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Abstract: Background: Recent advances in proteomics methodologies allow for high throughput 

profiling of proteolytic cleavage events. The resulting substrate peptide distributions provide deep in-

sights in the underlying macromolecular recognition events, as determinants of biomolecular specific-

ity identified by proteomics approaches may be compared to structure-based analysis of correspond-

ing protein-protein interfaces.  

Method: Here, we present an overview of experimental and computational methodologies and tools 

applied in the area and provide an outlook beyond the protein class of proteases.  

Results and Conclusion: We discuss here future potential, synergies and needs of the emerging over-

lap disciplines of proteomics and structure-based modelling. 

Keywords: Macromolecular recognition, molecular modelling, peptide binding, protein-protein-interface, protease substrate 
profiling, specificity. 

1. INTRODUCTION 

Proteolytic enzymes (proteases, proteinases, peptidases) 
cleave peptidic bonds in substrate proteins and peptides and 
fulfil multiple central roles in living organisms [1]. There-
fore, specialized proteases with diverse functions and distinct 
catalytic classes and fold types have evolved [2]. Some en-
zymes process well-defined substrates at specific sites and 
are involved in signalling cascades, e.g., the blood clotting 
cascade [3], the apoptosis pathway [4] or the complement 
cascade [5]. Other proteases cleave a variety of substrates 
and are required for digestion of nutrition proteins [6] as well 
as degradation of extracellular matrix proteins [7]. Therefore, 
the range of substrates (“degradome”) defines the biological 
function of proteolytic enzymes [8] and turns them into at-
tractive drug targets [9]. 

Proteases are not only an interesting protein class in 
terms of their biological functions but also as prototypes of 
multi-specific protein-protein interfaces [10]. A multitude of 
protease substrate sequences has been reported in scientific 
literature [11] and gathered in publicly available online data- 
bases (MEROPS [12], CutDB [13], PMAP [14], DegraBase 
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[15], TopFIND [16]). Information content of MEROPS, its 
access and utilization, also in respect of protease substrate 
specificity, has recently been reviewed by the curators of the 
database [17]. Consensus substrate sequences in the P4-P4' 
amino acid positions [18] flanking the scissile bond of prote-
ase substrates are often depicted as heat maps [19], sequence 
logos [20], or iceLogos [21] (see Fig. 1 for an example se-
quence logo for the serine protease factor Xa generated with 
Weblogo [22]).  

Recently, the Skylign web server was launched to facili-
tate generation and interactive manipulation of sequence 
logos [22]. As of December 2014 MEROPS lists 13,768 sub-
strates for the unspecific serine protease trypsin-1 only, with 
the vast majority stemming from proteomics-based identifi-
cation techniques [23, 24]. Several other proteolytic enzymes 
spanning different catalytic types are characterized with at 
least 1,000 annotated targets. 

These innovative experimental methodologies allow for 
rapid identification of proteolytic events at the proteome 
level using mass spectrometry and therefore increasingly 
broaden the range of available peptide substrate data [25-32]. 
The gathered amount of substrate data allows for quantifica-
tion and direct comparison of protease specificity [33]. In 
combination with structure-based techniques, molecular de-
terminants of macromolecular specificity and promiscuity 
can be identified and generalized from proteases to general 
protein-protein interfaces [34]. In the following review, we 
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will outline technologies used on both the experimental and 
computational side and aim to judge future potential and 
challenges for this emerging field at the interface of pro-
teomics and structural bioinformatics. 

 

Fig. (1). Protease cleavage site sequence logos: Schematic repre-

sentation of a protease binding cleft (dark grey) and its subpockets 

S4-S4' flanking the scissile bond. The substrate peptide P4-P4' is 

represented as light grey spheres. The specificity pattern for a hypo-

thetical protease is shown as sequence logo and raw sequence data 

for 20 peptides with corresponding cleavage entropy values S on 

bottom. The example protease shows a highly complex cleavage 

pattern: P4 accepts aromatic residues, P2 negatively charged resi-

dues, P1' only tolerates proline, whilst S3' prefers hydrophobic and 

S4' positively charged amino acids. Other pockets S3, S1, and S2' 

show no substrate readout and thus have constant cleavage en-

tropies of 1. 

2. DEGRADOMICS METHODS AND DATA 

Several approaches for the specificity profiling of prote-
ases have been established. Importantly, the different strate-
gies have particular advantages and should be considered as 
being highly complementary. Determination of protease 
specificity is a fundamental step in their biochemical charac-
terization and provides the basis for the design of specific 
probes and inhibitors. For yet uncharacterized so-called 
“novel” proteases, powerful specificity profiling approaches 
enable rapid de-orphanizing and establishing of robust activ-
ity assays. As outlined in the present review, the combination 
of positional specificity profiles with structural investiga-
tions and modern computational techniques are exceptionally 

powerful in providing a molecular understanding of peptide 
substrate recognition by proteolytic enzymes. On a basic 
level, protease specificity can be investigated with a small 
number of peptidic substrates. This is exemplified by an 
early study on matrix metalloproteases, in which a set of 16 
synthetic octapeptides were used to assess specificity of skin 
fibroblast collagenase [35]. The sequences of these peptides 
represent variations of known collagenase cleavage sites in 
proteins. However, usage of only a few peptidic substrates 
severely limits coverage of sequences diversity and is intrin-
sically biased. Phage display is a powerful technique for the 
profiling of protein-peptide interactions. Phage display has 
been adopted to identify preferred peptidic substrates for 
proteolytic enzymes [36]. Randomized, genetically encoded 
sequences are expressed as protease-sensitive linkers be-
tween an affinity domain and a truncated form of the gene III 
protein. Each phage particle encodes one substrate sequence. 
Efficient cleavage of the substrate sequence in the linker 
region removes the affinity domain, thus enabling separation 
of phage particles with cleavable sequences. Substrate phage 
display enables extensive coverage of sequence diversity and 
iterative refinement of protease specificity profiles. The 
method has been widely adopted. Further developments in-
clude bacterial display in combination with fluorescence-
activated cell sorting [37] and automated platforms for in-
creased throughput, enabling profiling of entire protease 
families, such as matrix metalloproteases [38]. 

While phage display is a genetic approach to generate se-
quence diversity, complimentary techniques have been de-
veloped based on synthetic peptide libraries. Here, three ap-
proaches are particularly outstanding: positional scanning 
synthetic combinatorial libraries (PS-SCLs), peptide nucleic 
acids (PNA) arrays, and mixture-based oriented peptide li-
braries. The PS-SCL strategy employs peptide libraries in 
which one position (e.g. P1) is occupied with a defined resi-
due while the other positions are randomized [39]. The aim 
is to profile specificity of the defined position without inter-
ference of the randomized other positions. Important refine-
ments of the PS-SCL strategy include a more versatile 
chemical synthesis, allowing for randomization of the P1 
residue together with more sensitive fluorescence detection. 
The typical design of a PS-SCL experiment focuses on either 
prime or non-prime specificity. However, some proteases 
such as matrix metalloproteases (MMPs) have a specificity 
profile that spans across the scissile peptide bond. Turk et al. 
[40] designed a two-step strategy to tackle such cases using 
synthetic peptide libraries. Firstly, prime-site specificity is 
profiled by an N-terminally protected degenerate peptide 
library. Cleavage products possess free N-termini and are 
analyzed by Edman sequencing, while chemical protection 
of uncleaved peptides prevents Edman degradation. The 
mixed signals stemming from Edman sequencing of the li-
brary pool are translated into subsite preferences. The pre-
ferred prime site motif is used in a second step. Here, the 
library consists of fixed prime-site and randomized non-
prime site residues. The library has free N-termini and C-
terminal biotin tags. The fixed prime-site motif serves as an 
anchor to define the scissile peptide bond. Proteolysis re-
leases the non-prime cleavage product while uncleaved pep-
tides and prime-site cleavage products are captured by biotin 
affinity chromatography. Non-prime cleavage products are 
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analyzed by Edman sequencing, yielding positional prefer-
ences. The approach has been particularly useful in charac-
terizing metalloproteases [40-42]. PNAs employ peptidic 
substrates that are tagged to specific nucleic acid sequences. 
Proteolysis removes a terminal fluorophore. Subsequently, 
PNAs are hybridized to a complementary, spatially deconvo-
luting microarray [43]. Lack of fluorescence at a specific 
position indicates preferential proteolysis of that specific 
peptide sequence. The approach typically employs hundreds 
to thousands of different peptide sequences [44]. 

In contrast to synthetic peptide libraries, proteome-
derived peptide libraries employ natural sequence diversity. 
Protease specificity profiling using proteome-derived peptide 
libraries is highlighted in (Fig. 2A) [24]. Peptide libraries are 
generated by endoproteolytic digestion of proteomes such as 
cell lysates, thereby representing natural sequence diversity. 
After inactivation of the digestion protease and dimethyla-
tion of α− and ε−amines, peptide libraries are incubated with 
a test protease. Prime-site cleavage products possess free N-
termini, allowing biotinylation and specific retrieval, fol-
lowed by mass-spectrometry based identification. The corre-
sponding non-prime site sequences are inferred from pro-
teome sequence databases. Thus, this approach profiles 
prime- and non-prime specificity in a single experiment, 
directly identifies the position of the scissile peptide bond, 
and retrieves individual cleavage sequences rather than 
pooled preferences. The method often identifies hundreds of 
cleavage sequences for a test protease and has been used for 
serine-, cysteine-, metallo- and aspartyl-proteases [24, 45] as 
well as for the deorphanizing of previously uncharacterized 
proteases [46]. Identification of large arrays of cleavage se-
quences enables investigation of subsite cooperativity, as 
highlighted for HIV protease 1 (see Fig. 2B): here, presence 
of a “large” residue in P1 favors acceptance of a “small” 
residue in P3 and vice-versa This effect has been originally 

described by Ridky et al. [47] and is correctly portrayed by 
specificity profiling with proteome-derived peptide libraries 
[24]. Notably, few other methods enable direct assessment of 
protease subsite cooperativity. Adaptions of the technique 
include multiplexed stable isotope tagging for kinetic inves-
tigations [48]. Proteome-derived peptide libraries have also 
been used to investigate the specificity of carboxypeptidases 
and Nα-acetyltransferases [49, 50]. In both cases, sophisti-
cated chromatographic strategies were employed to retrieve 
modified peptides. Mass-spectrometry based identification of 
cleavage products has also been used in combination with 
synthetic rather than proteome-derived peptide libraries [51].  

Importantly, proteome-derived peptide libraries do not 
indicate processing of native substrates. To this end, power-
ful approaches exist that identify and quantify protease 
cleavage sites in cells and tissues. Since identification of 
proteineous substrates in physiologic or pathologic settings 
exceeds the scope of the present review, we refer to two 
other reviews for a discussion of these degradomic tech-
niques [52, 53]. However, detailed knowledge of protease 
specificity is useful in delineating candidate proteases that 
are able to mediate cleavage events that were identified in 
vivo. This concept has already been implemented for pepti-
domic analyses [54]. 

3. QUANTIFYING, MAPPING AND COMPARING 

SPECIFICITY 

Experimental peptide substrate data can be utilized to 
quantify protease specificity. Based on probabilities for each 
amino acid in each protease subpocket, an information en-
tropy “cleavage entropy” can be calculated [30]. These con-
tinuous values between zero (completely unspecific) and one 
(perfectly specific) highlight positions of specificity in prote-
ase substrate recognition and can be readily projected onto 

 

Fig. (2). Experimental techniques for protease substrate profiling: A) Schematic work-flow for protease substrate characterization using pro-

teome-derived peptide libraries and LC-MS/MS technology for identification of cleaved peptides. B) Exemplary heat map of amino acid 

frequencies in HIV protease 1 substrates at positions P6-P6' reflecting preference of hydrophobic residues [23]. Interestingly, closer inspec-

tion of the ensemble of substrate sequences unveils cooperativity of substrate positions P3 and P1, where presence of a larger residue in one 

pocket limits size for the bound amino acid in the adjacent subsite. 
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the binding site where protein-substrate co-crystal structures 
are available (see Fig. 3A). Because most proteases show a 
canonical orientation for the substrate peptide in extended 
beta conformation around the scissile for at least 6 amino 
acids (P3-P3') [55, 2], amino acid side-chains explore over-
lapping regions of the substrate binding cleft. Effects on sub-
strate turn-over have been demonstrated for regions far be-
yond this central region have been shown recently in human 
and mouse granzyme B [56]. 

 

Fig. (3). Mappings to the binding site of thrombin: P1-P6 residues 

of the fibrinogen-derived peptide are shown as sticks, whilst the 

protease is depicted as grey cartoon. A) Specificity quantified as 

cleavage entropy S is projected to the molecular surface of throm-

bin on a colour gradient from red (specific) via yellow to green 

(unspecific). The deep S1 pocket determines substrate readout of 

thrombin (SS1=0.176), whilst S2, S4, and S6 show preferences to 

variable extent (SS2=0.635, SS4=0.892, SS6=0.899). S3 and S5 are 

almost complete non-specific: SS3=0.971, SS5=0.959. B) Binding 

site electrostatics mapped on a gradient from red (negative) over 

white (neutral) to blue (positive). C) Hydrogen bonding potential 

mapped on a gradient from white to blue (strong donor or acceptor). 

D) Lipophilicity mapped from pink (polar) via white (neutral) to 

green (apolar). E) Exposure of the pocket region mapped from 

white (enclosed) to orange (accessible). F) Flexibility as measured 

by crystallographic B-factors on a gradient from blue (rigid) via 

white to red (flexible). 

Specificity landscapes form the basis for investigation of 
biomolecular recognition processes and can even be utilized 
to rationalize virtual screening results targeting proteases 
[57]. Alternatively, protease substrate data may be exploited 
to map distances between proteolytic distances (the degra-
dome) in substrate space [33]. Thereby, similarities in sub-
strate recognition can be identified in the absence of protease 
sequence or structural similarity. Here, peptide substrate data 
shows a similar information content as structural information 
[58]. Substrate-derived protease similarities have also been 
successfully employed as a lead discovery technique for 
novel protease inhibitors [59]. Substrate-driven mapping 

strategies have recently been explored similarly for kinase 
specificity mapping [60]. 

4. CHARACTERIZING PROTEIN STRUCTURE AND 

DYNAMICS 

Structural data for proteases and their complexes with 
substrates and inhibitors has increased dramatically in recent 
years. Currently, the Protein Data Bank [61] contains in total 
105,212 entries (database accession 27.11.2014). There are 
8,901 of these structures annotated as peptidases (with en-
zyme classification (EC) number 3.4), thus representing 
8.5% of the whole database and 14.6% of all enzymes with 
annotated EC code (total 61,014 entries). These structural 
data form the basis for a molecular understanding of prote-
ase-substrate interactions as a model for biomolecular recog-
nition. 

Binding sites of proteases may be computationally char-
acterized in terms of static molecular properties like electro-
statics [62], hydrophobicity [63] or cooperative hydration 
networks [64]. Size and surface properties of binding cavities 
can be similarly explored automatically [65, 66]. Different 
molecular probes can be used for the detection of interaction 
hot spots and their characterization [67]. See (Fig. 3B-F) for 
example mappings to the binding site of the serine protease 
thrombin [68]. Molecular properties were calculated and 
mapped using Molecular Operating Environment (MOE) 
[69]. 

All aforementioned approaches treat proteins and their 
binding sites as rigid bodies. By contrast, proteins are inher-
ently flexible entities and explore a range of conformational 
states in physiological conditions [70, 71]. Therefore, static 
enthalpic driving forces of molecular recognition are com-
plemented by entropic factors arising from the dynamics of 
the system [72]. Molecular dynamics simulations allow ex-
ploration of conformational dynamics of biological systems 
at atomistic level in silico [73] with increasing time scales 
[74] and accuracy [75]. Generated conformational ensembles 
of proteins can be utilized to characterize binding sites in 
terms of global and local flexibility and their respective time 
scales [76]. Conformational entropies calculated from 
positional fluctuations [77] or dihedral distributions [78, 79] 
allow to identify flexible regions in binding sites. Addition-
ally, state-of-the-art simulations are performed in presence of 
water boxes surrounding the simulated systems (explicit sol-
vation), thus enthalpy and entropy of water molecules bound 
to binding site regions can be explored [80-83]. Hydration 
effects are especially interesting for proteases as the hydra-
tion is known to be key for protein stability and function [84, 
85]. Recently, technologies using mixed solvents to probe 
binding site preferences for particular molecular fragments 
and allowing direct calculation of binding free energies have 
been developed [86, 87]. 

On the other hand experimental data allows insights into 
binding site flexibility for a limited set of proteolytic en-
zymes. Nuclear magnetic resonance (NMR) spectroscopy 
has been successfully employed to characterize solution dy-
namics in bacterial subtilisins [88], thrombin [89], and HIV 
protease [90]. On the other hand, ensemble refinement of 
crystal structures has been utilized recently to investigate 
binding site conformations of complement factor D [91]. 
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Future broader utilization of noise in electron densities for 
identification of alternate protein conformations will help to 
characterize macromolecular flexibility based on crystallo-
graphic data [92]. 

5. SPECIFICITY OF PROTEASES 

Substrate specificity of proteases has long been thought 
to be driven by static structural features only. Within the 
class of chymotrypsin-like serine proteases single amino 
acids directly contacting the substrate in the S1 pocket were 
thought to explain specificity completely [93]. This class of 
proteases shares a common catalytic triad and protein 
framework with mostly unspecific pockets except for S1-P1 
interactions [94]. Therefore, the presence of an Asp residue 
in the S1 of trypsin explains its specificity for Arg and Lys at 
P1, whilst chymotrypsin and elastase show a preference for 
hydrophobic amino acids at the same position [95]. 

Hedstrom et al. attempted to prove the simple paradigm 
that single residues direct specificity by attempting to con-
vert trypsin to chymotrypsin by S1-directed mutagenesis 
[96]. Even after replacing the whole S1 pocket of trypsin 
with the corresponding residues in chymotrypsin, the speci-
ficity could not be exchanged entirely. Therefore, simple 
static effects are not sufficient to explain protease specificity 
and attention was pointed towards adjacent surface loops 
[97]. Similarly, no unique solution was later found to ex-
change the specificity of trypsin and elastase and it was 
hence concluded that protease specificity is both difficult to 
rationalize and transfer [98]. The situation was even more 
complicated by the discovery that the S1 pocket in elastase 
communicates with other subpockets [99]. Therefore, factors 
for protease specificity were summed by Hedstrom as fol-
lows [1]: “Catalysis and specificity are not simply controlled 
by a few residues, but are rather a property of the entire pro-
tein framework, controlled via the distribution of charge 
across a network of hydrogen bonds and perhaps also by the 
coupling of domain motion to the chemical transformation”. 

All the aforementioned findings point towards more 
complex origins of proteases specificity beyond static struc-
tural factors. Indeed, dynamic contributions have been de-
scribed in the recognition of almost all catalytic classes rang-
ing from the serine proteases subtilisins [88] and α-lytic pro-
tease [100] via the aspartic HIV protease [101] to snake 
venom metalloproteases [102]. Recently, quantitative metrics 
for substrate specificity allowed for direct correlation of 
binding site flexibility and substrate promiscuity. Thereby, a 
direct interplay of dynamics and substrate recognition was 
shown for effector caspases [34]. Here, correlations between 
receptor backbone dynamics and specificity were shown to 
be stronger than between hydrogen bonding occupancy and 
specificity. Recently, a propagation of protease dynamics to 
the first hydration layers that might explain the specificity 
profile has been shown for thrombin [103]. This highlights 
that dynamics are key to a molecular understanding of prote-
ase-substrate peptide interactions and macromolecular bind-
ing events in general. Flexible binding sites adopt more di-
verse conformations which leads to promiscuity when fol-
lowing a binding paradigm of conformational selection [104, 
105]. 

6. IMPLICATIONS FOR GENERAL MACROMO-

LECULAR BINDING EVENTS BEYOND PROTEASES 

Protein-protein interfaces are of highest interest for both 
structural biology [106] as well as drug design [107]. The 
interface between proteolytic enzymes and their substrates is 
a well-studied example and therefore offers peptide data sets 
suitable for statistical analysis. In addition to the described 
analysis of the protease side of the protein-protein interface, 
the substrate side may be investigated by similar means rais-
ing the question which structural properties turn proteins into 
protease substrates. Here, broad proteolysis corresponding to 
non-specificity has been successfully used as a probe for 
thermal unfolding [108, 109], indicating strong links to local 
flexibility and accessibility [110]. Thereby, differences in 
protein dynamics and stability caused by mutations have 
been linked to different so-called conformational diseases 
[111-113]. Statistical analyses of glutamyl endopeptidase 
and caspase-3 cleavage sites revealed independence of 
cleavages sites from local secondary structure [114]. Expo-
sure appears to be more crucial than flexibility and local in-
teractions to allow proteolysis [115]. Recently, limited pro-
teolysis was coupled with targeted proteomics to describe 
conformational changes in proteins [116]. On the other hand, 
local unfolding events are required for some proteolytic 
events, thus preventing their direct identification by fluctua-
tions around the native state [117, 118]. 

Proteomics techniques allow profiling of substrate spec-
tra of enzyme classes beyond proteases. Recently, several 
techniques assessing substrate preferences of kinases by 
phosphoproteomics have been developed [119, 120]. Still, 
the data basis here is not yet as broad as for peptides binding 
to PDZ domains, where again correlations between receptor 
promiscuity and flexibility have been reported [121]. Simi-
larly, the binding specificity of ephrins to the Eph receptor 
appears to be coupled to intrinsic dynamics [122] as well as 
the binding specificity of ubiquitin [123]. Small molecule 
selectivities of G protein-coupled receptors have recently 
been successfully modelled and predicted based on structural 
descriptors [124]. Here, the number of disulfide bonds in the 
extracellular region seems to govern receptor promiscuity by 
determining the maximum ligand size in the entrance path-
way. Comparably, affinity maturation of antibodies leading 
to proteins with increased affinity and selectivity is paral-
leled by a loss of flexibility [125]. Recently, even antibody 
degradation sites quantified via mass spectrometry data have 
been linked to local flexibility [126]. Intrinsically disordered 
proteins (IDPs) demonstrate the extreme case: Here, extreme 
flexibility leads to almost complete non-specific binding 
[127] and also higher susceptibility to proteolysis [128]. This 
extreme binding promiscuity is central for the function of 
IDPs as mediators for many cellular interaction networks in 
parallel [129]. 

CONCLUSION AND PERSPECTIVES 

We have demonstrated how molecular determinants of 
specificity may be deduced from proteomics-derived peptide 
data. Joined forces of proteomics and structure-based model-
ling approaches allow tackling of topical questions of mo-
lecular biosciences and provide further insights into protein-
protein interactions at molecular level. 
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As for all data-driven modelling techniques data accessi-
bility and careful database curation are a prerequisite for 
statistical analyses. We therefore encourage the scientific 
community to support and make use of public data resources 
and associated tools [130]. For the described studies, re-
quired data spans from crystal structures from the Protein 
Data Bank [61], via protease classification schemes from 
MEROPS [12], their sequences from UniProt [131], to pro-
teomics-derived peptide data. Here, the PRoteomics IDEnti-
fications (PRIDE) database [132] allow uploading and anno-
tation of large proteomics data sets that may be shared for 
further analysis via ProteomeXchange [133, 134]. 

Together with more and more sophisticated experimental 
techniques to detect proteolytic events and their kinetics 
[135], increasingly broader and more detailed analyses of 
their molecular origins can be performed. Thus, we are con-
vinced that collaborations between experts in proteomics and 
structural bioinformatics will lead to a new understanding of 
macromolecular interactions and in turn to exciting novel 
opportunities for structure-based drug design. 
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