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Abstract

The coronavirus disease 2019 (COVID-19) outbreak due to the novel coronavirus named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has been classified as a pandemic disease by the World Health Organization on the 12th March
2020. This world-wide crisis created an urgent need to identify effective countermeasures against SARS-CoV-2. In silico
methods, artificial intelligence and bioinformatics analysis pipelines provide effective and useful infrastructure for
comprehensive interrogation and interpretation of available data, helping to find biomarkers, explainable models and
eventually cures. One class of such tools, pathway enrichment analysis (PEA) methods, helps researchers to find possible
key targets present in biological pathways of host cells that are targeted by SARS-CoV-2. Since many software tools are
available, it is not easy for non-computational users to choose the best one for their needs. In this paper, we highlight how
to choose the most suitable PEA method based on the type of COVID-19 data to analyze. We aim to provide a comprehensive
overview of PEA techniques and the tools that implement them.
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Introduction
Coronaviruses (CoV) are a broad family of respiratory viruses
that can cause mild to moderate illnesses, including the com-
mon cold, to severe respiratory syndromes such as Middle East
respiratory syndrome (MERS) and severe acute respiratory syn-
drome (SARS) [1]. CoV owe their name to the spikes on their sur-
face, forming a structure similar to a crown (corona in Latin). CoV
are prevalent in many animal species, such as camels, pangolins
and bats [2]. Rarely, they can evolve and infect humans. The
novel coronavirus, named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [3], was reported for the first time
in Wuhan, China, in December 2019, and subsequently spread
across the world.
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While there are over 1 900 registered trials as of August
2020 (https://www.covid-trials.org/), there are neither approved
treatments nor effective vaccines against coronavirus disease
2019 (COVID-19) yet [4]. Albeit SARS-CoV-2 has a lower mutation
rate than other coronaviruses [5], genomic diversity (although
limited) is manifested both among singular patients and within
the same virus class [6, 7]. Genetic diversity provides viral adap-
tation to different hosts and different environments within the
hosts and it is often associated with disease progression, drug
resistance and treatment results. Consequently, even a minimal
but continuous mutations of the virus would reduce the efficacy
of a vaccine to clearly contrast the advance of COVID-19. There-
fore, it will be essential to obtain information on the evolution
and pathogenesis of the virus to control this pandemic.

https://academic.oup.com/
https://www.covid-trials.org/
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Researchers are sharing their results to obtain insight into
the genome and the evolution of SARS-CoV-2 globally. Many
studies are focusing on success and failures of prevention and
treatment, aiming at faster re-positioning of existing drugs [8].
Drug re-positioning may offer a faster and cheaper treatment
compared to de novo drug development.

In the arsenal of in silico tools, useful for drug re-positioning
and understanding individual differences in response to the
virus, pathway enrichment analysis (PEA), can improve inter-
pretation of SARS-CoV-2 data by identifying biological pathways
of host cells affected by the virus, help characterize possible
pharmacological targets and drug mechanism of action. Thus,
aiding not only drug repurposing, but enabling de novo drug
design as well. The large amount of data released so far is
quite useful, but knowing the connections among events and
context of specific effects is key to understand and address the
disease. Thus, extracting knowledge from the data that charac-
terize SARS-CoV-2 host infection is of paramount importance
to succeed in subsequent steps linked to identification of an
efficacious treatment.

Biological pathways are human representations of coordi-
nated molecular actions within a cell that can include genes,
proteins, small molecules, tissues and organs. Pathways are
classified into three main broad categories: signaling pathways,
metabolic pathways and regulatory pathways. Some pathway
databases focus on only one category of pathways—for exam-
ple, STKE collects only signaling pathways [9] and HumanCyc
focuses on metabolic pathways [10]; as a result, both are very
specific and their genome coverage is limited. Generic path-
way databases (including pathways from all three categories)
are larger and more frequently used. Several generic pathway
databases are available, some stemming from large curation
efforts (primary databases, the oldest being KEGG [11] and the
largest being Reactome [12]), some integrating data from primary
databases (integrated databases, the oldest being PantherDB [13]
and the largest being PathwayCommons [14]) and some using
a hybrid integration-curation approach (hybrid databases, the
oldest and largest being WikiPathways [15, 16]). Nonetheless,
each database includes a largely different number of pathways,
annotates only part of the genome and has poor overlap with
other databases. Moreover, even upon integration of all major
pathway databases, only about 13 000 genes are annotated with
any pathway [17]. Numbers are even scanter for organisms other
than humans, as the majority of pathway databases focus on
Homo sapiens-related pathways. Researchers performing path-
way enrichment analysis should consider the overlap of their
genes of interest with the database they are planning on using.
Alternatively, one could take advantage of and select pathway
databases with broader coverage provided by the inclusion of
both curated and predicted pathway associations (the oldest
being PathExpand [18], and the largest being pathDIP [17] that
annotates more than 18 000 human genes, and covers pathways
for 17 organisms). It is important to highlight that good quality
results depend on choosing the appropriate tool for the data
to be analyzed, but also the quality of the databases used for
enrichment analysis. PEA tools can help researchers to charac-
terize the role of host genes in affecting the biological response
to SARS-CoV-2 and different outcomes of COVID-19. Considering
that many PEA tools are available, each one suitable to analyze a
specific type of input data, it is not straightforward to select the
most appropriate framework to investigate a particular kind of
COVID-19 related data. Thus, knowing the main characteristics
of the available PEA methods, it not only helps researchers to
improve the quality and speed of the analysis by using the

most appropriate tool for the input data to analyze, but it also
contributes to the production of more accurate and meaningful
results.

PEA methods can be clustered into three principal categories:
i) over-representation analysis (ORA), ii) gene set enrichment
analysis (GSEA) and iii) topological enrichment analysis (TEA).

Each PEA approach is available as a software tool, and we
briefly describe features for the most frequently used tools per
category. In particular, we want to highlight how to choose the
most suitable PEA method based on the type of COVID-19 data to
analyze, and to present an overview of PEA techniques and their
most frequently used software tools. We provide a comparison
for all the frameworks reviewed based on the supported input
types and formats, the provided output results, along with the
supported pathway databases used to define the biological con-
text of the investigated proteins/genes, the practicality, ease of
use, programming language and type of interface. This way, even
users not well-accustomed to pathway analysis can easily select
the best software tool to use with their COVID-19 data.

Approaches
In this Section, we briefly describe the most used pathway
enrichment methods in the scientific community.

Pathway enrichment analysis

PEA can be broadly divided into three categories, as listed above.
ORA: one of the most simple PEA methods, ORA methods

perform statistical evaluation of the fraction of pathway compo-
nents found among a user-selected list of biological components.
The enrichment is accomplished through an iterative methodol-
ogy. It calculates, for each pathway, the amount of input genes
that belong to the current pathway, repeating this process for
each pathway in the database. The most used tests are based
on the hypergeometric, chi-square, Fisher’s test, Jaccard Index or
binomial distribution as reported in [19]. The final results from
an ORA method generally consist of a list of relevant pathways,
ordered according to a P-value or a multiple hypothesis tests
corrected P-value.

Any list of genes or proteins collected from a COVID-19 paper
or database can be used with ORA, that is the most popular
adopted pathway analysis method as it is easy to perform.
However, a limitation of ORA is that it considers each gene with
equal importance, which is often biologically inaccurate.

GSEA: it exploits the hypothesis that few major gene expres-
sion changes have a considerable effect on pathways func-
tion, and the sum of several weaker and concurrent changes in
pathways’ genes impact the general functioning as well. GSEA
methods compute pathway enrichment analysis using a three
steps methodology. i) The first step ranks the genes according to
their differential expression across groups of samples, and calcu-
lates the over-representation of these genes among the highest
and lowest ranking positions. Statistics are calculated using the
Kolmogorov–Smirnov-like test. ii) The second step consists of
calculating a P-value comparing the score obtained in the first
step to a null distribution obtained permuting the phenotype
labels. iii) The last steps performs multiple hypothesis testing
adjustment.

Only ranked list of genes can be used in GSEA, such as
those from differential expression analysis (e.g. infected with
SARS-CoV-2 vs non-infected). GSEA may consider genes with
different importance, making it possible to use more information
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than ORA for analyzing pathways and yielding more biologi-
cally meaningful models. A limitation of GSEA, though, is that
it assumes that genes at the top of the ranking (those more
differentially expressed) are more crucial, even though this is
not always biologically true (signaling pathways, for example, are
very sensitive to minor expression changes). Moreover, the need
for a ranking value (e.g. fold change or P-value) limits the type of
data that can be used.

TEA: in this set of methods, pathways are represented
as graphs, where nodes represent pathway’s components
(e.g. genes, proteins and small molecules), and edges provide
information about the interactions among such components
(e.g. activation, deactivation, conditions where the interaction
happens). The main difference compared with other methods is
that TEA uses topology information as additional information
to compute pathway enrichment values. Researchers could use
condition specific interaction networks to shed light on different
pathways and related different responses activated by SARS-
CoV-2. However, one limitation of current TEA methods is that
they only handle the static properties of the network topology;
thus, they are not well suited for dynamic systems modelling.

Tools
In this Section, we describe the characteristics of the principal
software tools to perform pathway analysis, along with some
databases focusing on COVID-19 data.

COVID-19 databases

To improve our response to COVID-19 and to speed up devel-
opment of better tests, guidelines, treatments and vaccines,
many databases have been updated to include virus relevant
data deposited at a rapid pace. Below is a list of some of such
databases.

• CORona Drug InTEractions database (CORDITE) collects and
aggregates data for SARS-CoV-2 available in the literature
from PubMed, MedRxiv, BioRxiv, ChemRxiv and ClinicalTri-
als.gov [20]. Its main focus is set on drug interactions either
addressing viral proteins or human proteins that could be
used to treat COVID and it is available at https://cordite.ma
thematik.uni-marburg.de/#/. CORDITE provides up to date
information on computational predictions, in vitro, in vivo
studies data and clinical trials.

• Comparative Toxicogenomics database (CTD) [21] is a
public database that aims at advancing the understanding
about how environmental exposures affect human health.
CTD is freely available at http://ctdbase.org/. The database
provides manually curated information about chemical–
gene/protein interactions, chemical–disease and gene–
disease relationships. Data are integrated with functional
and pathway data to aid in development of hypotheses
about the mechanisms underlying environmentally influ-
enced diseases. Moreover, CTD provides the set of genes
associated with COVID-19 at http://ctdbase.org/detail.go?
type=disease&acc=MESH&#x2216;%3aC000657245&view=
gene. A gene has either a curated association to the disease
(marker/mechanism and/or therapeutic) or an inferred
association through a curated chemical interaction.

• CoronaVirus Explorer (CoVex) is an interactive web-
based platform that collects data for SARS-CoV-2 - host
interactions, human protein-protein interactions and drug-
target interactions [22]. It includes a visual tool that provides

the ability to explore the collected interactome, and a
systems medicine algorithms for network-based drug
re-positioning. It is available at https://exbio.wzw.tum.de/
covex/.

• DisGeNET is a comprensive database containing col-
lections of genes and variants associated to human
diseases [23]. DisGeNET integrates data from expert curated
repositories, GWAS databases, animal models and the
scientific literature. DisGeNET data are homogeneously
annotated with controlled vocabularies and community-
driven ontologies. In addition, DisGeNET provides access to
COVID-19 specific data at https://www.disgenet.org/covid/
diseases/summary/.

• IntAct Molecular Interaction database is a freely available
database for molecular interaction data, available at https://
www.ebi.ac.uk/intact/ [24]. All interactions are derived
from literature curation in a coordinated effort by multiple
databases belonging to the IMEx consortium [25] . Recently,
IntAct introduced an update including interaction data
from the high-throughput (HT) multi-level proteomics
studies on SARS-CoV-2, SARS and other Coronaviridae [26].
The IntAct update provides information about molecular
interactions extracted from publications concerning viral
proteins from the Coronaviridae family and human proteins
and other organisms. The data includes protein-protein and
RNA–protein interactions. The COVID-19 data are available
at https://www.ebi.ac.uk/intact/query/annot:&#x2216;%22
dataset:coronavirus&#x2216;%22.

• SIGnaling Network Open Resource (SIGNOR) stores and
organizes in a structured format signaling pathways avail-
able in the scientific literature [27]. The collected informa-
tion is represented as a directed graph. Each interaction in
the graph is associated with an effect (up/down-regulation)
and a mechanism (e.g. binding, phosphorylation, inhibi-
tion, etc.). The current version of SIGNOR stores almost
23 000 manually annotated causal relationships between
proteins and other biologically relevant entities (e.g. chemi-
cals, phenotypes and complexes). SIGNOR data can be freely
downloaded at https://signor.uniroma2.it/downloads.php.
In addition, the SIGNOR team has added available evidence
that is likely to be relevant for the COVID-19 pathology.
Evidence obtained using related human coronaviruses dis-
eases such as SARS and MERS is also mapped to the net-
works. COVID-19 data are freely available at https://signor.u
niroma2.it/covid/.

• VirHostNet is a database for the management and the inves-
tigation of proteome-wide virus–host interaction networks
linked to functional annotations [28]. VirHostNet integrates
a comprehensive and original literature-curated dataset of
the virus–virus and virus–host interactions from several dis-
tinct viral species and one of the largest human interactome
reconstructed from publicly available data. Public access to
the VirHostNet database is available at http://pbildb1.uni
v-lyon1.fr/virhostnet. Recently, VirHostNet added a manual
curation of Coronaviridae–host protein–protein interactions
that is freely accessible at http://virhostnet.prabi.fr:9090/psi
cquic/webservices/ current/search/query/pubid:https*.

Pathway enrichment tools

PEA are commonly implemented as stand-alone software, web-
based applications or program libraries. The first two categories
are usually more straightforward to use, as they do not require

https://cordite.mathematik.uni-marburg.de/#/
https://cordite.mathematik.uni-marburg.de/#/
http://ctdbase.org/
http://ctdbase.org/detail.go?type=disease&acc=MESH&#x2216;%3aC000657245&view=gene
http://ctdbase.org/detail.go?type=disease&acc=MESH&#x2216;%3aC000657245&view=gene
http://ctdbase.org/detail.go?type=disease&acc=MESH&#x2216;%3aC000657245&view=gene
https://exbio.wzw.tum.de/covex/
https://exbio.wzw.tum.de/covex/
https://www.disgenet.org/covid/diseases/summary/
https://www.disgenet.org/covid/diseases/summary/
https://www.ebi.ac.uk/intact/
https://www.ebi.ac.uk/intact/
https://www.ebi.ac.uk/intact/query/annot:&#x2216;%22dataset:coronavirus&#x2216;%22
https://www.ebi.ac.uk/intact/query/annot:&#x2216;%22dataset:coronavirus&#x2216;%22
https://signor.uniroma2.it/downloads.php
https://signor.uniroma2.it/covid/
https://signor.uniroma2.it/covid/
http://pbildb1.univ-lyon1.fr/virhostnet
http://pbildb1.univ-lyon1.fr/virhostnet
http://virhostnet.prabi.fr:9090/psicquic/webservices/
http://virhostnet.prabi.fr:9090/psicquic/webservices/
current/search/query/pubid:https*
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analytical skills or programming abilities. The last class is mostly
coded in R and Python languages and shared openly in the Bio-
Conductor [29] and GitHub [30] repositories. The main benefits of
using PEA programming packages is the potential customization
of every step of the analysis and the feasibility to automate the
process through a scripting analysis pipelines. Deciding between
software platforms and program libraries may be influenced
by user skills and the cost-benefit ratio of time invested in
orchestrating everything necessary to run the analysis.

ORA tools

The main advantages of using ORA methodologies is that they
provide a biological context for COVID-19 data without the need
for further annotations. Following is a list of commonly used
software tools using ORA method:

BioPAX-Parser (BiP)

BiP [31] performs PEA using pathways encoded in Biological Path-
way Exchange (BioPAX) format [32]. BioPAX is a meta language
defined in OWL (Web Ontology Language) and represented in the
RDF/XML (Resource Description Framework / eXtensible Meta
Language) format, and is the language of choice to store and
exchange pathway data.

• Availability: BiP can be freely downloaded as a stand alone
application at https://gitlab.com/giuseppeagapito/bip.

• OS platform: it is fully developed in Java making it platform
independent—it can be executed on all OS compatible with
Java.

• Input data format: BiP requires as input a plain text file
containing the list of genes/proteins of interest to be inves-
tigated.

• Output data format: it allows users to export ranked PEA
results in tabular format, along with further information
available in the selected pathway database for the analysis.

• Analysis: PEA in BiP is obtained using the hypergeometric
test, along with multiple statistical corrector such as false
discovery rate (FDR) and Bonferroni.

• Supported database: PEA can be performed using informa-
tion from all the available pathway databases compliant
with the BioPAX format, e.g. KEGG, Humancyc [10], NetPath
[33], Panther [13], PID [34], Reactome [12], PathwayCommons
[14] and WikiPathways [15].

Enrichr

Enrichr [35] is an easy to use enrichment analysis web-based
tool. It provides various types of visualization summaries of
different categories of biological functions.

• Availability: Enrichr is available as an HTML5 web-based
application and also as a mobile app at: http://amp.pha
rm.mssm.edu/Enrichr. It is also available as an R package
at https://cran.r-project.org/web/packages/enrichR/vigne
ttes/enrichR.html.

• OS platform: Enrichr is delivered as web-based tool, making
it compatible with all the available OS. In addition, Enrichr
can also be accessed via Android, iOS, and BlackBerry phone
apps. The R implementation is intended for experienced
computational users and is compatible with any OS running
R.

• Input data format: To start PEA in Enrichr, users must upload
a file containing a list of genes in text plain format.

• Output data format: Enrichr provides various ways to
visualize the results from the enrichment analysis. Enriched
terms can be visualized on a grid of squares, or as a network
of terms. All the available visualization in Enrichr can be
downloaded as scalable vector graphics (SVG), portable
network graphics (PNG) or joint photographic experts group
(JPG) files. Results can also be presented in an hypertext
markup language (HTML) sortable table with various
columns showing the enriched terms with the various
scores. Table results can be exported as tab-delimited files.

• Analysis: The functional enrichment of the input gene list
is evaluated using a customized implementation of the
Fisher’s Test. To correct results for multiple testing Enrichr
uses FDR and Bonferroni correctors.

• Supported database: it can obtain information from KEGG
[11], WikiPathways [15], BioCarta [36], HumanCyc [10], Pan-
ther [13], BioPlanet [37], Elsevier Pathway Collection [38], PID
[34] and Reactome [12] pathway databases.

g:Profiler

g:Profiler [39] maps genes to known functional annotations and
detects statistically significantly enriched pathways.

• Availability: g:Profiler is available freely as a web applica-
tion at https://biit.cs.ut.ee/gprofiler/. In addition, g:Profiler
is available as both Python and R client libraries, and as API.
The backend of g:Profiler is implemeted using Python 3.6.

• OS platform: g:Profiler is a web application that can be used
from every available OS with active internet connection.

• Input data format: The default input data format of
g:Profiler is a list of genes/proteins. The input gene list
can be either unordered or ordered (as default option list
is considered in the order of decreasing importance). The
ordered query option is useful when the genes can be placed
in some biologically meaningful order.

• Output data format: g:Profiler provides the computation
results in three separate tabs—Results, Detailed Results
and Query Info. g:Profiler can show the users enrichment
analysis results through an interactive Manhattan plot, or as
an interactive result table containing the information about
the enriched terms. Both data results can be exported as
images (i.e. in SVG and PNG formats), or as tables in comma
separated values (CSV) format.

• Analysis: The functional enrichment of the input gene list
is evaluated using the well-known cumulative hypergeo-
metric test. To correct results obtained employing multiple
testing, g:Profiler uses the FDR and Bonferroni correctors.

• Supported database: g:Profiler can obtain information from
KEGG [11], WikiPathways [15] and Reactome [12] pathway
databases.

pathDIP

pathDIP [17] is an integrated database of pathways in human,
model organisms and domesticated animals, comprising core
pathways from major curated pathway databases, and gene
pathway associations predicted using physical protein interac-
tions.

• Availability: it is publicly available at http://ophid.utoronto.
ca/pathDIP.

• OS platform: pathDIP is a web application making it plat-
form independent and compatible with all available OS.

https://gitlab.com/giuseppeagapito/bip
http://amp.pharm.mssm.edu/Enrichr
http://amp.pharm.mssm.edu/Enrichr
https://cran.r-project.org/web/packages/enrichR/vignettes/enrichR.html
https://cran.r-project.org/web/packages/enrichR/vignettes/enrichR.html
https://biit.cs.ut.ee/gprofiler/
http://ophid.utoronto.ca/pathDIP
http://ophid.utoronto.ca/pathDIP
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In addition, pathDIP is available as application program
interface (API) in Java, R, or Python.

• Input data format: pathDIP uses an input list of proteins/-
genes, and requires the selection of the appropriate organ-
ism. Users can also select the databases of choice for the
analysis.

• Output data format: enrichment results and detailed anno-
tations for input list are exported in tab separated format.
In addtion pathDIP can visualize results as diagrams or
interactive tables.

• Analysis: to calculate the enrichment score, pathDIP uses
the Fisher’s exact test, followed by correction for multiple
hypothesis testing by two different methods, Bonferroni
and FDR.

• Supported database: pathDIP integrates ASCN2 [40], Bio-
Carta [41], EHMN [42], HumanCyc [10], INOH [43], IPAVS
[44], KEGG [11], NetPath [33], OntoCancro [45], Panther[13],
PharmGKB [46], PID [34], RB-pathways [47], Reactome [12],
Signalink2.0 [48], SIGNOR2.0 [49], SMPDB [50], SPIKE [51],
STKE [9], System-biology.org [52], UniProt Pathways (https://
www.uniprot.org/help/pathway) and WikiPathways [15].

ORA tools can be used with lists of genes obtained from all
the databases listed in 3.1. When using data from host-pathogen
interaction studies, lists will be composed of host genes only.

GSEA tools

GSEA has been developed for gene expression data obtained
through microarrays, but it is a frequently used method for
pathway enrichment analysis in any set of genes for which
differential gene expression is available. Below are some tools
performing GSEA:

clusterProfiler

clusterProfiler [53] focuses on the enrichment and compari-
son of gene clusters and the classification and visualization of
biological terms.

• Availability: it can be downloaded freely as an R library/-
package directly from https://bioconductor.org/packages/re
lease/bioc/html/clusterProfiler.html.

• OS platform: clusterProfiler can be executed on each OS
compatible with the R language.

• Input data format: clusterProfiler requires as input a list of
gene or protein identifiers of interest for ORA, and a ranked
gene list (with fold change or other numeric variable) for
GSEA.

• Output data format: clusterProfiler allows users to export
results as images (i.e. in SVG, JPG and PNG formats), or as a
ranked list of enriched pathways.

• Analysis: clusterProfiler support ORA, GSEA and biologi-
cal theme comparison. Enrichment is obtained by using
the hypergeometric test or enrichment score. To correct
the possible errors due to the multiple hypothesis tests,
clusterProfiler uses the FDR corrector.

• Supported database: clusterProfiler can use pathways infor-
mation coming from KEGG [11] and WikiPathways [15]. A
separate package is required to use Reactome database.

GSEA

GSEA [54] uses gene expression data coming from samples
belonging to two classes, e.g. responder or non-responder,

treated or non-treated. GSEA is particularly suitable when ranks
are available for all the genes under investigation.

• Availability: GSEA is freely available as a stand alone appli-
cation. To download the GSEA software, users have to reg-
ister at https://www.gsea-msigdb.org/gsea/login.jsp. GSEA
is available as Java desktop application with an easy to
use graphical interface (i.e. recommended for all users with
little programming skills), as well as a Java jar file command
line interface, useful for expert programmers to analyze
large datasets or running analyses on high performance
machines. Finally, GSEA R implementation is intended for
experienced computational biologists.

• OS platform: Both Java and R versions of GSEA are compat-
ible with all the OS that support Java and R programming
languages.

• Input data format: to run PEA, GSEA needs four types of data
files: an expression dataset in any of the formats RES, Gene
Cluster Text (GCT), PCL or txt file formats; phenotype labels
in categorical class (CLS) format; gene sets defined using
the Gene MatriX (GMXe) or gene matrix transposed (GMT)
file format, and CHIP: Chip file file format with microarray
annotations. All four file types have to be tab-delimited.

• Output data format: GSEA produces different types of
reports: enrichment in phenotype, dataset details, gene set
details, gene markers, global statistics and plots, detailed
enrichment results and gene set details report. All the
reports can be exported as HTML, or xlsx (Excel) format.

• Analysis: The functional enrichment of the input gene list is
evaluated using Enrichment Score. To correct results obtained
through multiple testing, GSEA uses the FDR and Bonferroni
correctors.

• Supported database: GSEA can retrieve information from
KEGG [11], BioCarta [41], PID [34] and Reactome [12] pathway
databases. Moreover, users can upload any other pathway
database data in GMT format.

WEB-based Gene SeT AnaLysis Toolkit (WebGestalt)

WebGestalt is a collection of tools for functional enrichment
analysis in several biological contexts. The current version of
WebGestalt [55] supports 12 organisms, 342 gene identifiers from
different databases, and 155,175 functional categories.

• Availability: WebGestalt is available as web application
at http://www.webgestalt.org. WebGestalt is also available
as an R package at the CRAN archive at https://cran.r-proje
ct.org/web/packages/WebGestaltR/index.html.

• OS platform: WebGestalt web application is OS indepen-
dent, and can be used in all the OS supporting R language.

• Input data format: WebGestalt receives as input a list of
genes, along with functional categories with their own gene
identifiers.

• Output data format: Enrichment results can be explored
and analyzed interactively through a graphical user friendly
interface, in the form of tab-based and interactive report. In
addition, the GUI allows users to export enrichment results
as reports and figures (i.e. in SVG and PNG formats) that can
be used in publications.

• Analysis: WebGestalt ORA enrichment method is based on
the the Fisher’s test. From the WebGestalt-2019 version, it
supports TEA, ORA and GSEA.

• Supported database: WebGestalt can obtain information
from KEGG [11], WikiPathways [15], Reactome [12] and Pan-
ther [13] pathway databases.

https://www.uniprot.org/help/pathway
https://www.uniprot.org/help/pathway
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://www.gsea-msigdb.org/gsea/login.jsp
http://www.webgestalt.org
https://cran.r-project.org/web/packages/WebGestaltR/index.html
https://cran.r-project.org/web/packages/WebGestaltR/index.html
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GSEA tools can be used with list of genes paired with fold
changes or p-values. This type of data can usually be found
in tables linked to COVID-19 specific publications or it can be
retrieved (but needs to be pre-processed) from databases such
as GEO (https://www.ncbi.nlm.nih.gov/geo/), SRA (https://www.
ncbi.nlm.nih.gov/sra/), ArrayExpress (https://www.ebi.ac.uk/a
rrayexpress/) or PRIDE (https://www.ebi.ac.uk/pride/archive/).

TEA tools

Pathways are representations of biological events describing
the interactions of genes, proteins or metabolites within cells,
tissues or organisms, not simple lists of genes. Genes and pro-
teins are not independent, they perform a variety of functions
and tasks through their interactions and connections. To take
advantage of the pathway topology information for assessing
statistical relevance of the pathways a third category of methods
called TEA has been proposed. TEA includes the following tools
(as well as WebGestalt, already mentioned above):

EnrichNet

EnrichNet [56] uses topological information to identify, prioritize
and analyze functional associations between user-defined gene
or protein sets and cellular pathways using information from
molecular interaction networks.

• Availability: EnrichNet is a web application for pathway
analysis using topological information available at http://
www.enrichnet.org. It is available as Python package as well
as RESTful API.

• OS platform: EnrichNet is platform independent and can be
used through a web browser.

• Input data format: To perform TEA it requires as input a list
of gene or protein identifiers of interest. The list of protein-
s/genes of interest cannot exceed the 5 000 genes/proteins
identifier per single analysis.

• Output data format: The main output produced by Enrich-
Net is a ranking of pathways or a rank of gene ontology (GO)
in terms of their predicted functional association with the
provided gene/protein list.

• Analysis: To perform TEA, EnrichNet implements GSEA by a
new association measure that integrates information from
the known network structure of interactions between pro-
teins. The interactions are computed using the random
walk with restart (RWR) algorithm, and the statistical rel-
evance is computed using the Fisher’s test and the FDR
method for multiple testing adjustment.

• Supported database: EnrichNet can use pathways infor-
mation coming from the following pathway and pro-
cess databases: KEGG [11], BioCarta [41], Reactome [12],
WikiPathways [15], GO [57] and NCI pathway database [58].

Pathway analysis using Network information (PathNet)

PathNet [59] uses topological information present in pathways
and differential expression levels of genes, to identify path-
ways significantly enriched associated in the context of gene
expression data.

• Availability: PathNet is a set of R functions for pathway
analysis using topological information. PathNet is available
as an R workspace image from http://www.bhsai.org/do
wnloads/pathnet/.

• OS platform: PathNet is Platform independent and can be
executed on all OS supporting the R language.

• Input data format: PathNet requires differential expression
levels, an adjacency matrix file containing the connectivity
information among genes in the list of interest, and path-
way information. PathNet is distributed with example text
files to use as a reference when creating new datasets for
analysis.

• Output data format: PathNet enrichment analysis results
are displayed on the screen and stored in two plain-text
files.

• Analysis: To perform TEA, PathNet combines all pathways
under consideration into a pooled pathway. The interac-
tions among genes in the pooled pathway are represented
by an adjacency matrix, and given the network, PathNet
computes the molecular relevance using Fisher’s test.

• Supported database: PathNet uses topology information
collected from KEGG [11] pathway database only. A
researcher willing to use a different pathway database
needs to format it as the KEGG pathways file provided with
the package.

Topology-based pathway enrichment analysis (TPEA)

TPEA [60] method, computes the relevance of nodes based on its
upstream/downstream positions and the degrees in pathways.

• Availability: TPEA is available at the Comprehensive R
Archive Network (CRAN) repository (https://cran.r-project.o
rg/web/packages/TPEA/).

• OS platform: TPEA is compatible with all the OS supporting
R programming language.

• Input data format: The gene set of interest must be a list in
”Entrez ID” format.

• Output data format: TPEA allows users to save ranked PEA
results in a tabular format.

• Analysis: TPEA computes the area under the enrichment
curve (AUEC), which was obtained based on the cumulative
weighted node score of the relevant nodes, to evaluate the
enrichment significance of pathways.

• Supported database: TPEA uses only KEGG database [11] to
compute PEA.

TEA tools can be used with gene lists similar to the ones used
for ORA or GSEA, but they also require interaction information
that, for COVID-19, can be retrieved in CoVex, IntAct and SIGNOR
(the latter being focused on COVID-19 related signaling path-
ways). Virus - host and drug - target networks cannot be used for
TEA, as the tools require interactions among the genes present
in the pathways for topological analysis.

Table 1 lists scientific papers focused on COVID-19 that used
HT assays and PEA methodologies. The HT experimental assays
mostly used to produce SARS-CoV-2-related genes/proteins of
interest include mass spectrometry and RNA-Seq. Before per-
forming PEA, each dataset has been properly pre-processed to
be suitable to perform the appropriate PEA. Most of the PEA tools
listed in Table 1 used ORA or GSEA methodologies; specifically,
13 papers used ORA and 10 GSEA. ORA is the methodology easi-
est to apply, as it needs only a list of proteins/genes, and hence
it is the one used more frequently. GSEA requires additional data
and processing, but the method has been increasingly used since
its publication in 2005. While TEA methods are more complete
they are also more complex to use. They require interaction and
topology data to be performed, and they have not been used in
COVID-19 papers yet.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/sra/
https://www.ncbi.nlm.nih.gov/sra/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/pride/archive/
http://www.enrichnet.org
http://www.enrichnet.org
http://www.bhsai.org/downloads/pathnet/
http://www.bhsai.org/downloads/pathnet/
https://cran.r-project.org/web/packages/TPEA/
https://cran.r-project.org/web/packages/TPEA/
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Table 1. List of COVID-19 research papers using high throughput method to generate raw data analyzed using PEA methodologies

Paper HT method PEA method Tool Reference

Proteomic and metabolomic characterization of
COVID-19 Ppatient Ssera

RNA-Seq ORA IPAa [61]

Multi-level proteomics reveals host-perturbation
strategies of SARS-CoV-2 and SARS-CoV

MS and RNA-seq ORA IPA [62]

Bulk and single-cell gene expression profiling of
SARS-CoV-2 infected human cell lines identifies
molecular targets for therapeutic intervention

sc and bulk
RNA-seq

GSEA clusterProfiler [63]

Transcriptomic characteristics of bronchoalveolar
lavage fluid and peripheral blood mononuclear
cells in COVID-19 patients

RNA-seq GSEA clusterProfiler [64]

A SARS-CoV-2 – host proximity interactome BioID ORA g:Profiler [65]
Transcriptomic profiling of human corona
virus (HCoV)-229E -infected human cells and
genomic mutational analysis of HCoV-229E and
SARS-CoV-2

RNA-Seq ORA IPA [66]

Host metabolic reprogramming in response to
SARS-Cov-2 infection

RNA-Seq ORA EnrichR [67]

Single-cell landscape of bronchoalveolar immune
cells in patients with COVID-19

sc RNA-seq GSEA clusterProfiler [68]

Immunophenotyping of COVID-19 and influenza
highlights the role of type I interferons in devel-
opment of severe COVID-19

RNA-Seq ORA enricher [69]

A single-cell atlas of the peripheral immune
response in patients with severe COVID-19

scRNA-seq ORA IPA [70]

Generation of human bronchial organoids for
SARS-CoV-2 research

RNA-seq GSEA PGSEA [71]

In vivo antiviral host response to SARS-CoV-2 by
viral load, sex, and age [dataset I]

shotgun RNA
sequencing

GSEA GSEA [72]

Severely ill COVID-19 patients display a defective
exhaustion program in SARS-CoV-2 reactive CD8+
T cells

scRNA-seq GSEA GSEA [73]

Type I and Type III IFN Restrict SARS-CoV-2 Infec-
tion of Human Airway Epithelial Cultures

RNA-seq GSEA GSEAb [74]

Modulating the transcriptional landscape of
SARS-CoV-2 as an effective method for developing
antiviral compounds

RNA-Seq ORA Enricher [75]

In vivo antiviral host response to SARS-CoV-2 by
viral load, sex, and age [dataset II]

shotgun
RNA-seq

GSEA GSEA [76]

a Ingenuity pathway analysis bMSigDB molecular signature database

Choosing a PEA method
This section provides basic guidelines on how to choose the most
suitable PEA method considering intended data and research
goal.

All three PEA methodologies use genes/proteins of interest
and a pathway database to identify critical pathways that
may be affected in a condition by correlating information
in a pathway with genes/proteins for the disease. Thus, the
type of the genes/proteins list dictates the choice of the PEA
method and suggests the database to use to calculate the
enrichment. Another aspect to consider when performing PEA
is that databases contain different representations of the same
biological pathway, which may lead to varying PEA results.
Thus, before performing the PEA, a researcher should carefully
select the most suitable pathway database for his/her research
purpose. For example, to investigate signal transduction a
signaling specific database should be used (e.g. SIGNOR), or
to explore metabolic aspects a metabolism specific database
should be used (e.g. MetaCyc). Thus, the selection of a suitable
pathway database depends on the biological context that is
under investigation.

To compute the enrichment, ORA methods require a
simple input list of genes/proteins, along with a pathway
database (or more databases if supported by the tool). Among
the reviewed ORA software tools, BiP allows users to retrieve
pathway information from each pathway database compat-
ible with the BioPAX format, while Enrichr, g:Profiler, and
pathDIP perform PEA with a pre-selected set of pathway
databases.

GSEA methods need to use the gene annotations to
compute pathway enrichment. GSEA methods use the entire
list of genes/proteins obtained from gene expression studies,
along with additional annotations obtained from fold changes or
P-values. Moreover, GSEA methods requires that the set of

samples used to produce the data to analyze contain at least 3–5
samples per group. Thus, to obtain consistent pathway enrich-
ment results using GSEA methods, the choice of the specific soft-
ware should be data-driven. In particular, if expression dataset,
phenotype labels, and gene sets with microarray annotations
are available, GSEA software tools should be chosen to perform
PEA. On the other hand, if microarray data sets are incomplete
or only a list of proteins/genes is available, PEA can be computed
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Figure 1. The main steps needed to perform PEA, by using a ORA, GSEA or TEA software tool.

using clusterProfiler and WebGestalt software tools. Both clus-
terProfiler and WebGestalt software tools require as an input the
list of ranked genes/proteins to perform the enrichment and a
pathway database. A possible drawback related to clusterProfiler
is that it includes only KEGG and wikiPathways databases. GSEA
software tool can obtain pathway information from BioCarta,
KEGG, PID and Reactome, while WebGestalt can get pathway
information from KEGG, WikiPathways, Reactome and Panther
databases.

TEA methods utilize the number and type of interactions
between gene products, which may or may not be a part of a
pathway database, in addition to functional annotations. TEA
methods have been developed to use additional information
regarding pathway topology to compute gene-level statistics.
One obvious problem is that proper pathway topology is
dependent on the type of cell used to produce the data,
due to cell-specific gene expression profiles and conditions
being studied, and this type of data is not always available.
The assessed TEA software tools use genes/proteins lists
and interaction information available in specific interac-
tion databases such as IntAct. PathNet requires differential
expression levels, an adjacency matrix file containing the
connectivity information among genes in the list of interest,
and pathway information. On the other hand, both EnrichNet
and TPEA software tools require a list of genes/proteins; for
EnrichNet the list of interest cannot exceed 5000 genes/proteins,
whereas, for TPEA the genes/proteins identifiers have to be in
‘EnterezID’ format. Finally, the choice of a TEA method to use
is related to the biological context that will be investigated.
To that end, TPEA and PathNet can get pathway information
only from KEGG, whereas EnrichNet can obtain pathway
information from BioCarta, KEGG, Reactome, NCI Pathway and
WikiPAthways databases, providing broader context and less
bias.

Discussion
The description of each tool provides the necessary information
for a user to decide what type of tool and what type of data
are compatible and best suited for an accurate and appropriate
analysis.

PEA methods help researchers to identify the pathways sig-
nificantly impacted from a collection of proteins/genes of inter-
est i.e. the list of COVID-19 related genes. To approach this
problem, PEA methods need at least i) a collection of pathways of
an organism (usually collected from a single or multiple pathway
databases), and ii) experimental data such as gene expressions
or proteins/genes list. Figure 1 graphically highlights the main
steps required for the available PEA approaches.

In Figure 2 we compare all frameworks reviewed based on the
supported input types and formats, the provided output results,
along with the supported pathway databases used to define the
biological context of the investigated proteins/genes.

Subset of frameworks analyzed in Figure 2 accept as input
the whole list of genes/proteins considered in the experiment
together with their expression values. Other frameworks use
only the list of differential expressed genes, without the
corresponding expression values, and other frameworks need
additional input data. Among the surveyed frameworks, BiP,
clusterProfiler, EnrichNet, Enrichr, g:Profiler, pathDIP, TPEA
and WebGestalt use all genes/proteins with or without their
expression values as input, whereas, GSEA and PathNet use all
genes/proteins with their expression values along with further
additional files as input.

Moreover, for input datasets to be suitable for PEA they must
contain a minimum number of samples. In particular, sample
size affects the specificity and sensitivity of the enrichment
results. The sample size heavily affects the reproducibility of the
PEA results for both ORA and GSEA methodologies. A method-
ological procedure able to assist users in defining the opportune
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Figure 2. Heatmap representation of the comparison among the surveyed PEA software tools. The violet color indicates ORA tools, the purple color indicates GSEA

tools, orange color indicates TEA tool. The red color indicates the features of the standalone tools, blue color represent the features of the web-tools, and green color

refers to the features of the tools available as both standalone and web applications. ‘*’ Indicates the tools can import pathway from further databases other than KEGG,

Reactome and WikiPathways. The values in the Other column, indicates the number of additional supported pathway database for each tool. ‘**’ Indicates that data can

be obtained from the database through additional modules.

sample size of the datasets to use with ORA and GSEA software
tools, is provided in [77], where it is highlighted that enrichment
results reproducibility is unlikely for both methods by using
small sample sizes (3-5 samples per group). In the GSEA user’s
guide it is specified as well that an input dataset must contain at
least three samples for each group to be suitable for enrichment
analysis. Even enrichment results obtained by using TEA tools
are affected by the sample size, with more samples per group
providing better results, as reported in [78] and [79].

Pathway data are the second type of input for the surveyed
PEA frameworks. Pathway data generally are collected from a
single or multiple sources (pathway databases). Most of the sur-
veyed frameworks in Figure 2 use multiple pathway databases;
for example, pathDIP integrates 22 pathway databases, BiP can
use all databases encoded in BioPAX format and GSEA can run
the analysis on any database in GMT format. The majority
of tools, though, by default can run PEA using KEGG (all the
tools mentioned in this paper), Reactome or WikiPathways (7
tools each). Of these, Reactome is the largest curated primary
database, including 2423 pathways for Homo sapiens and annotat-
ing 10 923 proteins. Reactome includes curated pathways for 15
additional organisms, is freely available and can be downloaded
in the most frequently used pathway exchange formats. KEGG
is the oldest primary curated pathway database, with its first
version having being released in 1996. The database is now
available for download only through subscription, but can be
queried through API. KEGG is also the second largest database
in terms of genome coverage, with 7217 annotated proteins,
and WikiPathways is the third with 6233. Although the pathway
analysis results should be a ranked list of pathways, not all
tools reviewed here provide this. Some return interactive data
while other provide plots that can be useful for presentations or
publications. Other tools enable further analysis, such as identi-
fying the most common terms in pathway names as in pathDIP.
Among the inspected frameworks, BiP, clusterProfiler, Enrichr,

pathDIP, PathNet and TPEA provide a ranked list of enriched
pathways, whereas g:Profiler, Enrichr, WebGestalt and GSEA pro-
vide interactive reports that can be easily exported as images.
Tools like clusterProfiler, Enrichr, g:Profiler and WebGestald, pro-
vide static images in SVG, JPG and PNG formats that can be used
for publication.

Although the main strength of a framework lies in its com-
putational algorithm, its implementation plays a fundamental
role in the user experience. Practicality, ease of use, and type
of interface play a central role in choosing one framework over
another. The surveyed frameworks can be classified as web-
based or standalone frameworks.

Web-based frameworks run on a remote server, providing
computational power and graphical interface. They can be used
through a web browser by uploading the data to be analyzed and
the results can be collected in the format provided by the web
framework. Moreover, the users are not requested to configure or
maintain high-performance hardware and do not need compu-
tational expertise. Among the web-based frameworks there are
EnrichNet, Enrichr, g:Profiler, pathDIP and WebGestalt.

Standalone frameworks need to be installed on local
machines, a task that requires some programming skills. Advan-
tages include data security and privacy, as well as the possibility
to perform data analysis locally without any limitation and
without depending on network connection. However, standalone
tools have to be installed on a high-performance machine
to provide good scalability when analyzing massive datasets.
Standalone frameworks category encompass BiP, clusterProfiler,
g:Profiler, GSEA, PathNet and TPEA.

The programming language and style used for software
implementation play an essential role in the future adoption
of a software tool. Software tools that are skillfully implemented
through an effective graphical user interface (GUI) are more
appealing than those that do not have a GUI requiring some
programming skills to use the full functionalities.
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Table 2. Number of pathways enriched per tool per database, considering a P-value lower than 0.05.

Database BiP Enrichr g:Profiler pathDIP clusterProfiler GSEA WebGestalt EnrichNet PathNet TPEA

KEGG 63 228 5 2, 140 NE 1 10 228 NE 109
Reactome 1, 300 805 26 3, 512 NA 33 10 805 NA NA
WikiPathways NE 300 6 1, 162 NE NA 10 300 NA NA

NE = not enriched; NA = not available.

Figure 3. Top 10 pathways enriched per database. Rows represent tools listed in this paper and columns pathways enriched.

clusterProfiler, g:Profiler, GSEA, PathNet and TPEA are developed
using the R programming language and are available as software
packages either from Bioconductor and CRAN repositories. Their
demand among biologists and bioinformaticians is due to the
availability of many R bioinformatics packages.

BiP, GSEA and Enrichr have been implemented in Java,
providing access to the full functionalities through a GUI for
users with lower computational expertise. In addition, g:Profiler,
GSEA and WebGestalt provide both web and standalone
implementations.
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A summary of the analysis methods, framework type, imple-
mentation, and availability details for the surveyed methods is
presented in Figure 2.

Our PEA guide is appropriate to analyze lists of genes or
biomolecules from any organism and is not limited to COVID-
19 only, but we are focusing this section on the data available at
the time of writing for the current pandemic.

A gene list can be generated using HT assays (such as RNA-
seq, genome-wide association studies and proteomics) that gen-
erate a high amount of raw data that must be processed to obtain
input information suitable for PEA. After processing, the data
available can be stored as differential expression gene lists—
with or without associated expression—or as gene, proteins and
microRNAs lists as well, ranked by other features. A user can
also collect a gene list of interest from the databases listed
in COVID-19 databases.

A differential gene expression list can be obtained by a user
after the analysis of their HT assays or from databases like
GEO (https://www.ncbi.nlm.nih.gov/geo/), SRA (https://www.
ncbi.nlm.nih.gov/sra/) and ArrayExpress (https://www.ebi.ac.u
k/arrayexpress/) that focus on expression related datasets. This
type of list can be used as input in GO-Elite, GSEA and WebGestalt.

Partially ranked or unranked gene lists can be obtained from
the literature (as of August 7th, PubMed lists 38 521 COVID-
19 and SARS-CoV-2 related papers, while medRxiv/bioRxiv list
7465) as well as from databases like DisGeNet, CORDITE and
CTD. This type of list can be analyzed using BiP, clusterProfiler,
Enrichr, EnrichNet, g:Profiler or pathDIP. CTD can also provide
ranked gene lists based on the effect of a compound on the
expression of a set of genes of interest. Such a list can be used
with GSEA and WebGestalt. Databases like IntAct store host–host
interactions, providing the user with data useful for TEA that can
be performed using EnrichNet, PathNet, TPEA and WebGestalt.

To showcase possible results obtained by analysis of COVID-
19 data, we collected significant COVID-19 genes along with
the related log-fold change values from Supplementary Table
5 of Stukalov et al. [62]. The extracted data have been properly
formatted to be analyzed using each tool reviewed in this paper.
As first step we collected all the significant COVID-19 genes
available in the Supplementary Table 5 of Stukalov et al. [62],
along with the detected log-fold change values. As next step, we
produced two genes’ list ordered and unordered, both suitable
to perform PEA with all the following framework tools: BiP,
clusterProfiler, Enrichr, EnrichNet, g:Profiler, pathDIP and TPEA.
To perform PEA, using both GSEA and PathNet, it is necessary
to provide the data used for ordering the list (in our example,
P-value). To perform PEA with PathNet it is also necessary to
provide an adjacency matrix file containing the connectivity
information among genes in the list of interest.

Figure 3 shows top 10 pathway enrichment results for each
database obtained by the PEA software tools listed in this paper.
The number of enriched pathways are obtained considering
a P-value lower than 0.05. Table 2 shows which tools did not
support or did not obtain any enrichment for a specific database.
Interestingly, all three databases and the majority of tools show
enrichment for pathways related to cell cycle, a process well
known to be disrupted after viral infection [80].

Conclusion
Considering the veracity and volume of COVID-19 information,
we have an urgent need to identify effective ways of extracting
knowledge from quickly produced data in the fastest and most
accurate way. PEA approaches are a core strategy to obtain

knowledge and annotate SARS-CoV-2 data. PEA applications
allow users to find and characterize key components crucial to
identify efficacious treatments and highlight individual differ-
ences. In this manuscript, we presented the main software tools
for pathways enrichment analysis. We described the features to
use in order to choose the most suitable pathway enrichment
tool for the specific type of COVID-19 data to be investigated.
This way, researchers can find information about various tools
and methods in a single place, and can make an informed
decision about the more appropriate tool to use.
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Key Points
• COVID19 research generated an unprecedented vol-

ume of papers and data, which makes selecting the
best data, tools and analysis challenging.

• This paper provides a comprehensive list of bioin-
formatics methods and resources used to analyze
available COVID-19 data with pathway enrichment
analysis.

• We describe a simple guide of the main steps of a
general pathway enrichment analysis procedure to
quickly gain insight into the genes/proteins list of
interest derived from COVID-19 data.
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