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Family trio next-generation sequencing-based variant analysis was done to identify the

genomic reason on unexplained recurrent pregnancy loss (RPL). A family (dead fetus and

parents) from Saudi Arabia with an earlier history of three unexplained RPLs at the ninth

week of pregnancy was included in the study. Whole-genome sequencing (WGS) of a

dead fetus and the parents was done to identify the pathogenic variation and confirmed

through Sanger sequencing. WGS of dead fetus identifies a novel homozygous exonic

variation (NM_017419.3:c.680G>T) in ASIC5 (acid-sensing ion channel subunit family

member 5) gene; the parents are heterozygous. Newly designed ARMS PCR followed

by direct sequencing confirms the presence of heterozygous in one subject and absence

of homozygous novel mutation among randomly selected healthy Saudis. The second

family with heterozygous was confirmed with three unexplained RPLs. Pathogenicity

analysis of R227I amino acid substitution in ASIC5 protein through molecular docking

and interaction analysis revealed that the mutations are highly pathogenic, decrease

the stability of the protein, and prevent binding of amiloride, which is an activator to

open the acid-sensing ion channel of ASIC5. The identified rare and novel autosomal

recessive mutation, c.680G>T:p.R227I (ASIC5Saudi), in two families confirm the ASIC5

gene association with RPL and can be fatal to the fetus.

Keywords: exome, recurrent pregnancy loss, whole genome sequencing, ASIC5, Saudi Arabia, molecular docking,

next generation sequencing, unknown spontaneous abortion

INTRODUCTION

Recurrent pregnancy loss (RPL), or recurrent miscarriage (RM) is described as three or more
sequential unpremeditated abortions before 20 weeks of gestation (1), a condition termed “habitual
abortion” or “repeated spontaneous abortions” (2). RPL affects couples at propagative age around
the world. The etiologies of RPL in Saudis or Arabs and other populations tend to be multifactorial.
Factors including genetic abnormalities (3–10), placental anomalies (11–13), psychological trauma
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and stressful life events (14), and certain coagulation and
immunoregulatory protein defects (15–18) were reported to be
associated with RPL among women in the Gulf region. In some
populations, other factors have been studied, such as anatomical,
endocrine, hormonal problems, infection, smoking and alcohol
consumption, and exposure to environmental factors, and these
factors could increase the risk of RPL (19). Several studies have
reported the relationship between various causes of recurrent
miscarriage among Saudis and the rest of the population;
however, 30–50% of RPLs were unexplained (5, 19). More studies
on RPL only can reveal the cause. The objective of the study is
to analyze the genetic basis of a family from Saudi Arabia with
an earlier history of recurrent pregnancy loss at the ninth week
of pregnancy using next-generation sequencing [whole-genome
sequencing (WGS)] by complete analysis of whole genome
of the fetus and parents followed by rigorous bioinformatics
and confirmatory analyses (20–36). The study reports a novel
homozygous exonic variation in the ASIC5 gene in a dead fetus,
while the parents are heterozygous.

MATERIALS AND METHODS

Ethics and Study Subjects
The study was approved by the Institutional Review
Boards Committee of the Imam Abdulrahman Bin Faisal
University (IRB-2017-13-137).

A family with a past history of three miscarriages has
been included in the study with a written consent from
the father and mother. During the fourth pregnancy, the
mother experienced a similar type of miscarriage at the
ninth week of pregnancy. Tissue (separated cautiously from
maternal tissue to avoid contamination) samples and blood
samples were collected from the fetus (proband) and parents,
respectively. Miscarriage sample was collected in an RNAprotect
Cell Reagent (Qiagen, Hilden, Germany). The DNAs of
the samples were isolated, and the most prevalent genetic
disease, hemoglobinopathies, were screened using the Sanger
sequencing. Genes (functional variants and deletions in
HBB, HBA1, HBA2, ATRX, and HBD) related to the most
prevalent mutations have been found to be normal. Hence,
the WGS was done for the miscarriage tissue, mother, and
father genomes.

Whole-Genome Sequencing and Trio
Analysis
The trio analysis has been carried out using the best practice
GATK pipeline (20). The program Fastx (http://hannonlab.cshl.
edu/fastx_toolkit) was used to filter low-quality reads. Then the
reads were aligned to the reference human genome (hg19) using
the program BWA (21). The GATK haplotype caller was used to
call the variants. The resulting variants were then annotated using
in-house developed workflow including the following three sets
of data sources:

1. Public databases: These were collected from the Annovar
packages, and they include the basic positional information
about genes and related proteins. They also include

information from the dbSNP database, the 1000 Genome
database, ExAC, and gnomAD databases. Annovar also
includes predictions of the functional effect of the variants
from the tools Polyphan, Sift, CADD, and MetaSVM.
In addition to Annovar, we used the clinvar and OMIM
databases to annotate the variants and genes with up-to-data
medical information.

2. In-house databases: We annotated the variants using the Saudi
Human Genome Program variant DB to check for variant
frequency in the Saudi population (22–24).

3. Commercial databases: We used the HGMD database to
annotate the variant with clinical information.

After variant annotation, we ran filters according to the ACMG
(American College of Medical Genetics and Genomics)
guidelines. We excluded variants that are intergenic,
synonymous, appearing more than 5% in population databases,
or not damaging (as predicted by CADD, Polyphen, SIFT, and
MetaSVM). We also ran extra trio analysis to filter the variants
according to the autosomal recessive, de novo, compound
heterozygous, and x-linked. After applying these filters, the
remaining variants were examined manually to match the
annotated clinical information to the fetus phenotype.

Sanger Sequencing Validation
Whole-genome result was confirmed using Sanger sequencing.
The presence of the homozygous NM_017419.3:c.680G>T in
the proband and heterozygous in the parents were confirmed
using Sanger sequencing. Highly specific primers (ASIC5F:
5′-CAGATAAAAACATGTTTCCATACATCTTCAG-3′ and
ASIC5R: 5′- TTGTGGCATGAACATTCCCTGGA-3′) were
designed, and the selected region of the gene was amplified
[PCR recipe: MOLEQULE-ON absolute master mix 12.5 µl,
ASIC5F 1 µl (10 nM), ASIC5R 1 µl (10 nM), DNA Template
25 ng, and Dis H2O to 25 µl; temperature profile: 95◦C for
10min; 35 cycles of 95◦C/60 s, 60◦C/60 s, 72◦C/60 s; and 72◦C
for 5min] and sequenced using BigDye Terminator Cycle
Sequencing Kit (Thermo Fisher Scientific, Inc., Waltham, MA,
USA). Amplified PCR product (691 bp) of the ASIC5 gene
region was purified and sequenced using Genetic Analyzer
3500 (Thermo Fisher Scientific, Inc.) at the Department
of Genetic Research, Institute for Research and Medical
Consultations, Imam Abdulrahman Bin Faisal University
(Dammam, Saudi Arabia). Sequences were analyzed using
mutation surveyor software (Softgenetics, US) and DNA
sequencing analysis software v.5.3 (Applied Biosystem; Thermo
Fisher Scientific, Inc.).

Amplification Refractory Mutation
System-Polymerase Chain Reaction-Based
Variation Screening and Sanger
Sequencing Validation
The amplification refractory mutation system-polymerase
chain reaction (ARMS-PCR) was designed (primers
will be available on request) to screen the presence
of NM_017419.3:c.680G>T among healthy Saudis
(n = 200). The subjects positive for the presence of
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NM_017419.3:c.680G>T was confirmed through Sanger
sequencing using primers (ASIC5F and ASIC5R). This
is also to confirm the absence of the homozygous
NM_017419.3:c.680G>T in the healthy Saudi subjects
randomly selected.

Homology Protein Modeling and
Functional Annotations
The homology modeling of wild (p.R227) and mutant (p.R227I)
ASIC5 protein was performed using Swiss Model server (25),
validated using PROCHECK (26). The structural functional
annotations were completed using SAS-sequence server (27),
ProFunc (28), and PDBsum (29). Mutant structures were
generated using Swiss-PDB Viewer and PyMol (30). Energy
minimization for the wild and mutants was estimated using
GROMACS (31). Evolutionary conservation and functional
aspect analysis of the R227 residue in the wild-type protein
was performed using the ConSurf (32). PROVEAN and I-
Mutant were used for analyzing the impact on the biological
function of a protein due to an amino acid substitution R227I
(33, 34). AutoDock Vina was used for molecular docking of
the ligand with wild type and mutant ASIC5 protein (35),
and the molecular visualization was done in PyMol and
LigPlot (36).

RESULTS

Whole-Genome Sequencing and Trio
Analysis
The family with a history of three unexplained miscarriages
was included in the study. The couple is consanguineous but
not first-degree relatives. There was no history of genetic
and chronic diseases in the couple. The family was identified
with a similar type of unknown spontaneous abortion at
the ninth week of pregnancy. The mother was 30 years at
the time of the fourth unexplained spontaneous miscarriage;
the father was 34. The previous three unexplained miscarriages
and the fourth were also of similar gestation. At this
gestation, the gender of the proband cannot be determined
even after miscarriage. The mother is devoid of uterine
or cervical abnormalities. In order to identify the cause
of the recurrent spontaneous abortion, WGS was done for
the mother, father, and proband. The WGS of the trio
(proband and parents) samples has revealed an inheritance
of NM_017419.3:c.680G>T mutation in the ASIC5 gene from
the parents (Figure 1A and Supplementary Table 1). Various
heterozygous mutations observed in the proband are listed
in the Supplementary Material, which were inherited either
from the mother or father (Supplementary Table 2). The WGS
result of NM_017419.3:c.680G>T variation in exon 4 of the
ASIC5 gene has been confirmed through the Sanger sequencing
(Figure 1B). The father and the mother were found to be carriers
(heterozygous) of the c.680G>T:p.R227I at theASIC5 gene, while
the proband was homozygous to c.680G>T:p.R227I (GenBank:
MN251164; ClinVar: SCV000930628; SNP ID: rs1248841709)

(Figure 1). The name of the novel variant was validated using
Mutalyzer 2.0.32.

Amplification Refractory Mutation
System-Polymerase Chain Reaction-Based
Variation Screening and Sanger
Sequencing Validation
In order to confirm the absence of the homozygous
NM_017419.3:c.680G>T among the living population, a
total of 200 healthy Saudis were selected randomly and checked
for the mutation at the c.680 position in the ASIC5 gene using
ARMS-PCR followed by Sanger sequencing. The results of
the ARMS-PCR and direct sequencing of 200 healthy Saudis
in the c.680 position in the ASIC5 gene revealed the absence
of homozygous NM_017419.3:c.680G>T. Furthermore, this
mutation is novel to the SHGP (Saudi Human Genome Program)
database (about 9,500 cases). This suggests that the discovered
mutation NM_017419.3:c.680G>T is rare, and their absence
of a homozygous state in the healthy Saudis is validated.
Furthermore, a female subject was observed with a heterozygous
NM_017419.3:c.680G>T in the ASIC5 gene. The female subject
with heterozygous mutations is a single daughter, and her
mother experienced the unexplained RPL similar with the
earlier family in the ninth week of pregnancy consecutively
three times.

Molecular Docking and Interaction
Analysis
The predicted structure of the wild ASIC5 on the Ramachandran
plot showed φ/9 angles of 83.1% residues in the most favored
regions, 15.4% in the additional allowed regions, 1.1% in the
generously allowed regions, and 0.3% in the disallowed regions
(Figure 2B). The total residue span of the secondary structure
consist of 23.0% residues involved in the formation of the strands,
23.0% residues in alpha helices, 2.6% residues in 3–10 helices,
and 51.5% residues in other structural moieties. Analysis of
secondary structure in ProFunc showed the presence of 3 β-
sheets, 4 β-hairpins, 1 psi loop, 3 β-bulges, 14 strands, 14 helices,
5 helix–helix interactions, 34 β-turns, and 9 γ-turns. Homology
modeling of the mutant structure (R227I) of the ASIC5 showed
deviations from the wild type; the mutant structure on the
Ramachandran plot showed φ/9 angles of 84.3% residues in
the most favored regions, 14.3% in the additional allowed
regions, 1.1% in the generously allowed regions, and 0.3% in
the disallowed regions. The total residue span of the secondary
mutant structure consisting of 22.7% residues involving the
formation of the strands, 23.7% residues in alpha helices, 1.8%
residues in 3–10 helices, and 51.8% residues in other structural
moieties. Analysis of the secondary structure of the mutant in
ProFunc showed the presence of 3 β-sheets, 4 β-hairpins, 1 psi
loop, 2 β-bulges, 14 strands, 13 helices, 5 helix–helix interactions,
42 β-turns, and 8 γ-turns.

ConSurf analysis revealed that R227I is a functional residue,
which is highly conserved and exposed. A total of 97 HMMER
hits were considered for this analysis, while 91 of them were
unique, including the query. PROVEAN analysis showed that
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FIGURE 1 | Novel mutation in the ASIC5 gene (NM_017419.3:c.680G>T) in the family. (A) Phylogenic analysis of the family with the NM_017419.3:c.680G>T

mutation in the ASIC5 gene. (B) Electropherogram of the sequence c.664 to c.695 of exon 4 at the ASIC5 gene of the proband and the parents. The highlighted

nucleotide with arrow indicates the position of the NM_017419.3:c.680G>T. The proband is homozygous for the NM_017419.3:c.680G>T. The mother and father

are heterozygous for the NM_017419.3:c.680G>T.

R227I is a deleterious amino acid substitution as evident from
PROVEAN score −3.830. I-Mutant analysis predicted that the
free energy change value (DDG) between wild type and mutant
type was less than zero (DDG < 0), which declares the decrease
in protein stability. Wild (RMSD= 0.045 Å) and mutant (RMSD
= 0.088 Å) proteins were superimposed, quantitative measure
of similarity analysis revealed an increase of 95.56% root-mean-
square deviation of atomic positions in the mutant (Figure 2C).

Molecular docking studies of wild (p.R227) and mutant
(p.R227I) ASIC5 protein with amiloride, a potent inhibitor of
acid-sensing ion channel proteins, were performed, and it was
observed that the binding behavior of amiloride with the mutant
model compared with the wild-type model was completely
different (Figure 2). R227 residue is not directly involved in
binding with the ligand, but it assists atomic interactions through
binding of the ligand with protein molecules at specific sites
(Figure 2F). In particular, a halogen bonding occurs between the
chlorine atom (colored green) of amiloride with the amino group
(NH2) of Gln305 (colored blue). The oxygen atom of the carbonyl
group (colored red) of amiloride interacts with the hydrogen of
the amino group (NH2) of Gln265 through N–H· · ·O hydrogen
bonding. In a similar fashion, the hydrogen of amiloride interacts
with the oxygen group of Glu203. However, the R227I prevents
the binding of ligand with the ASIC5 molecule at a specific site
(Figure 2G). In this mutant model, an alteration in the protein
coordination site occurs (Gly126 and Asn243) and, therefore,
fails to coordinate with amiloride functional groups.

DISCUSSION

Studies on tissues of miscarriage specimens from women with
RPL observed the chromosomal aberrations from 29 to 46% of
miscarriage tissues, while majority of the RPL may be due to
alternative mechanisms or other than chromosomal aberrations
(37–39). The present observation suggests that coding variants
in ASIC5 gene can be one among the alternative mechanisms
for RPL. The role of the acid-sensing ion channel subunit family
member 5 (ASIC5) or ACCN5 or bile acid-sensitive ion channel
(BASIC) gene in humans, in general, and the development of
the fetus, in particular, is scanty (40–42). Very limited studies
are available on the gene ASIC5 and related expression. This
gene, ASIC5, was reported to be expressed in the amniotic fluid
(43), fetal gut, brain, liver, heart, ovary, and testis (44). ASIC5 is
overexpressed in the fetal gut (41.0) and plasma (27.5). ASIC5
was observed to a key player in the physiology of unipolar
brush cells of the vestibulocerebellum (42, 45, 46). The complete
functions of the ASIC5 gene and its product are yet to be
identified (40–42). Animal studies on the autosomal recessive
mouse mutant of the gene encoding the L-type calcium channel
revealed that the homozygous mutant animals die at birth;
however, the heterozygous for the mutant is not distinguishable
from that of wild animals (47). The study resembles the present
observation of the heterozygous mutant of the healthy parents,
while death of the fetus with a homozygous mutant in the
gene belongs to the amiloride-sensitive Na+ channel. The R227I
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FIGURE 2 | Pathogenicity analysis of R227I mutation in the ASIC5 protein through molecular docking and interaction analysis. (A) Structural models of the wild (R227)

and mutated (R227I) ASIC5 proteins. (B) Ramachandran plot for the predicted structure of the ASIC5 protein. Eighty-three porterage residues of the ASIC5 protein are

in the most favored regions. Cx, superimposed structures of the wild (R227) and mutated (R227I) ASIC5 proteins; Cy, deviated region of R227I from R227 on

superimposed wild and mutant ASIC5. (D) Amiloride with ASIC5 at the active binding site. (E) 3D amiloride with surrounding amino acids of ASIC5 protein. (F,G)

Protein–ligand interaction. (F) Wild ASIC5 (R227) protein with ligand, amiloride. (G) Mutant ASIC5 (R227I) protein with ligand, amiloride.
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prevents the binding of amiloride with ASIC5 protein. However,
more confirmatory studies are mandatory to prove the failure in
amiloride-R227I (ASIC5) binding in wet lab, which is mandatory
for an activator to open its own channel (41, 48). Acid-sensing
ion channel subunit channels play an important role in the
fetal developmental pathology due to acidosis; furthermore,
prolonged acidosis is significantly associated with mortality of
the fetus (49, 50). Increased apoptosis was observed in the retina
due to the mutant ASIC2 gene compared with the wild type
(51). Mammalian degenerin (MDEG) or ASIC2 (acid-sensing ion
channel subunit 2) gene mutant study on the development of
Xenopus reported that the Xenopus oocytes with ASIC2mutation
start to maturate and die (52). This indicates the pathophysiology
of the mutation in the acid-sensing ion channel subunit genes.

Earlier reports reported that in 39% of the Saudi females
who had RPL, the origin of the patient in the study was
unexplained or had no identifiable cause (5). Various reasons
including genetic factors were stated for recurrent pregnancy loss
among Saudi women (3, 4, 6, 14, 18). Consanguineous marriages
are also considerably (p = 0.046) impacting (3). Genome-wide
association study (GAWS) revealed the association of ASIC5
(p = 0.0029; Supplementary Table 3) and level of manganese
(53, 54). Furthermore, the level of manganese in the placental
tissue of Saudi women with recurrent pregnancy loss was
significantly (p < 0.0001) decreased (11). This suggests that the
identified mutation in ASIC5 might have played a role in the
level of manganese in the present women. A recent study on
the prognosis markers of glioblastoma revealed the expression
of ASIC5 as associated prognosis markers (55). ASIC5 was
found to be activated in the ethanol-(100mM)-exposed neonatal
rat cardiomyocytes along with other six molecules (CYP2A6,
PRL, CHRNA4, CNR1, CRH, and SLC40A1) (56). Low (in 50%)
ASIC5 protein expression in melanoma were observed with<4%
mutation rates (57).

Preparing the mutated animal model to study the impact
of the mutant on the fetal development is not available in
our laboratory, which is a limitation of the study. Hence,
the region with the mutation, c.680G>T in the ASIC5 gene,
was screened using ARMS-PCR followed by sequencing using
designed primers to identify the presence of c.680G>T in
randomly selected Saudis in the study region, which confirms
the absence of the homozygous NM_017419.3:c.680G>T and the
presence of heterozygous NM_017419.3:c.680G>T in a female
subject and her mother with RPL. The study confirms the
influence of the association of the novel exonic mutation with
RPL. However, nationwide studies are mandatory to identify
the prevalence of this rare mutation and mutations in this gene
among unexplained miscarriages cases and their impact on the
recurrent pregnancy loss and fetal development. This can reveal
the role of ASIC5. The protein–protein interaction analysis of
ASIC5 protein, with the protein observed with the mutation
in the proband using STRING, revealed lack of interaction
(Supplementary Table 2). However, the analysis using STRING
cannot reveal any specific impact of mutated protein–protein
interactions due to specific amino acid changes (58).

Based on the earlier reports on the member of the DEG/ENaC
(degenerin/epithelial sodium channel) protein family and the

current observations, it may be concluded that the R227I amino
acid substitution in the ASIC5 is highly deleterious; the mutant
ASIC5 showed decreased stability and of the protein and prevents
the binding of amiloride, a potent inhibitor of acid-sensing ion
channel proteins (59).

The observed novel ASIC5 gene-coding variant (ASIC5Saudi)
in two families confirm the ASIC5 association with the results
of RPL. Hence, this mutation is pathogenic, which may cause
serious illness to the fetus and cause fetal mortality. The
molecular mechanism behind the death of the fetus in relation to
the homozygous NM_017419.3:c.680G>T at exon 4 (ASIC5Saudi)
in the ASIC5 gene should be studied in detail. Early prenatal
diagnosis of pathogenic variation like ASIC5Saudi can provide a
choice for the parent to decide pregnancy termination within the
allowed time among high-consanguinity population (60).
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