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Since the start of the COVID-19 pandemic, mutations have led to the emergence of new
SARS-CoV-2 variants, and some of these have become prominent or dominant variants
of concern. This natural course of development can have an impact on how protective the
previously naturally or vaccine induced immunity is. Therefore, it is crucial to understand
whether and how variant specific mutations influence host immunity. To address this, we
have investigated how mutations in the recent SARS-CoV-2 variants of interest and
concern influence epitope sequence similarity, predicted binding affinity to HLA, and
immunogenicity of previously reported SARS-CoV-2 CD8 T cell epitopes. Our data
suggests that the vast majority of SARS-CoV-2 CD8 T cell recognized epitopes are not
altered by variant specific mutations. Interestingly, for the CD8 T cell epitopes that are
altered due to variant specific mutations, our analyses show there is a high degree of
sequence similarity between mutated and reference SARS-CoV-2 CD8 T cell epitopes.
However, mutated epitopes, primarily derived from the spike protein, in SARS-CoV-2
variants Delta, AY.4.2 and Mu display reduced predicted binding affinity to their restriction
element. These findings indicate that the recent SARS-CoV-2 variants of interest and
concern have limited ability to escape memory CD8 T cell responses raised by vaccination
or prior infection with SARS-CoV-2 early in the pandemic. The overall low impact of the
mutations on CD8 T cell cross-recognition is in accordance with the notion that mutations
in SARS-CoV-2 are primarily the result of receptor binding affinity and antibody selection
pressures exerted on the spike protein, unrelated to T cell immunity.

Keywords: SARS-CoV-2, CD8 T cell epitopes, SARS-CoV-2 variants, CD8 T cells, bioinformatics &
computational biology
INTRODUCTION

The COVID-19 pandemic caused by SARS-CoV-2 is having a global catastrophic impact on public
health and social economy (1, 2). SARS-CoV-2 was first identified in humans in late 2019 inWuhan,
China, and the outbreak was designated as a pandemic by theWHO onMarch 11th, 2020 (3, 4). The
early variant of SARS-CoV-2 (also known as lineage B or Wuhan-Hu-1; UniProt: UP000464024;
Genome accession: MN908947) is hereafter referred to as ‘reference SARS-CoV-2’.
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SARS-CoV-2 is a single-stranded RNA virus characterized by
an inherently high mutation rate, short replication time and high
virion yield (5–8). As the virus spreads, this leads to a high
genetic diversity and allows the virus to evolve rapidly as a result
of natural selection pressures, including those originating from
the host immune system. Mutations accumulate over time and
result in amino acid changes that decrease the antigenicity of
immune targeted proteins. This gradual change in antigenicity of
viral proteins, driven by selective immune pressure, is known as
antigenic drift (9). Antigenic drift allows viruses to continuously
evade host immunity, facilitating recurrent viral outbreaks. In
acute infectious disease, antigenic drift is primarily driven by
antibody responses leading to selection of escape mutants (9). In
accordance with this, many of the amino acid changes in SARS-
CoV-2 variants are located in the spike protein, the main target
of neutralizing antibodies (10). These antibodies form the only
immune mechanism that is able to provide sterilizing immunity,
preventing host cells from being infected. The rate of evolution of
the SARS-CoV-2 spike protein is much higher than that of
similar proteins in other known viruses that cause acute
infectious disease in humans. For example, its rate of evolution
is approximately 10-fold higher than the evolution rate of the
influenza A hemagglutinin and neuraminidase proteins (9). In
addition, a large number of amino acid changes have
accumulated in SARS-CoV-2 proteins that are not known
antibody targets (11). These amino acid changes may have
inferred a fitness advantage to the virus unrelated to antibody
immunity, as antigenic drift is primarily driven by antibody
responses in acute viral infections (6, 9, 12, 13).

Even though T cells are unlikely to be amain source to antigenic
drift there is ample evidence for the importance of these cells in
protection against severe and critical COVID-19 and re-infections:
1) Depletion of CD8 T cells led to impaired clearance of SARS-
CoV-2 in a COVID-19 mouse model (14) and breakthrough
infections in a rhesus macaque model upon rechallenge;
2) Lower baseline peripheral blood CD8 T cell counts have been
shown to correlate with decreased patient survival (15, 16); and
3) CD8 T cells have also been shown to impact COVID-19 disease
severity: high percentages of HLA-DR+CD38hi CD8+ T cells in
peripheral blood of COVID-19 patients were demonstrated to
correlate with disease severity (17), and early bystander CD8 T cell
activation combined with absence of systemic inflammation was
shown to predict asymptomatic or mild disease (18). Combined,
these observations suggest that CD8 T cell immunity is important
for protection against reinfection and severe COVID-19
disease (19).

As a direct consequence of antigenic drift, several SARS-CoV-
2 variants defined by amino acid changes that directly impact
virus transmissibility, pathogenicity, infectivity and/or
antigenicity have emerged (20). The most prominent SARS-
CoV-2 variants in Europe were designated as variants of concern
(VOC) (Alpha, B.1.1.7; Beta, B.1.351; Gamma, P.1; Delta,
B.1.617.2; Omicron, B.1.1.529) and variants of interest (VOI)
(Lambda, C.37; Mu, B.1.621; “Delta Plus”, AY.4.2) according to
the European Centre for Disease Prevention and Control
(ECDC) designation (21). All VOC and VOI except AY.4.2
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were also designated as VOC or VOI by the World Health
Organization at the moment of this investigation (20). SARS-
CoV-2 variant Alpha was the dominant variant in circulation
starting in late 2020 and was subsequently replaced by SARS-
CoV-2 variant Delta which accounted for 90% of the infections
worldwide by August 2021. In November 2021, SARS-CoV-2
variant Omicron was first detected. It was responsible for at least
92% of global SARS-CoV-2 infections by February 2022
[Figure 1A (22)]. There is accumulating evidence that recent
SARS-CoV-2 variants including Beta, Delta and Omicron are
less efficiently neutralized by vaccine recipients’ sera (23, 24). In
terms of T cell immunity, there is experimental data by other
groups showing that T cell responses induced by reference SARS-
CoV-2 generally cross-recognize SARS-CoV-2 variants Alpha,
Beta, Gamma, Delta and Omicron (25–29). However, these
papers do not include systematic data regarding the effect of
SARS-CoV-2 variant-specific amino acid changes on the
properties of previously recognized CD8 T cell epitopes.

In this work, we investigate the potential consequences of
variant specific mutations on the SARS-CoV-2 specific CD8 T
cell responses raised by either natural infection or vaccination
based on in silico analysis. In particular, we explore changes in
predicted binding affinity of the epitopes to their HLA restriction
elements, predicted immunogenicity and likelihood of CD8 T
cell receptor cross-recognition of epitopes between the reference
SARS-CoV-2 strain and SARS-CoV-2 variants of interest and
concern (Figure 1B). We perform these analyses pan-proteome
to identify the degree of protection after a natural infection.
Furthermore, the vaccines currently approved by WHO are
limited to the spike protein (30). Therefore, we have also
conducted the analyses focused on CD8 T cell recognized
epitopes derived from the spike protein only to determine the
degree of the vaccine-mediated protection.
MATERIALS AND METHODS

Identification of Dominant Non-
Synonymous Mutations in
SARS-CoV-2 Variants
The list of SARS-CoV-2 variants of interest and variants of
concern has been compiled according to the WHO and ECDC
designations as of December 10, 2021. For each of the variants, a
list of mutations present in 75% of the GISAID sequences for the
corresponding PANGO lineage was compiled via the
outbreak.info API. The lists of mutations per lineage can be
found in Supplementary Table 1 (31, 32).

Parsing of CD8 T Cell Recognized
SARS-CoV-2 Epitopes Using IEDB
The table of T cell assay results was downloaded from the IEDB
website on December 8, 2021 (33, 34). The table was filtered to
include only linear SARS-CoV-2 epitopes in humans, presented
in context of the MHC class I. Only epitopes from patients with
infectious disease were included. Only positive assays with
negative adoptive flag field were included. The tables of variant
April 2022 | Volume 13 | Article 891524
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mutations and SARS-CoV-2 CD8 T cell recognized epitopes were
subsequently intersected. CD8 T cell recognized epitopes that were
deduced from reactive overlapping peptide poolswere filtered from
the list. Epitopes with published HLA restriction elements were
manually curated. Thefinal list of epitopes and correspondingHLA
alleles is shown in the Supplementary Tables 2, 3.

Epitope Analysis
The normalized epitope similarity score between the altered and
reference SARS-CoV-2 CD8 T cell recognized epitope was
calculated as described by Frankild et al. (35). This method
does not allow the calculation of the similarity score between two
sequences of differing lengths. For this reason, we have set the
sequence similarity score of CD8 T cell recognized epitopes
harboring deletions and/or insertions to 0. IEDB’s epitope
cluster analysis tool was additionally used on each reference
and altered epitope to determine if the epitope pairs share a
sequence identity of 80%, 80-90% or more than 90% (36). The
parameters used were: minimum sequence identity threshold:
80%, 90%. Minimum/Maximum peptide length: NA. Clustering
method: fully interconnected clusters (cliques).

IEDB’s T cell class I pMHC immunogenicity prediction tool
was used to compare the immunogenicity of the altered and
Frontiers in Immunology | www.frontiersin.org 3
reference SARS-CoV-2 CD8 T cell recognized epitopes (37). The
default setting was used, masking the 1st, 2nd and C-terminus
amino acids of the epitopes in the analysis.

For all parsed reference SARS-CoV-2 CD8 T cell recognized
epitopes with experimentally validated HLA restriction
information, the predicted binding affinity to the given HLA was
calculated for both the reference and altered epitope using
NetMHCpan-4.1 (38). The predicted binding affinity is expressed
as the half-maximal inhibitory concentration IC50 nM. For each
paired reference and altered epitope, the fold change in predicted
binding affinity as a result of the mutation(s) was calculated. A 2-
fold change inpredictedbinding affinitywas defined as adecrease in
predicted binding affinity, a fold change below 0.5 as an increase in
predicted binding affinity and a fold change between 0.5 and 2 was
conservatively defined as neutral. CD8 T cell recognized epitopes
overlapping with a deletion and/or insertion and not predicted to
bind to the HLA as a result of the mutation were defined as
decreased in predicted binding affinity.

Statistical Analysis
For all analyzed SARS-CoV-2 CD8 T cell recognized reference and
altered epitope pairs, differences in predicted immunogenicity and
predicted binding affinity were assessed using a two-tailed
A B

D

C

FIGURE 1 | Overview of the investigated SARS-CoV-2 CD8 T cell reactive epitopes. (A) Phylogenetic tree where isolates originating from variants of concern (VOCs)
Alpha, Beta, Gamma, Delta and Omicron are highlighted, as well as variants of interest (VOIs) Lambda and Mu. AY.4.2 is a subvariant of Delta and overlaps with the
Delta branch. The length of the branches reflects the time of emergence. Visualization generated using the Nextstrain platform (22). (B) Depiction of the project
workflow. Created with Biorender. (C) Stacked bar graph indicating the percentages of CD8 T cell recognized epitopes per variant that are conserved or harbor the
indicated types of mutations. (D) Numbers of CD8 T cell recognized epitopes per variant that harbor the indicated types of mutations.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Isaeva et al. CD8 T Cell Recognition of SARS-CoV-2 Variants
Wilcoxonmatched-pairs signed rank test. The increase in fractions
of CD8 T cell recognized epitopes with decreased binding affinity
and/or an epitope sequence similarity <85%was also assessed using
a two-tailed Wilcoxon matched-pairs signed rank test.
Comparisons in log2 fold change predicted binding affinity and/
or epitope sequence similarity between spike and non-spike
protein-derived mutated CD8 T cell recognized epitopes were
assessed using a two-tailed Mann–Whitney U test. Differences
were considered significant if P < 0.05. Statistical analysis was
performed with GraphPad Prism [version: 8.4.2, for Windows,
GraphPad Software, San Diego, California USA (39)].
RESULTS

A Minor Fraction of SARS-CoV-2 Derived
CD8 T Cell Recognized Epitopes Are
Mutated in Variants of Concern
and Interest
We focused our analysis on the current SARS-CoV-2 variants of
concern (VOC) (Alpha, B.1.1.7; Beta, B.1.351; Gamma, P.1;
Delta, B.1.617.2; Omicron, B.1.1.529) and variants of interest
(VOI) (Lambda, C.37; Mu, B.1.621; “Delta Plus”, AY.4.2). First,
we identified the non-synonymous amino acid substitutions,
insertions and deletions that were present in at least 75% of
total virus isolates for each variant in the GISAID database (per
December 6th, 2021 (31, 40);, as compared to the reference SARS-
CoV-2 variant (Supplementary Table 1). Next, we parsed all 973
unique experimentally validated CD8 T cell recognized reference
SARS-CoV-2 derived epitopes identified in patients with
COVID-19, per December 8th 2021, from the Immune Epitope
Database (IEDB) (34, 41) and aligned these with the sequences
spanning the identified non-synonymous mutations in the
investigated SARS-CoV-2 variants (Figure 1B). Specifically, all
SARS-CoV-2 CD8 T cell epitopes detected in patients with
COVID-19 were included. Epitopes deduced from peptide
pools, in which the exact reactive peptide is not validated, were
filtered out. In addition, studies conducted in the adoptive
transfer setting were filtered out. Subsequently, we proceeded
with the bioinformatic analysis of differences in HLA binding
affinity, immunogenicity and sequence similarity between altered
and reference epitopes (Figure 1B).

The vast majority of the 973 included CD8 T cell recognized
epitopes was found to be conserved across the different variants
(median: 97.8%, range: 96.5-98.3%): we identified a total of 93
unique epitopes that harbored one or more mutations
(Figure 1C). Specifically, between 17 and 34 unique epitopes
per variant (median: 21) overlap with one or more amino acid
substitutions, deletions and/or insertions (Figure 1D and
Supplementary Tables 2, 3). Six CD8 T cell recognized
epitopes were considered eliminated in SARS-CoV-2 variant
Alpha as they were located downstream of a stop-codon
mutation (ORF8 Q27*); three additional epitopes contain a
deletion (SD69/70 or D144/144). In SARS-CoV-2 variant Beta,
the identified CD8 T cell recognized epitopes only contain single
amino acid substitutions. Altered CD8 T cell recognized epitopes
Frontiers in Immunology | www.frontiersin.org 4
in the more recent Gamma, Delta, Lambda, Mu and AY.4.2
SARS-CoV-2 variants do not harbor single deletions but harbor
other types of mutations, for example, epitopes with mutations
consisting of more than one amino acid substitution (Gamma,
Lambda, Mu and AY.4.2; n = 1, 1, 2 and 1, respectively) or an
epitope with a deletion (SD157-158) together with an amino acid
substitution (Delta and AY.4.2). The recently emerged SARS-
CoV-2 Omicron variant harbors the largest number of CD8 T
cell recognized epitopes that overlap with non-synonymous
mutations (n=34). These mutations result in epitopes with
single (n=23), double (n=2) and triple (n=3) amino acid
substitutions; single deletions (n=3); a combined amino acid
substitution and deletion (n=2), and even a combined
substitution, deletion and insertion (n=1) (Figure 1D and
Supplementary Tables 2, 3).

To be able to investigate the potential consequences of the
variant specific mutations on T cell recognition, we made a list of
all variant specific CD8 T cell epitopes based on the variant
specific mutations. For the analyses investigating the likelihood
of T cell receptor cross-recognition and epitope immunogenicity
of the altered epitopes, we included the 93 unique CD8 T cell
recognized epitopes with variant specific mutations. For the
prediction of HLA binding affinity, we limited the analysis to
the 74 of the 93 epitopes for which HLA restriction elements had
been experimentally determined by the scientific community
(Supplementary Tables 2, 3). In total, these epitopes bind 27
HLA alleles, with between 1 and 14 epitopes per allele (median: 3,
Figure S1A).

Properties of Altered Epitopes Are Highly
Conserved Between Variants and
Reference SARS-CoV-2 CD8 T Cell
Recognized Epitopes
Amino acid changes in SARS-CoV-2-derived CD8 T cell
epitopes can reduce the sequence similarity to the reference
epitope. The more distinct the biochemical properties of an
amino acid substitution are compared to the reference amino
acid, the greater the dissimilarity. This could lead to reduced or
abrogated activation of memory CD8 T cells reacting to the
altered epitope. The epitope sequence similarity of the altered
epitope to the reference epitope can therefore be used as an in
silico proxy for likelihood of T cell receptor cross-recognition.

To test the epitope sequence similarity between the variant-
specific and matched reference epitopes, we conducted two
analyses: 1) We compared the sequence similarity between the
reference and the altered epitopes using a previously published
method (35). Importantly, this method incorporates the
biochemical properties of amino acid substitutes to score the
epitope sequence similarity, which is crucial in epitope cross-
recognition by CD8 T cell receptors. Experimental data
demonstrate that CD8 T cell receptor recognition drops to
50% if peptide similarity drops below 85% (42). We found that
the vast majority (median: 90%, range: 65-100%) of the reference
and the matched variant specific CD8 T cell epitopes share over
85% sequence similarity (Figures 2A and S2A). 2) In addition,
we measured the degree of sequence similarity between the pairs
April 2022 | Volume 13 | Article 891524
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of epitopes using the IEDB clustering tool which performs a local
alignment (36). In contrast to the first method, the IEDB
clustering tool allows comparison of epitopes of differing
lengths (e.g. due to insertions/deletions). Data from our
previous experiments in the tumor setting suggests that a
sequence similarity above 80% could serve as an indicator of
potential TCR cross-reactivity (43, 44). The majority (median:
93%, range: 73-100%) of reference SARS-CoV-2 epitopes and
variant derived epitopes share at least 80% similarity (Figure
S2B). Taken together, these in silico analyses suggest that the
ability of memory CD8 T cells, induced by natural infection with
the reference virus, to respond to the included variants is not
significantly impaired.

The likelihood that a certain peptide is immunogenic can be
predicted based on the presence and, importantly, positioning of
amino acids with certain biochemical properties (37). To
investigate whether a SARS-CoV-2 CD8 T cell recognized
epitope is predicted to be more or less immunogenic as a
result of an amino acid change, we applied the IEDB T cell
class I pMHC immunogenicity prediction tool to the set of
reference SARS-CoV-2 CD8 T cell recognized epitopes and
variant derived epitopes. This tool uses a large set of known
Frontiers in Immunology | www.frontiersin.org 5
peptide immunogenicity values to computationally predictwhether
CD8 T cell epitopes are immunogenic (i.e., likelihood for T cell
recognition) or not (37). Surprisingly, the epitopes derived from the
Omicron and Lambda variants were predicted to be significantly
more and less immunogenic, respectively (Omicron: p=0.0042,
(Lambda: p=0.03; Figure 2B). For all included SARS-CoV-2
variants, a large fraction of mutated epitopes was predicted to be
either more immunogenic (median: 47%, range: 11-57%) or
unchanged in immunogenicity (median: 28%, range: 19-44%).
Between 6% and 44% (median: 24%) of variant specific CD8 T
cell recognized epitopes were predicted to be less immunogenic as a
result of themutation (Figure S3A). Taken together, these analyses
indicate that there is a high degree of sequence similarity between
alteredand reference epitopes inall analyzed SARS-CoV-2variants,
which is likely toresult inahighdegreeofCD8Tcell cross-reactivity
between these epitopes.

A Minor Fraction of Mutated Epitopes
From Delta and AY.4.2 Exhibit Reduced
Predicted Binding Affinity to MHC Class I
Amino acid changes in CD8 T cell recognized epitopes may
result in altered binding affinity to the corresponding HLA
A B

DC

FIGURE 2 | Sequence similarity and predicted binding affinity of mutated CD8 T cell recognized epitopes. (A) Sequence similarity scores between the reference
SARS-CoV-2 CD8 T cell recognized epitopes and the altered epitopes. Sequence similarity of epitopes in red is set to zero as a result of one or more deletions/
insertions in the epitope sequence (Alpha, n = 3; Delta, n = 2; AY.4.2, n = 2; Omicron, n = 13) or due to the ORF8 Q27* stop codon mutation (Alpha, n = 6). (B) Box
plot indicating the predicted immunogenicity of the reference SARS-CoV-2 CD8 T cell recognized epitopes and the altered epitopes according to the IEDB T cell
class I pMHC immunogenicity prediction tool. (C) Fractions of total altered CD8 T cell recognized epitopes where the predicted binding affinity of the epitope to the
corresponding HLA restriction element was increased (≤0.5-fold change in IC50), remained neutral (0.5< fold change in IC50 <2) or was decreased (≥2-fold change
in IC50) as a result of the mutation. Epitopes were considered eliminated as a result of the ORF8 Q27* stop codon mutation (Alpha variant). (D) Box plot indicating
the predicted binding affinity IC50 (nM) of the reference and altered CD8 T cell recognized epitope to the corresponding HLA restriction element. Box plots indicate
the median (line), 25th and 75th percentile (box), min and max (whiskers), and all data points (single circles). Statistical significance was tested with a two-tailed
Wilcoxon matched-pairs signed rank test. Variation in numbers of epitopes in the analyses are due to inclusion of epitopes binding one or more HLA restriction
elements. *P < 0.05, **P < 0.01, ***P < 0.001. n indicates the number of epitopes analyzed per group.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Isaeva et al. CD8 T Cell Recognition of SARS-CoV-2 Variants
restriction elements. This may result in altered presentation of
the epitope on the surface of SARS-CoV-2 infected cells, making
the infected cells less visible to T cell recognition. To estimate the
changes in binding affinity of the altered epitopes, we used the 74
unique SARS-CoV-2 CD8 T cell recognized epitopes with
previously experimentally validated HLA restriction elements.
We used the NetMHCpan-4.1 tool to predict the binding affinity
of each reference and variant specific CD8 T cell epitope to the
matched HLA restriction element (38). In this analysis, epitopes
that can bind to more than one HLA allele were included for each
of the HLA allele they bind to.

For each included SARS-CoV-2 variant, we observed
decreased binding affinity, defined as a ≥2-fold change in IC50
value for a subset of the variant specific epitopes (median 37% of
epitopes, range: 21%-50%) (Figure 2C). Between 41% and 64%
(median: 50%) of variant specific epitopes retained their predicted
binding affinity (neutral; 0.5< fold change in IC50 <2), and for
between 0% and 25% (median: 12%) of altered epitopes an
increased binding affinity was predicted (≤0.5-fold change in
IC50 value). Following a comparison of the difference in
predicted binding affinity of the paired reference SARS-CoV-2
CD8 T cell recognized epitopes and mutated epitopes, the small
set of epitopes of the Delta variant and its subvariant AY.4.2 were
predicted to have a significantly reduced binding affinity to the
HLA as a result of their mutations (Delta: p=0.01, AY.4.2:
p=0.0002; Figure 2D). Importantly, despite these statistically
significant differences, these results are derived from a highly
limited number of epitopes (12 and 18 altered epitopes derived
from Delta and AY.4.2, respectively, out of a total of 973 CD8 T
cell recognized epitopes per variant).

A Larger Fraction of Spike Derived CD8 T
Cell Epitopes Are Affected by Variant
Specific Mutations Compared to Pan
Proteome Derived Epitopes
To date, it is estimated that since the start of the pandemic there
have been more than 400 million COVID-19 cases (45). This
translates to approximately 5% of the world population,
however, many cases were never included in the official
statistics. In contrast, it is estimated that over half of the world
population (62.6% on February 25, 2022) has received at least
one dose of a COVID-19 vaccine based on the reference SARS-
CoV-2 sequence of the spike protein (46). Of all the proteins
encoded by SARS-CoV-2, the spike protein is subject to the
highest rate of evolution (10). As a consequence, spike protein-
derived CD8 T cell recognized epitopes are inherently the least
conserved T cell epitopes of the SARS-CoV-2 proteome.
Therefore, individuals that have not been infected but have
only received the vaccine may have a lower level of protective
CD8 T cell immunity as their T cell immunity is limited to
epitopes from the spike protein.

We performed our analysis on spike protein-derived epitopes
only. The SARS-CoV-2 spike protein encodes 263 previously
identified CD8 T cell recognized epitopes. The majority of these
263 CD8 T cell recognized epitopes is conserved across the
variants included in our analysis (median: 95.1%, range: 92.0-
Frontiers in Immunology | www.frontiersin.org 6
96.6%) corresponding to between 9 and 21 (median: 13) epitopes
per variant which have alterations in the amino acid sequence
(Figures 3A, S1C, Supplementary Tables 2, 3). The majority
(median 84%, range: 52-100%) of these mutated variant specific
epitopes share at least 85% similarity with the corresponding
references epitopes (Figures 3B and S2C) based on the IEDB
epitope clustering tool (median 89%, range: 71-100%;
Figure S2D).

Interestingly, the mutated spike protein-derived epitopes
from the Alpha, AY.4.2 and Omicron variants are predicted to
be significantly more immunogenic compared to reference
(Alpha: p=0.0034, AY.4.2: p=0.031, Omicron: p=0.0065;
Figure 3C). A large fraction of mutated epitopes was predicted
to be either more immunogenic (median: 63%, range: 22-79%) or
unchanged in immunogenicity (median: 20%, range: 11-31%).
Between 6% and 67% (median: 15%) of variant specific CD8 T
cell recognized epitopes were predicted to be less immunogenic
as a result of the mutation (Figure S3B). Furthermore, for each
included SARS-CoV-2 variant, decreased binding affinity is
predicted (≥2-fold change in IC50 value; Figure 3D) for a
subset of the altered epitopes (median 48% of epitopes, range:
22%-75%). Between 25% and 59% (median: 44%) of altered
epitopes retained their predicted binding affinity (neutral; 0.5<
fold change in IC50 <2), and between 0% and 25% (median: 6%)
of altered epitopes had an increased predicted binding affinity
(≤0.5-fold change in IC50 value). Spike protein-derived CD8 T
cell recognized epitopes of the Delta, Mu and AY.4.2 variants
were predicted to have a significantly reduced binding affinity to
the HLA as a result of their mutations (Delta: p=0.016, Mu:
p=0.017, AY.4.2: p=0.0002; Figure 3E). Importantly, despite
these statistically significant differences, these results are
derived from only 8 to 14 (median: 12) unique CD8 T cell
recognized epitopes that are mutated per variant, out of a total of
263 unique epitopes per variant.

Next, we tested whether variant-specific mutations may have
a more profound effect on spike protein-derived CD8 T cell
recognized epitopes compared to non-spike. We performed the
analysis on non-spike protein-derived epitopes and compared
these to the results above. As expected, a smaller fraction of CD8
T cell recognized epitopes in the SARS-CoV-2 spike protein were
found to be conserved compared to those in non-spike proteins
(median: 95.1%, range: 92.0-96.6%; versus median: 98.9%, range:
98.0-99.2%; Figures S1C, D). All epitopes overlapping with
multi-amino acid substitutions, deletions and/or insertions
except one were located in the SARS-CoV-2 spike protein
(Figures S1F, G). Such multi-amino acid changes are expected
to lead to a lower sequence similarity between altered and
reference epitopes. In line with this, there was a significantly
lower sequence similarity between mutated and reference CD8 T
cell recognized epitopes in the spike protein, compared to the
single-amino acid mutations in non-spike proteins (in variants
Delta, p=0.043; AY.4.2, p=0.047; Omicron, p=0.028; Figure 4A).

Across the investigated SARS-CoV-2 variants, the fraction of
CD8 T cell recognized epitopes with low (<85%) sequence
similarity to reference epitopes was significantly higher in spike
versus non-spike protein-derived epitopes (p=0.016, Figure 4B).
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Additionally, mutations in the spike protein of the Delta, Mu and
AY.4.2 variants were more detrimental to predicted HLA
binding affinity compared to non-spike protein mutations
(Delta: p=0.019, Mu: p=0.025, AY.4.2: p=0.030; Figure 4C). In
accordance with this, the fraction of CD8 T cell recognized
epitopes with decreased predicted binding affinity was
significantly higher in spike versus non-spike protein-derived
epitopes across the variants (p=0.016, Figure 4D). However,
despite these statistically significant differences, these results are
derived from a limited number of unique mutated CD8 T cell
recognized epitopes per variant.
Frontiers in Immunology | www.frontiersin.org 7
The overrepresentation of altered CD8 T cell recognized
epitopes with multiple amino acid changes, insertions and
deletions in the spike protein is clearly pronounced.
Accordingly, these epitopes are more profoundly affected in
terms of epitope sequence similarity, predicted binding affinity
and immunogenicity compared to non-spike protein derived
epitopes. These results may be unrelated to T cell immunity and
may be explained for example by the high rate of evolution of the
spike protein due to natural selection pressure by antibody
responses. In line with this, a substantial part (median: 65%,
range: 36-75%) of the unique spike protein-derived CD8 T cell
A B

D

E

C

FIGURE 3 | Sequence similarity and predicted binding affinity of mutated CD8 T cell recognized epitopes derived from the spike protein. (A) Numbers of spike protein-
derived CD8 T cell recognized epitopes per variant that harbor the indicated categories of mutations. (B) Sequence similarity scores between the spike protein-derived
reference SARS-CoV-2 CD8 T cell recognized epitopes and the matched variant epitopes. Sequence similarity of epitopes in red is set to zero as a result of one or more
deletions/insertions in the epitope sequence (Alpha, n = 3; Delta, n = 2; AY.4.2, n = 2; Omicron, n = 12) (C) Box plot indicating the predicted immunogenicity of the spike
protein-derived reference SARS-CoV-2 CD8 T cell recognized epitopes and the altered epitopes according to the IEDB T cell class I pMHC immunogenicity prediction
tool. (D) Fractions of total altered spike protein-derived CD8 T cell recognized epitopes where the predicted binding affinity of the epitope to the corresponding HLA
restriction element was increased (≤0.5-fold change in IC50), remained neutral (0.5< fold change in IC50 <2) or was decreased (≥2-fold change in IC50) as a
result of the mutation. (E) Box plot indicating the predicted binding affinity IC50 (nM) of the reference and altered spike protein-derived CD8 T cell recognized
epitope to the corresponding HLA restriction element. Box plots indicate the median (line), 25th and 75th percentile (box), min and max (whiskers), and all
data points (single circles). Statistical significance was tested with a two-tailed Wilcoxon matched-pairs signed rank test. Variation in numbers of epitopes in
the analyses are due to inclusion of epitopes binding one or more HLA restriction elements. AA, amino acid; DEL, deletion; INS, insertion. *P < 0.05, **P <
0.01, ***P < 0.001. n indicates the number of epitopes analyzed per group.
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recognized epitopes that overlap mutations were located in
key domains that are associated with cell attachment and
are antibody targets (N-terminal domain, NTD; receptor-
binding domain, RBD; receptor-binding motif, RBM;
Figure 4E). Moreover, they are primarily present on the
surface of the spike protein, making them accessible to host
antibodies (Figure 4F).
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DISCUSSION

After the initial SARS-CoV-2 outbreak, SARS-CoV-2 variants
Alpha, Delta and Omicron have replaced the previous variant as
the globally dominant SARS-CoV-2 variant (31, 32). This is the
result of accumulated mutations resulting in amino acid changes
that have allowed these variants to evade immunity in the general
A B

D

E F

C

FIGURE 4 | Sequence similarity and predicted binding affinity of spike- versus non-spike-derived mutated CD8 T cell recognized epitopes. (A) Box plot comparing
the sequence similarity of the altered spike and non-spike protein-derived CD8 T cell recognized epitopes, to the reference epitopes. Sequence similarity of indicated
epitopes is set to zero as a result of one or more deletions/insertions in the epitope sequence (Alpha, n = 6/3; Delta, n = 0/2; AY.4.2, n = 0/2; Omicron, n = 1/12).
(B) Fraction of spike versus non-spike protein-derived epitopes where the sequence similarity of the epitope to the reference epitope dropped below 85% as a result
of the mutation. (C) Box plot comparing the log2 fold change in predicting binding affinity of spike and non-spike protein-derived CD8 T cell recognized epitopes
to the corresponding HLA restriction element, as a result of the mutation. (D) Fraction of spike versus non-spike protein-derived CD8 T cell recognized epitopes
where the predicted binding affinity of the epitope to the corresponding HLA restriction element was decreased (≥2-fold change in IC50) as a result of the mutation.
(E) Fractions of unique spike protein-derived CD8 T cell recognized epitopes overlapping with a mutation located in the N-terminal domain (NTD), receptor-binding
domain (RBD), receptor-binding motif (RBM) or a mutation located outside of these domains. (F) SARS-CoV-2 spike trimer in the open conformation with one erect
RBD. Colors represent unique altered CD8 T cell recognized epitopes overlapping with the indicated domains. Image produced with ChimeraX using PDB accession:
6ZGG. Box plots indicate the median (line), 25th and 75th percentile (box), min and max (whiskers), and all data points (single circles). Statistical significance was
tested with a two-tailed Mann–Whitney U test (A, C) or with a two-tailed Wilcoxon matched-pairs signed rank test (B, D). Variation in numbers of epitopes in the
analyses are due to inclusion of epitopes binding one or more HLA restriction elements. *P < 0.05. n indicates the number of epitopes analyzed per group.
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population. This notion is supported by for example data showing
that serum from vaccine-recipients is less effective at neutralizing
SARS-CoV-2 variants Delta and Omicron (23, 24). The mutations
do not appear to prevent general cross-recognition of SARS-CoV-2
variants by T cells induced by reference SARS-CoV-2 (25–29).
However, systematic data regarding the effect of SARS-CoV-2
variant-specific amino acid changes on the properties of the
previously recognized CD8 T cell epitopes has been lacking.

Our analyses revealed that the vast majority of both the spike
(median: 95.1%, range: 92.0-96.6%) and pan-proteome (median:
98.9%, range: 98.0-99.2%) derived CD8 T cell recognized
epitopes were conserved in the investigated SARS-CoV-2
variants. In accordance with the experimental data described
above, this suggests that memory T cell responses are not likely
to be diminished upon re-infection by a different SARS-CoV-2
variant, or upon infection by one of the SARS-CoV-2 variants
after vaccination. In addition, for the minority of presented CD8
T cell recognized epitopes that is altered by mutations, the high
degree of sequence similarity to the reference epitopes will likely
also not prevent cross-recognition by memory CD8 T cells.

The finding that CD8 T cell epitopes from SARS-CoV-2 were
generally conserved is in accordance with the concept of antigenic
drift. Antigenic drift driven by selective pressure from T cells is
largely irrelevant in acute viral infections such as SARS-CoV-2 due
to the huge polymorphism of HLA loci in a population and the
diverse antigen repertoire these complexes present to T cells (9).
Antigenic drift is likely to have a stochastic influence on T cell
epitopes - a ‘bystander effect’. Our observations are in line with this
notion. First, for theminority ofCD8Tcell recognized epitopes that
overlap with mutations, epitope sequences are generally conserved
in terms of sequence similarity to the reference sequence. Second,
themajority (median: 55.6%, range: 46.2-78.6%)of theseCD8Tcell
recognized epitopes are predicted to possess unchanged or even
increased binding affinity to the HLA allele as a result of the
mutation. Third, the mutations in the CD8 T cell recognized
epitopes in SARS-CoV-2 variants AY.4.2 and Omicron are
predicted to result in more immunogenic, rather than less
immunogenic T cell epitopes. Fourth, many of the observed
changes in predicted binding affinity and sequence similarity of
mutated CD8 T cell recognized epitopes in comparison to the
reference epitopes, are indeed driven by mutations in the spike
protein. Finally, themajority (median: 65%, range: 36-75%)of spike
protein-derived CD8 T cell recognized epitopes that overlap with a
mutation are located in key domains that are frequently recognized
by antibody responses and/or are involved in cell attachment (10).
Therefore, on the basis of our analysis and as expected, there is no
indicationofT cell based selectivepressure onSARS-CoV-2 leading
to alteration of the CD8 T cell recognized epitopes.

As SARS-CoV-2 derived T cell epitopes are not subject to
substantial antigenic drift, T cells are likely to remain consistent
Frontiers in Immunology | www.frontiersin.org 9
in their recognition of infected cells. However, the stochastic
influence by the mutations focused on the spike protein affects
the ability of spike protein-derivedT cell epitopes to be presented to
the immune systemor tobe recognizedbypreviously inducedT cell
responses. This is most pronounced for the SARS-CoV-2 variants
Delta, AY.4.2 and Omicron, which are also most efficient at
escaping humoral immunity as a result of numerous mutations in
the spike protein. These variants also have the largest, albeit overall
minor, negative effect on epitope presentation relative to the other
SARS-CoV-2 variants. By only targeting the spike protein, the
vaccine induced immunity is limited to SARS-CoV-2 T cell
epitopes which are most prone to a ‘bystander’ effect as a result of
the high mutation rate of the spike protein. Even though the
currently approved vaccines only include the spike protein, our
data suggest that T cell immunity can protect against severe
COVID-19. However, it does seem like a logical approach to
develop next generation vaccines incorporating other parts of the
SARS-CoV-2 proteomewhich can lead to a broader T cell response
providing protection should the spike protein undergo further
changes over time.
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