] (580)	-112.3	-100.5								
3-phenyl-2-[5-(3-chlorobenzylidene)-2-thioxo-4-thiazolidinone]-propionic acid [100] (581)	-120.5	-117.2								
4-[3-amino-4-(4-hydroxyphenyl)-1H-pyrazol-5-yl]benzene-1,3-diol [53] (582)			-92.3	-101.1						
4,4'-{3-[(4-hydroxyphenyl)amino]-1H-pyrazole-4,5-diyl}diphenol [53] (583)			-119.2	-120.5						
4-(3'-Amino-[1,1'-biphenyl]-3-yl)-1H-pyrazol-5-amine [32] (584)			-92.1	-105.1						
4-(5-Amino-4-(3'-amino-[1,1'-biphenyl]-3-yl)-1H-pyrazol-3-yl)-phenol [32] (585)			-124.2	-127.6						
Chloroquine					-101.2	-106.4	-93.5	-98.3	-101.8	-107.0
Doxorubicin					-119.6	-105.4	-103.8	-91.5	-144.2	-127.0
2-((2-(1 <i>H</i> -pyrazolo[3,4- <i>c</i>]pyridin-3-yl)-6-(trifluoromethyl)pyrimidin-4-yl)-amino)-ethanol [56] (586)					-113.0	-118.2	-105.2	-110.1	-123.4	-129.2
2-cyclobutylmethoxy-5'-fluoroadenosine [33] (587)					-119.4	-121.4	-115.8	-117.8	-132.3	-134.5
2-phenoxy-5'-deoxyadenosine [34] (588)					-118.4	-121.6	-112.9	-115.9	-120.9	-124.2
2-amino-6-bromo-7-(trifluoromethyl)-[1,8]-naphthyridine-3- carboxamide [54] (589)					-99.6	-103.1	-78.3	-81.0	-90.1	-93.3
2-amino-6-bromo-7-(2-benzyloxy-2-methylethyl)-[1,8]-naphthyridine-3- carboxamide [54] (590)					-122.1	-117.7	-91.1	-87.8	-117.4	-113.1
4-amino-2-(2-fluoroethoxy)- <i>N</i> -(2-hydroxyethyl)-purido[2,3- <i>d</i>]pyrimidin-5(8 <i>H</i>)- one [103] (591)					-98.3	-109.6	-81.3	-90.6	-93.5	-104.3
4-amino-2-(2-ethylcyclohexoxy)- <i>N</i> -(2-hydroxycyclopentyl)-purido[2,3-d]-pyrimid one [103] (592)	in-5(8H)-				-120.6	-122.1	-97.0	-98.2	-115.7	-117.1

^a Compounds shown in red font violate Lipinski's rule-of-five [62].

3.6. NAD⁺-Dependent DNA Ligase

Several phytochemical ligands showed selective docking to bacterial DNA ligase (Table 4). Although they were found to be promiscuous docking ligands, the chalcones balsacone B (184) and balsacone C (185) did dock strongly to EcLigA ($E_{dock} = -143.3$ and -134.9 kJ/mol, respectively) and to SaLigA ($E_{dock} = -143.3$ and -134.9 kJ/mol, respectively). The prenylated chalcone kuraridin (194) also showed selective docking for EcLigA and SaLigA ($E_{dock} = -148.8$ and -150.7 kJ/mol, respectively). Piperaduncin A (196) (E_{dock} = -146.9) was selective for EcLigA, while xanthoangelol (200) selectively docked to SaLigA ($E_{dock} = -153.0 \text{ kJ/mol}$). The prenylated neoflavonoid (4-phenylcoumarin) mesuol (334) showed docking selectivity for SaLigA $(E_{dock} = -130.8 \text{ kJ/mol})$. The geranylated flavonoid 3'-O-methyldiplacone (205) docked strongly with EcLigA and SaLigA ($E_{dock} = -155.1$ and -143.7 kJ/mol, respectively). The prenylated flavonoids $5'-(1,1-dimethyl-2-propenyl)-2',4',5,7-tetrahydroxy-6-prenylflavanone (219) (E_{dock} = -136.9 kJ/mol),$ lonchocarpol A (255) ($E_{dock} = -134.0 \text{ kJ/mol}$), paratocarpin L (265) ($E_{dock} = -139.7 \text{ kJ/mol}$), and sigmoid A (277) ($E_{dock} = -135.0 \text{ kJ/mol}$) were selective for SaLigA. The epoxyprenylflavanoid flemiflavanone D (240) was selective for EcLigA (Edock = -139.5 kJ/mol). The prenylated xanthone garciniacowone (429) docked strongly to both EcLigA and SaLigA with docking energies of -139.0 and -146.0 kJ/mol, respectively. This compound showed excellent activity against methicillin-sensitive and methicillin-resistant S. aureus and moderate activity against E. coli [104]. Note that these phytochemical ligands had more exothermic docking energies than the co-crystallized ligands (Table 1) for the bacterial DNA ligases, and had comparable docking energies to known bacterial LigA inhibitors doxorubicin ($E_{dock} = -144.2 \text{ kJ/mol}$ with SaLigA), 2-cyclobutylmethoxy-5'-fluoroadenosine (587) $(E_{dock} = -132.3 \text{ kJ/mol with SaLigA})$, or other synthetic LigA inhibitors [33,34,54,56,103] (Figure 30).

Figure 30. Cont.

Figure 30. Structures of the synthetic NAD⁺-dependent DNA ligase inhibitors.

Prenylated flavonoids have previously shown promise as antimicrobial agents [105]. Kuraridin (194) has shown promising activity against methicillin sensitive and resistant strains of *S. aureus* [106], but was inactive against *E. coli* [107]. Piperaduncin A (196) showed antibacterial activity against *Bacillus subtilis* and *Micrococcus luteus*, but was also inactive against *E. coli* [72]. Lonchocarpol A (255) showed excellent antibacterial activity against methicillin-resistant *S. aureus* and vancomycin-resistant *Enterococcus faecium*, but was inactive against *Mycobacterium smegmatis* [108]. Paratocarpin L (syn. macarangaflavanone B) (265) has shown activity against both *E. coli* and *M. luteus* [78].

4. Conclusions

This docking study of 561 known antibacterial phytochemicals helps to elucidate the possible biochemical targets for these compounds and there are some notable trends. The poorest docking ligands to the bacterial protein targets in this investigation were the terpenoids, while the best docking ligands, those with large negative (exothermic) docking energies, were generally phenolics. The most susceptible protein targets, based upon docking energies, for phytochemical ligands were E. coli peptide deformylase (EcPDF), E. coli topoisomerase IV (EcTopoIV), and E. coli DNA ligase (EcLigA). As a class, the alkaloids showed excellent docking to EcPDF, as did the diterpenoids and miscellaneous phenolics. S. aureus DNA ligase (SaLigA) was a good target for chalcones, flavonoids, and especially stilbenoids, while flavonoids and isoflavonoids docked well to EcTopoIV. Prenylated chalcones and flavonoids generally showed excellent docking properties to bacterial peptide deformylases and to bacterial DNA ligases. In evaluating the ligand docking in this work, we considered the criteria of docking selectivity (promiscuous binding compounds are unlikely to be useful therapeutic agents) and whether the docking characteristics of the ligand were noticeably better than known inhibitors. In this analysis, we have also considered drug likeness. That is, we have generally overlooked those phytochemical ligands that violate Lipinski's rule of five [66] (ligands with MW > 500 g/mol, hydrogen-bond-donating atoms > 5, hydrogen-bond-accepting atoms > 10, or ClogP > 5), even though they may have strong docking energies.

There are several limitations to in-silico docking results that should also be considered. Some of the phytochemicals examined may not be bioavailable due to limited solubility or poor bacterial cell wall permeability. In this study, we have examined the docking of the natural ligands (or their aglycones) and we did not take into account in vivo hydrolysis or other metabolic derivatization. The compounds examined have not been filtered for potential mammalian toxicity [109]. The docking studies also do not account for synergism in enzyme inhibition or antibacterial activity. The molecular docking method itself suffers from inherent limitations (e.g., the protein is modeled as a rigid structure without flexibility, solvation of the binding site and the ligand is excluded, and free-energy estimation of the protein-ligand complexes is largely ignored) [110,111]. Nevertheless, the results of this current study underscore the importance of natural products from higher plants in antibacterial drug discovery, and may provide potential avenues for the development of chemotherapeutic agents for the replacement of current antibiotic regimens or complementary management for bacterial infections.

Author Contributions: Javad Sharifi-Rad and William N. Setzer conceived and designed the study; Mary Snow Setzer and William N. Setzer performed the calculations; Mary Snow Setzer, Javad Sharifi-Rad, and William N. Setzer analyzed the data; Mary Snow Setzer, Javad Sharifi-Rad, and William N. Setzer wrote the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Centers for Disease Control and Prevention (CDC). *Antibiotic Resistance Threats in the United States;* CDC: Atlanta, GA, USA, 2013.
- 2. Alam, O.; Deng, T. Environmental and public health risks associated with antibiotic resistance genes (ARGs) spread in environment: A comprehensive review. *Int. J. Sci. Res. Sci. Technol.* **2015**, *1*, 128–139.
- 3. Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. *Nat. Rev. Microbiol.* **2015**, *31*, 42–51. [CrossRef] [PubMed]
- 4. Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. *Infect. Drug Resist.* **2015**, *8*, 49–61. [CrossRef] [PubMed]
- Chang, H.H.; Cohen, T.; Grad, Y.H.; Hanage, W.P.; O'Brien, T.F.; Lipsitch, M. Origin and proliferation of multiple-drug resistance in bacterial pathogens. *Microbiol. Mol. Biol. Rev.* 2015, 79, 101–116. [CrossRef] [PubMed]
- 6. Van Hal, S.J.; Fowler, V.G. Is it time to replace vancomycin in the treatment of methicillin-resistant *Staphylococcus aureus* infections? *Clin. Pract.* **2013**, *56*, 1779–1788. [CrossRef] [PubMed]
- 7. Nathwani, D.; Raman, G.; Sulham, K.; Gavagham, M.; Menon, V. Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant *Pseudomonas aeruginosa* infections: A systematic review and meta-analysis. *Antimicrob. Resist. Infect. Control* **2014**. [CrossRef] [PubMed]
- 8. Kim, L.; McGee, L.; Tomczyk, S.; Beall, B. Biological and epidemiological features of antibiotic-resistant *Streptococcus pneumoniae* in pre- and post-conjugate vaccine eras: A United States perspective. *Clin. Microbiol. Rev.* **2016**, *29*, 525–552. [CrossRef] [PubMed]
- 9. Kempker, R.R.; Kipiani, M.; Mirtskhulava, V.; Tukvadze, N.; Magoo, M.J.; Blumberg, H.M. Acquired drug resistance in *Mycobacterium tuberculosis* and poor outcomes among patients with multidrug-resistant tuberculosis. *Emerg. Infect. Dis.* **2015**, *21*, 992–1001. [CrossRef] [PubMed]
- Kesavan, B.; Srividhya, K.V.; Krishnaswamy, S.; Raja, M.; Vidya, N.; Krishna Mohan, A.V. Understanding the virulence of the entero-aggregative *E. coli* O104:H4. *Int. J. Bioinf. Res. Appl.* 2015, *11*, 187–199. [CrossRef] [PubMed]
- Krüger, A.; Lucchesi, P.M.; Sanso, A.M.; Etcheverría, A.I.; Bustamante, A.V.; Burgán, J.; Fernández, D.; Leotta, G.; Friedrich, A.W.; Padola, N.L.; et al. Genetic characterization of Shiga toxin-producing *Escherichia coli* O26:H11 strains isolated from animal, food, and clinical samples. *Front. Cell. Infect. Microbiol.* 2015. [CrossRef] [PubMed]
- Gallois, C.; Hauw-Berlemont, C.; Richaud, C.; Bonacorsi, S.; Diehl, J.L.; Mainardi, J.L. Fatal necrotizing fasciitis due to necrotic toxin-producing *Escherichia coli* strain. *New Microbes New Infect.* 2015, *8*, 109–112. [CrossRef] [PubMed]
- 13. McPhillie, M.J.; Cain, R.M.; Marramore, S.; Fishwick, C.W.; Simmons, K.J. Computational methods to identify new antibacterial targets. *Chem. Biol. Drug Des.* **2015**, *85*, 22–29. [CrossRef] [PubMed]
- 14. Bernal, F.A.; Coy-Barrera, E. Molecular docking and multivariate analysis of xanthones as antimicrobial and antiviral agents. *Molecules* **2015**, *20*, 13165–13204. [CrossRef] [PubMed]
- 15. Rahimi, H.; Najafi, A.; Eslami, H.; Negahdari, B.; Moghaddam, M.M. Identification of novel bacterial DNA gyrase inhibitors: An in silico study. *Res. Pharm. Sci.* **2016**, *11*, 250–258. [PubMed]
- Ferguson, P.P.; Holloway, W.B.; Setzer, W.N.; McFeeters, H.; McFeeters, R.L. Small molecule docking supports broad and narrow spectrum potential for the inhibition of the novel antibiotic target bacterial Pth1. *Antibiotics* 2016. [CrossRef] [PubMed]
- 17. Saleem, M.; Nazir, M.; Ali, M.S.; Hussain, H.; Lee, Y.S.; Riaz, N.; Jabbar, A. Antimicrobial natural products: An update on future antibiotic drug candidates. *Nat. Prod. Rep.* **2010**, *27*, 238–254. [CrossRef] [PubMed]
- 18. Savoia, D. Plant-derived antimicrobial compounds: Alternatives to antibiotics. *Future Microbiol.* **2012**, *7*, 979–990. [CrossRef] [PubMed]
- 19. Dictionary of Natural Products on DVD v.23:1; CRC Press: Boca Raton, FL, USA, 2014.
- 21. Lucchini, G.; Bianchetti, R. Initiation of protein synthesis in isolated mitochondria and chloroplasts. *Biochim. Biophys. Acta* **1980**, *608*, 54–61. [CrossRef]
- 22. Meinnel, T.; Mechulam, Y.; Blanquet, S. Methionine as translation start signal: A review of the enzymes of the pathway in *Escherichia coli*. *Biochimie* **1993**, *75*, 1061–1075. [CrossRef]
- 23. Apfel, C.M.; Evers, S.; Hubschwerlen, C.; Pirson, W.; Page, M.G.; Keck, W. Peptide deformylase as an antibacterial drug target: Assays for detection of its inhibition in *Escherichia coli* cell homogenates and intact cells. *Antimicrob. Agents Chemother.* **2001**, *45*, 1053–1057. [CrossRef] [PubMed]
- 24. Hackbarth, C.J.; Chen, D.Z.; Lewis, J.G.; Clark, K.; Mangold, J.B.; Cramer, J.A.; Margolis, P.S.; Wang, W.; Koehn, J.; Wu, C.; et al. *N*-Alkyl urea hydroxamic acids as a new class of peptide deformylase inhibitors with antibacterial activity. *Antimicrob. Agents Chemother.* **2002**, *46*, 2752–2764. [CrossRef] [PubMed]
- 25. Bradbury, B.J.; Pucci, M.J. Recent advances in bacterial topoisomerase inhibitors. *Curr. Opin. Pharmacol.* 2008, *8*, 574–581. [CrossRef] [PubMed]
- 26. Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. *Chem. Biol.* **2010**, *17*, 421–433. [CrossRef] [PubMed]
- 27. Carlson, E.E.; May, J.F.; Kiessling, L.L. Chemical probes of UDP-galactopyranose mutase. *Chem. Biol.* **2006**, *13*, 825–837. [CrossRef] [PubMed]
- 28. Madhurantakam, C.; Rajakumara, E.; Mazumdar, P.A.; Saha, B.; Mitra, D.; Wiker, G.H.; Sankaranarayanan, R.; Das, A.K. Crystal structure of low-molecular-weight protein tyrosine phosphatase from *Mycobacterium tuberculosis* at 1.9-Å resolution. *J. Bacteriol.* **2005**, *187*, 2175–2181. [CrossRef] [PubMed]
- 29. Grundner, C.; Perrin, D.; van Huijsduijnen, R.H.; Swinnen, D.; Gonzalez, J.; Gee, C.L.; Wells, T.N.; Alber, T. Structural basis for selective inhibition of *Mycobacterium tuberculosis* protein tyrosine phosphatase PtpB. *Structure* **2007**, *15*, 499–509. [CrossRef] [PubMed]
- Seward, H.E.; Roujeinikova, A.; McLean, K.J.; Munro, A.W.; Leys, D. Crystal structure of the *Mycobacterium tuberculosis* P450 CYP-121-fluconazole complex reveals new azol drug-P450 binding mode. *J. Biol. Chem.* 2006, 281, 39437–39443. [CrossRef] [PubMed]
- Belin, P.; le Du, M.H.; Fielding, A.; Lequin, O.; Jacquet, M.; Charbonnier, J.B.; Lecoq, A.; Thal, R.; Courçon, M.; Masson, C.; et al. Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in *Mycobacterium tuberculosis*. *Proc. Natl. Acad. Sci. USA* 2009, *106*, 7426–7431. [CrossRef] [PubMed]
- Kavanagh, M.E.; Coyne, A.G.; McLean, K.J.; James, G.G.; Levy, C.W.; Marino, L.B.; de Carvalho, L.P.; Chan, D.S.; Hudson, S.A.; Surade, S.; et al. Fragment-based approaches to the development of *Mycobacterium tuberculosis* CYP121 inhibitors. *J. Med. Chem.* 2016, 59, 3272–3302. [CrossRef] [PubMed]
- Mills, S.D.; Eakin, A.E.; Buurman, E.T.; Newman, J.V.; Gao, N.; Huynh, H.; Johnson, K.D.; Lahiri, S.; Shapiro, A.B.; Walkup, G.K.; et al. Novel bacterial NAD⁺-dependent DNA ligase inhibitors with broad-spectrum activity and antibacterial efficacy in vivo. *Antimicrob. Agents Chemother.* 2011, 55, 1088–1096. [CrossRef] [PubMed]
- 34. Stokes, S.S.; Huynh, H.; Gowravaram, M.; Albert, R.; Cavero-Tomas, M.; Chen, B.; Harang, J.; Loch, J.T.; Lu, M.; Mullen, G.B.; et al. Discovery of bacterial NAD⁺-dependent DNA ligase inhibitors: Optimization of antibacterial activity. *Bioorg. Med. Chem.* **2011**, *21*, 4556–4560. [CrossRef] [PubMed]
- 35. Nandakumar, J.; Nair, P.A.; Shuman, S. Last stop on the road to repair: Structure of *E. coli* DNA ligase bound to nicked DNA-adenylate. *Mol. Cell* **2007**, *26*, 257–271. [CrossRef] [PubMed]
- 36. Park, J.K.; Kim, K.H.; Moon, J.H.; Kim, E.E. Characterization of peptide deformylase 2 from *B. cereus*. *J. Biochem. Mol. Biol.* **2007**, *6*, 1050–1057. [CrossRef]
- 37. Clements, J.M.; Beckett, R.P.; Brown, A.; Catlin, G.; Lobell, M.; Palan, S.; Thomas, W.; Whittaker, M.; Wood, S.; Salama, S.; et al. Antibiotic activity and characterization of BB-3497, a novel peptide deformylase inhibitor. *Antimicrob. Agents Chemother.* **2001**, *45*, 563–570. [CrossRef] [PubMed]
- 38. Guilloteau, J.P.; Mathieu, M.; Giglione, C.; Blanc, V.; Dupuy, A.; Chevrier, M.; Gil, P.; Famechon, A.; Meinnel, T.; Mikol, V. The crystal structures of four peptide deformylases bound to the antibiotic actinonin reveal two distinct types: A platform for the structure-based design of antibacterial agents. *J. Mol. Biol.* 2002, 320, 951–962. [CrossRef]

- Smith, K.J.; Petit, C.M.; Aubart, K.; Smyth, M.; McManus, E.; Jones, J.; Fosberry, A.; Lewis, C.; Lonetto, M.; Christensen, S.B. Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species. *Protein Sci.* 2003, 12, 349–360. [CrossRef] [PubMed]
- 40. McElroy, C.A.; Amero, C.D.; Byerly, D.W.; Foster, M.P. Solution structure of peptide deformylase complexed with actinonin. 2009, to be published.
- 41. Cheng, R.K.; Crawley, L.; Wood, M.; Barker, J.; Felicetti, B.; Whittaker, M. The structure of *E. coli* peptide deformylase (PDF) in complex with peptidomimetic ligand BB2827. 2009, to be published.
- 42. Pichota, A.; Duraiswamy, J.; Yin, Z.; Keller, T.H.; Alam, J.; Liung, S.; Lee, G.; Ding, M.; Wang, G.; Chan, W.L.; et al. Peptide deformylase inhibitors of *Mycobacterium tuberculosis*: Synthesis, structural investigations, and biological results. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 6568–6572. [CrossRef] [PubMed]
- 43. Yoon, H.J.; Kim, H.L.; Lee, S.K.; Kim, H.W.; Kim, H.W.; Lee, J.Y.; Mikami, B.; Suh, S.W. Crystal structure of peptide deformylase from *Staphylococcus aureus* in complex with actinonin, a naturally occurring antibacterial agent. *Proteins* **2004**, *57*, 639–642. [CrossRef] [PubMed]
- Molteni, V.; He, X.; Nabakka, J.; Yang, K.; Kreusch, A.; Gordon, P.; Bursulaya, B.; Warner, I.; Shin, T.; Biorac, T.; et al. Identification of novel potent bicyclic peptide deformylase inhibitors. *Bioorg. Med. Chem. Lett.* 2004, 14, 1477–1481. [CrossRef] [PubMed]
- Lee, S.J.; Lee, S.J.; Lee, S.K.; Yoon, H.J.; Lee, H.H.; Kim, K.K.; Lee, J.B.; Lee, B.I.; Suh, S.W. Structures of *Staphylococcus aureus* peptide deformylase in complex with two classes of new inhibitors. *Acta Crystallogr. Sect. D* 2012, 68, 784–793. [CrossRef] [PubMed]
- 46. Fieulaine, S.; Desmadril, M.; Meinnel, T.; Giglione, C. Understanding the highly efficient catalysis of prokaryotic peptide deformylases by shedding light on the determinants specifying the low activity of the human counterpart. *Acta Crystallogr. Sect. D* **2014**, *70*, 242–252. [CrossRef] [PubMed]
- Holdgate, G.A.; Tunnicliffe, A.; Ward, W.H.; Weston, S.A.; Rosenbrock, G.; Barth, P.T.; Taylor, I.W.; Pauptit, R.A.; Timms, D. The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: A thermodynamic and crystallographic study. *Biochemistry* 1997, *36*, 9663–9673. [CrossRef] [PubMed]
- Bellon, S.; Parsons, J.D.; Wei, Y.; Hayakawa, K.; Swenson, L.L.; Charifson, P.S.; Lippke, J.A.; Aldape, R.; Gross, C.H. Crystal structures of *Escherichia coli* topoisomerase IV ParE subunit (24 and 43 kilodaltons): A single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase. *Antimicrob. Agents Chemother.* 2004, *48*, 1856–1864. [CrossRef] [PubMed]
- Agrawal, A.; Roué, M.; Spitzfaden, C.; Petrella, S.; Aubry, A.; Hann, M.; Bax, B.; Mayer, C. *Mycobacterium tuberculosis* DNA gyrase ATPase domain structures suggest a dissociative mechanism that explains how ATP hydrolysis is coupled to domain motion. *Biochem. J.* 2013, 456, 263–273. [CrossRef] [PubMed]
- 50. Evdokimov, A.G.; Pokross, M.; Walter, R.; Mekel, M.; Cox, B.; Li, C.; Bechard, R.; Genbauffe, F.; Andrews, R.; Diven, C.; et al. Engineering the catalytic domain of human protein tyrosine phosphatase β for structure-based drug discovery. *Acta Crystallogr. Sect. D* **2006**, *62*, 1435–1445. [CrossRef] [PubMed]
- Van Straaten, K.E.; Kuttiyatveetil, J.R.; Sevrain, C.M.; Villaume, S.A.; Jiménez-Barbero, J.; Linclau, B.; Vincent, S.P.; Sanders, D.A. Structural basis of ligand binding to UDP-galactose mutase from *Mycobacterium tuberculosis* using substrate and tetrafluorinated substrate analogs. *J. Am. Chem. Soc.* 2015, 137, 1230–1244. [CrossRef] [PubMed]
- 52. Fonvielle, M.; le Du, M.H.; Lequin, O.; Lecoq, A.; Jacquet, M.; Thai, R.; Dubois, S.; Grach, G.; Gondry, M.; Belin, P. Substrate and reaction specificity of *Mycobacterium tuberculosis* cytochrome P450 CYP121. Insights from biochemical studies and crystal structures. *J. Biol. Chem.* **2013**, *288*, 17347–17359. [CrossRef] [PubMed]
- 53. Hudson, S.A.; Surade, S.; Coyne, A.G.; McLean, K.J.; Leys, D.; Munro, A.W.; Abell, C. Overcoming the limitations of fragment merging: Rescuing a strained merged fragment series targeting *Mycobacterium tuberculosis* CYP 121. *ChemMedChem* **2013**, *8*, 1451–1456. [CrossRef] [PubMed]
- 54. Surivet, J.P.; Lange, R.; Hubschwerlen, C.; Keck, W.; Specklin, J.L.; Ritz, D.; Bur, D.; Locher, H.; Seiler, P.; Strasser, D.S.; et al. Structure-guided design, synthesis and biological evaluation of novel DNA ligase inhibitors with in vitro and in vivo anti-staphylococcal activity. *Bioorg. Med. Chem. Lett.* 2012, 22, 6705–6711. [CrossRef] [PubMed]

- Srivastava, S.K.; Tripathi, R.P.; Ramachandran, R. NAD⁺-dependent DNA ligase (*Rv3014c*) from *Mycobacterium tuberculosis*. Crystal structure of the adenylation domain and identification of novel inhibitors. *J. Biol. Chem.* 2005, 280, 30273–30281. [CrossRef] [PubMed]
- 56. Howard, S.; Amin, N.; Benowitz, A.B.; Chiarparin, E.; Cui, H.; Deng, X.; Heightman, T.D.; Holmes, D.J.; Hopkins, A.; Huang, J.; et al. Fragment-based discovery of 6-azaindoles as inhibitors of bacterial DNA ligase. ACS Med. Chem. Lett. 2013, 4, 1208–1212. [CrossRef] [PubMed]
- 57. Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. *J. Med. Chem.* **2006**, *49*, 3315–3321. [CrossRef] [PubMed]
- Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF 94. J. Comput. Chem. 1996, 17, 490–519. [CrossRef]
- 59. Molegro Virtual Docke; version 6.0.1; Molegro ApS: Aarhus, Denmark, 2013.
- 60. Pan, Y.; Huang, N.; Cho, S.; MacKerell, A.D. Consideration of molecular weight during compound selection in virtual target-based database screening. *J. Chem. Inf. Comput. Sci.* **2003**, *43*, 267–272. [CrossRef] [PubMed]
- 61. Yang, J.M.; Shen, T.W. A pharmacophore-based evolutionary approach for screening selective estrogen receptor modulators. *Proteins Struct. Funct. Bioinform.* **2005**, *59*, 205–220. [CrossRef] [PubMed]
- 62. Huang, N.; Nagarsekar, A.; Xia, G.; Hayashi, J.; MacKerell, A.D. Identification of non-phosphate-containing small molecular weight inhibitors of the tyrosine kinase p56 Lck SH2 domain via in silico screening against the pY + 3 binding site. *J. Med. Chem.* **2004**, *47*, 3502–3511. [CrossRef] [PubMed]
- 63. Hancock, C.N.; Macias, A.; Lee, E.K.; Yu, S.Y.; MacKerell, A.D.; Shapiro, P. Identification of novel extracellular signal-regulated kinase docking domain inhibitors. *J. Med. Chem.* **2005**, *48*, 4586–4595. [CrossRef] [PubMed]
- 64. Abad-Zapatero, C.; Metz, J.T. Ligand efficiency indices as guideposts for drug discovery. *Drug Discov. Today* **2005**, *10*, 464–469. [CrossRef]
- 65. Carta, G.; Knox, A.J.; Lloyd, D.G. Unbiasing scoring functions: A new normalization and rescoring strategy. *J. Chem. Inf. Model.* **2007**, *47*, 1564–1571. [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv. Drug Deliv. Rev.* 2012, 64, 4–17. [CrossRef]
- 67. Sheriha, G.M.; Abouamer, K.; Elshtaiwi, B.Z. An alkaloid from *Haplophyllum tuberculatum*. *Phytochemistry* **1985**, 24, 884–886. [CrossRef]
- 68. Gnan, S.O.; Sheriha, G.M. Antimicrobial activity of (+)-tuberine. J. Food Prot. 1986, 49, 340–341.
- Kuete, V.; Alibert-Franco, S.; Eyong, K.O.; Ngameni, B.; Folefoc, G.N.; Nguemeving, J.R.; Tangmouo, J.G.; Fotso, G.W.; Komguem, J.; Ouahouo, B.M.; et al. Antibacterial activity of some natural products expressing a multidrug-resistant phenotype. *Int. J. Antimicrob. Agents* 2011, *37*, 156–161. [CrossRef] [PubMed]
- 70. Lavoie, S.; Legault, J.; Simard, F.; Chiasson, E.; Pickette, A. New antibacterial dihydrochalcone derivatives from buds of *Populus balsamifera*. *Tetrahedron Lett.* **2013**, *54*, 1631–1633. [CrossRef]
- Mbaveng, A.T.; Ngameni, B.; Kuete, V.; Simo, I.K.; Ambassa, P.; Roy, R.; Bezabih, M.; Etoa, F.X.; Ngadjui, B.T.; Abegaz, B.M.; et al. Antimicrobial activity of the crude extracts and five flavonoids from the twigs of *Dorstenia barteri* (Moraceae). *J. Ethnopharmacol.* 2008, 116, 483–489. [CrossRef] [PubMed]
- 72. Orjala, J.; Wright, A.D.; Behrends, H.; Folkers, G.; Sticher, O.; Rüegger, H. Cytotoxic and antibacterial dihydrochalcones from *Piper aduncum*. *J. Nat. Prod.* **1994**, *57*, 18–26. [CrossRef] [PubMed]
- 73. Inamori, Y.; Baba, K.; Tsujibo, H.; Taniguchi, M.; Nakata, K.; Kozawa, M. Antibacterial activity of two chalcones, xanthoangelol and 4-hydroxyderricin, isolated from the root of *Angelica keiskei* Koidzumi. *Chem. Pharm. Bull.* **1991**, *39*, 1604–1605. [CrossRef] [PubMed]
- 74. Sugamoto, K.; Matsusita, Y.; Matsui, K.; Kurogi, C.; Matsui, T. Synthesis and antibacterial activity of chalcones bearing prenyl or geranyl groups from *Angelica keiskei*. *Tetrahedron* **2011**, *67*, 5346–5359. [CrossRef]
- Šmejkal, K.; Chudik, S.; Klouček, P.; Marek, R.; Cvačka, J.; Urbanová, M.; Julínex, O.; Kokoška, L.; Šlapetová, T.; Holubová, P.; et al. Antibacterial *C*-geranylflavonoids from *Poulownia tomentosa* fruits. *J. Nat. Prod.* 2008, *71*, 706–709. [CrossRef] [PubMed]
- 76. Nanayakkara, N.P.; Burandt, C.L.; Jacob, M.R. Flavonoids with activity against methicillin-resistant *Staphylococcus aureus* from *Dalea scandens* var. *paucifolia*. *Planta Med*. **2002**, *68*, 519–522. [CrossRef] [PubMed]
- 77. Mitscher, L.A.; Gollapudi, S.R.; Khanna, I.K.; Drake, S.D.; Hanumaiah, T.; Ramaswamy, T.; Rao, K.V. Antimicrobial agents from higher plants: Activity and structural revision of flemiflavanone-D from *Flemingia stricta*. *Phytochemistry* 1985, 24, 2885–2997. [CrossRef]

- 78. Schütz, B.A.; Wright, A.D.; Rali, T.; Sticher, O. Prenylated flavanones from leaves of *Macaranga pleiostemona*. *Phytochemistry* **1995**, *40*, 1273–1277. [CrossRef]
- 79. Setzer, W.N.; Green, T.J.; Lawton, R.O.; Moriarity, D.M.; Bates, R.B.; Caldera, S.; Haber, W.A. An antibacterial vitamin E derivative from *Tovomitopsis psychotriifolia*. *Planta Med.* **1995**, *61*, 275–276. [CrossRef] [PubMed]
- 80. Petersen, M.; Simmonds, M.S. Rosmarinic acid. Phytochemistry 2003, 62, 121–125. [CrossRef]
- 81. Klančnik, A.; Piskernik, S.; Jeršek, B.; Možina, S. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. *J. Microbiol. Methods* **2010**, *81*, 121–126. [CrossRef] [PubMed]
- Bais, H.P.; Walker, T.S.; Scheizer, H.P.; Vivanco, J.M. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of *Ocimum basilicum*. *Plant Physiol. Biochem.* 2002, 40, 983–995. [CrossRef]
- 83. Walker, T.S.; Bais, H.P.; Déziel, E.; Schwizer, H.P.; Rahme, L.G.; Fall, R.; Vivanco, J.M. *Pseudomonas aeruginosa*-plant root interactions. Pathogenicity, biofilm formation, and root exudation. *Plant Physiol.* **2004**, *124*, 320–331. [CrossRef] [PubMed]
- Yoshizaki, F.; Hisamichi, S.; Kondo, Y.; Sato, Y.; Nozoe, S. Studies on shikon. III. New furylhydroquinone derivatives, shikonofurans A, B, C, D and E, from *Lithospermum erythrorhizon* Sieb. et Zucc. *Chem. Pharm. Bull.* 1982, *30*, 4407–4411. [CrossRef]
- 85. Puttarak, P.; Charoonratana, T.; Panichayupakaranant, P. Antimicrobial activity and stability of rhinacanthins-rich *Rhinacanthus nasutus* extract. *Phytomedicine* **2010**, *17*, 323–327. [CrossRef] [PubMed]
- Petit, S.; Duroc, Y.; Larue, V.; Giglione, C.; Léon, C.; Soulama, C.; Denis, A.; Dardel, F.; Meinnel, T.; Artaud, I. Structure-activity relationship analysis of the peptide deformylase inhibitor 5-bromo-1*H*-indole-3-acetohydroxamic acid. *ChemMedChem* 2009, 4, 261–275. [CrossRef] [PubMed]
- Zhu, Y.; Zhang, P.; Yu, H.; Li, J.; Wang, M.W.; Zhao, W. Anti-*Helicobacter pylori* and thrombin inhibitory components from Chinese dragon's blood, *Dracaena cochinchinensis*. J. Nat. Prod. 2007, 70, 1570–1577. [CrossRef] [PubMed]
- 88. Fukai, T.; Kaitou, K.; Terada, S. Antimicrobial activity of 2-arylbenzofurans from *Morus* species against methicillin-resistant *Staphylococcus aureus*. *Fitoterapia* **2005**, *76*, 708–711. [CrossRef] [PubMed]
- 89. Tanaka, H.; Hirata, M.; Etoh, H.; Sako, M.; Sato, M.; Murata, J.; Murata, H.; Darnaedi, D.; Fukai, T. Six new constituents from the roots of *Erythrina variegata*. *Chem. Biodivers*. **2004**, *1*, 1101–1108. [CrossRef] [PubMed]
- Basri, D.F.; Xian, L.W.; Shukor, N.I.; Latip, J. Bacteriostatic antimicrobial combination: Antagonistic interaction between epsilon-viniferin and vancomycin against methicillin-resistant *Staphylococcus aureus*. *BioMed Res. Int.* 2014. [CrossRef] [PubMed]
- 91. Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. *Angew. Chem. Int. Ed.* **2011**, *50*, 586–621. [CrossRef] [PubMed]
- 92. Gupta, P.K.; Sahu, B. Identification of natural compound inhibitors against peptide deformylase using virtual screening and molecular docking techniques. *Bull. Environ. Pharmacol. Life Sci.* **2015**, *4*, 70–80.
- 93. Gradišar, H.; Pristovšek, P.; Plaper, A.; Jerala, R. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site. *J. Med. Chem.* **2007**, *50*, 264–271. [CrossRef] [PubMed]
- 94. Hossion, A.M.; Zamami, Y.; Kandahary, R.K.; Tsuchiya, T.; Ogawa, W.; Iwado, A.; Sasaki, K. Quercetin diacylglycoside analogues showing dual inhibition of DNA gyrase and topoisomerase IV as novel antibacterial agents. *J. Med. Chem.* **2011**, *54*, 3686–3703. [CrossRef] [PubMed]
- 95. Plaper, A.; Golob, M.; Hafner, I.; Oblak, M.; Šolmajer, T.; Jerala, R. Characterization of quercetin binding site on GNA gyrase. *Biochem. Biophys. Res. Commun.* **2003**, *306*, 530–536. [CrossRef]
- Verotta, L.; Lovaglio, E.; Vidari, G.; Finzi, P.V.; Neri, M.G.; Raimondi, A.; Parapini, S.; Taramelli, D.; Riva, A.; Bombardelli, E. 4-Alkyl- and 4-phenylcoumarins from *Mesua ferrea* as promising multidrug resistant antibacterials. *Phytochemistry* 2004, 65, 2867–2879. [CrossRef] [PubMed]
- 97. Chen, L.; Zhou, B.; Zhang, S.; Wu, L.; Wang, Y.; Franzblau, S.G.; Zhang, Z.Y. Identification and characterization of novel inhibitors of mPTPB, an essential virulent phosphatase from *Mycobacterium tuberculosis. ACS Med. Chem. Lett.* **2010**, *1*, 355–359. [CrossRef] [PubMed]
- Wu, T.; Zang, X.; He, M.; Pan, S.; Xu, X. Structure-activity relationship of flavonoids on their anti-*Escherichia coli* activity and inhibition of DNA gyrase. *J. Agric. Food Chem.* 2013, 61, 8185–8190. [CrossRef] [PubMed]

- Borrelli, S.; Zandberg, W.F.; Mohan, S.; Ko, M.; Martinez-Gutierrez, F.; Partha, S.K.; Sanders, D.A.; Av-Gay, Y.; Pinto, B.M. Antimycrobacterial activity of UDP-galactopyranose mutase inhibitors. *Int. J. Antimicrob. Agents* 2010, *36*, 364–368. [CrossRef] [PubMed]
- 100. Dykhuizen, E.C.; May, J.F.; Tongpenyai, A.; Kiessling, L.L. Inhibitors of UDP-galactopyranose mutase thwart mycobacterial growth. *J. Am. Chem. Soc.* **2008**, *130*, 6706–6707. [CrossRef] [PubMed]
- 101. Jayasuriya, H.; Clark, A.M.; McChesney, J.D. New antimicrobial filicinic acid derivatives from *Hypericum drummondii*. J. Nat. Prod. **1991**, 54, 1314–1320. [CrossRef] [PubMed]
- 102. Rocha, L.; Marston, A.; Potterat, O.; Kaplan, M.A.; Hostettmann, K. More phloroglucinols from *Hypericum brasiliense*. *Phytochemistry* **1996**, *42*, 185–188. [CrossRef]
- 103. Wang, T.; Duncan, L.; Gu, W.; O'Dowd, H.; Wei, Y.; Perola, E.; Parsons, J.; Gross, C.H.; Moody, C.S.; Arends, S.J.R.; et al. Design, synthesis and biological evaluation of potent NAD⁺-dependent DNA ligase inhibitors as potential antibacterial agents. Part II: 4-Amino-pyrido[2,3-*d*]pyrimidin-5(8*H*)-ones. *Bioorg. Med. Chem. Lett.* 2012, 22, 3699–3703. [CrossRef] [PubMed]
- 104. Siridechakorn, I.; Phakhodee, W.; Ritthiwigrom, T.; Promgool, T.; Deachathai, S.; Cheenpracha, S.; Prawat, U.; Laphookhieo, S. Antibacterial dihydrobenzopyran and xanthone derivatives from *Garcinia cowa* stem barks. *Fitoterapia* 2012, *83*, 1430–1434. [CrossRef] [PubMed]
- 105. Sohn, H.Y.; Son, K.H.; Kwon, C.S.; Kwon, G.S.; Kang, S.S. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: *Morus alba L., Morus mongolica* Schneider, *Broussnetia papyrifera* (L.) Vent, *Sophora flavescens* Ait and *Echinosophora koreensis* Nakai. *Phytomedicine* 2004, 11, 666–672. [CrossRef] [PubMed]
- 106. Chan, B.C.; Yu, H.; Wong, C.W.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Paris, J.M.; Morleo, B.; Litaudon, M.; Lau, C.B.; et al. Quick identification of kuraridin, a noncytotoxic anti-MRSA (methicillin-resistant *Staphylococcus aureus*) agent from *Sophora flavescens* using high-speed counter-current chromatography. J. Chromatogr. B 2012, 880, 157–162. [CrossRef] [PubMed]
- 107. Oh, I.; Yang, W.Y.; Chung, S.C.; Kim, T.Y.; Oh, K.B.; Shin, J. In vitro sortase A inhibitory and antimicrobial activity of flavonoids isolated from the roots of *Sophora flavescens*. Arch. Pharm. Res. 2011, 34, 217–222. [CrossRef] [PubMed]
- 108. Salvatore, M.J.; King, A.B.; Graham, A.C.; Onishi, H.R.; Bartizal, K.F.; Abruzzo, G.K.; Gill, C.J.; Ramjit, H.G.; Pitzenberger, S.M.; Witherup, K.M. Antibacterial activity of lonchocarpol A. J. Nat. Prod. 1998, 61, 640–642. [CrossRef]
- Valerio, L.G. In silico toxicology for the pharmaceutical sciences. *Toxocol. Appl. Pharmacol.* 2009, 241, 356–370.
 [CrossRef] [PubMed]
- Yuriev, E.; Agostino, M.; Ramsland, P.A. Challenges and advances in computational docking: 2009 In review. J. Mol. Recognit. 2011, 24, 149–164. [CrossRef] [PubMed]
- Yuriev, E.; Ramsland, P.A. Latest developments in molecular docking: 2010–2011 In review. J. Mol. Recognit. 2013, 26, 215–239. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).