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Abstract: Background and Objectives: The influence of periostin on the growth of the patella tendon
(PT) tibial insertion is unknown. The research described here aimed to reveal the contribution of
periostin to the growth of fibrocartilage layers of the PT tibial insertion using periostin knockout mice.
Materials and Methods: In both the wild-type (WD; C57BL/6N, periostin +/+; n = 54) and periostin
knockout (KO; periostin −/−; n = 54) groups, six mice were euthanized on day 1 and at 1, 2, 3, 4,
6, 8, 10, and 12 weeks of age. Chondrocyte proliferation and apoptosis, number of chondrocytes,
safranin O-stained glycosaminoglycan (GAG) area, staining area of type II collagen, and length of the
tidemark were investigated. Results: Chondrocyte proliferation and apoptosis in KO were lower than
those in WD on day 1 and at 1, 4, and 8 weeks and on day 1 and at 4, 6, and 12 weeks, respectively.
Although the number of chondrocytes in both groups gradually decreased, it was lower in KO than
in WD on day 1 and at 8 and 12 weeks. In the extracellular matrix, the GAG-stained area in KO
was smaller than that in WD on day 1 and at 1, 4, 8, 10, and 12 weeks. The staining area of type
II collagen in KO was smaller than that in WD at 8 weeks. The length of the tidemark in KO was
shorter than that in WD at 4 and 6 weeks. Conclusion: Loss of periostin led to decreased chondrocyte
proliferation, chondrocyte apoptosis, and the number of chondrocytes in the growth process of the PT
tibial insertion. Moreover, periostin decreased and delayed GAG and type II collagen production and
delayed tidemark formation in the growth process of the PT tibial insertion. Periostin can, therefore,
contribute to the growth of fibrocartilage layers in the PT tibial insertion. Periostin deficiency may
result in incomplete growth of the PT tibial insertion.

Keywords: patella tendon insertion; fibrocartilage layers; periostin; growth; knockout mouse

1. Introduction

Periostin, a secreted profibrogenic glycoprotein, is a matricellular protein that has a
regulatory role in disease processes, healing, and development [1]. Periostin is located in
the extracellular matrix (ECM) and regulates cell migration and proliferation [2]. Periostin
is localized in the ECM of the periosteum and periodontal ligament [3], as well as in heart
valves, tendons, wounds, and tumors, and is re-expressed after skeletal muscle, myocardial,
and vascular injuries, as well as after bone fractures [1,4,5]. Periostin plays a role in
proliferation, apoptosis, ECM synthesis, collagen fibrillogenesis, growth factor production,
and cell morphology [4]. Periostin ensures tissue strength by controlling collagen fiber
formation through the regulation of type I collagen’s cross-linked structures and ECM
uptake of tenascin C [6–10].

Tendon and ligament insertions have fibrocartilage layers between the soft and hard
tissue, as is the case in the anterior cruciate ligament (ACL) and the patella tendon (PT)
tibial insertions [11]. The ECM of fibrocartilage layers contains type II collagen and gly-
cosaminoglycans (GAGs) that enables it to resist tensile, shear, and compressive stresses,
thereby transmitting load [11,12]. Periostin has been shown to influence the growth of the
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fibrocartilage layer of the ACL insertion in periostin knockout mice [13]. Periostin also
decreased cell proliferation in the early growth phase and delayed the development of the
ECM in the fibrocartilage layer of the ACL insertion in periostin knockout mice [13].

Osgood–Schlatter disease is one of the PT tibial insertional tendinopathies that is
clinically well-known for the prolonged treatment it requires [14]. Although the PT tibial
insertion is similar to the formation of the ACL insertion, the mechanical environment is
different in that one side is fixed to the bone and the other side to the muscle via the patella.
Therefore, periostin may function differently in the PT tibial insertion compared to the ACL
insertion. The influence of periostin on PT tibial insertion growth is unknown.

Therefore, the purpose of this study was to assess the contribution of periostin to the
growth of fibrocartilage layers of the PT tibial insertion using periostin knockout mice. We
hypothesized that periostin would influence the growth of fibrocartilage layers of the PT
tibial insertion. The influence of periostin on the growth of the patellar tendon insertion
is expected to be important in the repair and regeneration of periostin on the patellar
tendon insertion.

2. Materials and Methods
2.1. Animal Preparation

Since this research could not be undertaken in vitro and since mice are the smallest
experimental animals, mice were selected for this study. Periostin knockout mice were
created as described in our previous report [13]. Four C57BL/6N periostin knockout
(periostin +/−) mice (female: 1, male: 3) were created by Cyagen Biosciences Inc., Suzhou,
Jiangsu, China. To create periostin knockout (periostin −/−) mice (KO), four periostin
knockout (periostin +/−) mice and eight C57BL/6N wild-type (periostin +/+) mice (WD;
female: 8, Japan SLC, Inc., Hamamatsu, Shizuoka, Japan) were allowed to mate, and 54 KO
mice were obtained [13]. To create WD, six C57BL/6N WD (female: 3, male: 3, Japan
SLC, Inc., Hamamatsu, Shizuoka, Japan) were allowed to mate, and 54 WD mice were
obtained [13]. Groups of five mice each were bred in a polycarbonate cage with paper
bedding material at 25 ◦C under 12 h light/dark cycles. The mice ate feed and drank water
and could move freely in their cages. No adverse events occurred. At 3 months, the skeletal
growth of the mice is complete [15], therefore, the final investigation period was set as
12 weeks of age. On d 1 and at 1, 2, 3, 4, 6, 8, 10, and 12 weeks of age, six mice in each group
were euthanized by cervical dislocation.

The genetic confirmation of periostin knockout by polymerase chain reaction (PCR)
analysis of isolated DNA was performed using tail DNA according to our previous
report [13]. NucleoSpin® Tissue (Takara Bio Inc., Kusatsu, Shiga, Japan) and TaKaRa
TaqTM Hot Start Version (Takara Bio Inc., Kusatsu, Shiga, Japan) were used. Forward
primer was (F1):5′-TGAAGCTACCCATCTCCCAAATG-3′ and reverse primers were (R1):5′-
CCTCTCCCAGCGTTCATAAATC-3′ and (R2):5′-ACCATCCTGTAGGCTCTTCAAAC-3
(Eurofins Genomics, Tokyo, Japan). Under the conditions described in the Mouse Conven-
tional Knockout User Manual (Cyagen Biosciences Inc., Silicon Valley, CA, USA), PCR was
performed using a thermal cycler (MiniAmp Plus, Thermo Fisher Scientific, Waltham, MA,
USA) [13].

The mice were kept in accordance with the guidelines of the institution’s Ethical
Committee and the National Institutes of Health (NIH) Guidelines for the Care and Use of
Laboratory Animals (NIH pub. No. 86–23, rev. 1985). This study conformed to the Animal
Research: Reporting In Vivo (ARRIVE) guidelines.

2.2. Staining Method and Immunohistochemistry

Specimens were fixed with 10% neutral-buffered formalin, decalcified, and embedded
in paraffin in accordance with our previous report [13]. All the specimens were sliced 5 µm
in the sagittal plane at unilateral knees [13].

Hematoxylin and eosin and safranin O staining were performed to evaluate the histo-
morphology and GAG production [13]. To distinguish proliferating cells, proliferating cell
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nuclear antigen (PCNA) staining using a Histofine® SAB-PO (M) Kit (Nichirei Biosciences
Inc., Tokyo, Japan), an anti-PCNA monoclonal antibody (PC-10; code No. M0879; Dako,
Glostrup, Denmark), and an antibody diluent (code No. S0809; Dako) was performed
(Figure 1A) [13]. To distinguish apoptotic cells, terminal deoxynucleotidyl transferase-
mediated deoxyuridine triphosphate-biotin nick-end labeling (TUNEL) staining using an
Apoptag® Plus Peroxidase In Situ Apoptosis Detection Kit (Merck Millipore, Billerica, MA,
USA) was performed (Figure 1B) [13]. To distinguish type II collagen, a Histofine® SAB-PO
(M) Kit (Nichirei Biosciences Inc., Tokyo, Japan) with an anti-type II collagen monoclonal
antibody (Kyowa Pharma Chemical, Toyama, Japan) was used (Figure 1C) [13].

Figure 1. Tissue specimens: (A) PCNA staining, PCNA-positive cells were brown (400×); (B) TUNEL
staining, TUNEL-positive cells were brown (400×); (C) type II collagen staining, brown area is type
II collagen-stained area (400×); (D) safranin O staining, red area is glycosaminoglycan production
area (400×); (E) HE staining, the tidemark is between the calcified and uncalcified fibrocartilage
layers (arrows) (400×). PT, patella tendon; B, bone; PCNA, proliferating cell nuclear antigen; TUNEL,
terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick-end labeling.

2.3. Histomorphometric Analysis

Histomorphometric analysis was performed in accordance with our previous re-
port [13]. Lower-density stained cartilaginous tissues with round cells between the hyaline
cartilage area and the ligament were identified as fibrocartilage layers on d 1 and at 1 and
2 weeks of age [13]. In the other specimens, fibrocartilage layers were identified as layers
with round cells between the ligament and the bone [13]. The border between the tendon
and the fibrocartilage layers was identified by spindle-shaped cells and round cells [13]. In
the fibrocartilage layers of the PT tibial insertion, regions stained red by safranin O were
identified as GAG production areas (Figure 1D) [13]. Regions stained brown were identified
as type II collagen [13]. The total tidemark length was measured using hematoxylin and
eosin staining (Figure 1E) [13]. The width of the PT tibial insertion at the level of the
fibrocartilage layers was measured. To observe and measure the chondrocytes, GAG pro-
duction areas, type II collagen-stained areas, and tidemark length in the PT tibial insertion,
a BX-51 light microscope (Olympus Optical Co. Ltd., Tokyo, Japan) and Mac Scope software
(Mitani Co., Fukui, Japan) were used. The total number of chondrocytes, red-stained GAG
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production areas, type II collagen-stained areas, and tidemark lengths were divided by the
width of the PT tibial insertion. Subsequently, the number of chondrocytes per width of
insertion, thickness of GAG production areas, thickness of type II collagen-stained areas,
and percentage of tidemark length were calculated [13]. The percentages of TUNEL- and
PCNA-positive chondrocytes and the number of positive chondrocytes were calculated [13].
At different ages, those parameters were compared to the parameters obtained at the age of
12 weeks and between the WD and KO groups [13].

2.4. Statistical Analysis

Since two-way analysis of variance (ANOVA) revealed that the interactions were
significant, we decided to compare each parameter individually after the Shapiro–Wilk
normality test was performed for each parameter. When all the variables for each parameter
were normally distributed, Student’s t-test was performed to compare WD with KO. When
all the variables for each parameter were not normally distributed, the Mann–Whitney U
test was performed to compare the data of WD and KO. To evaluate the time-dependent
changes compared with those at 12 weeks of age, one-way ANOVA and Dunnett’s test
were used. p-values of less than 0.05 were considered statistically significant. The statistical
analyses were performed using IBM SPSS Statistics version 28.0 (IBM Corp., Armonk,
NY, USA).

Using the POWER procedure in SAS software (SAS Institute, Cary, NC, USA), power
analysis was conducted with a confidence level of 95% (α = 0.05) and power (1–β) of 80%
with reference to previous research [16,17]. The smallest sample size was calculated at
5–6 specimens per age group. Therefore, six specimens per age group were enrolled.

3. Results

The summary of histomorphometric analyses is shown in Table 1.
The chondrocyte proliferation rate (Figure 2) of KO was lower than that of WD on d 1

and at 1, 4, and 8 weeks. In WD, the chondrocyte proliferation rate was lower on d 1 than
at 12 weeks, and in KO, the rate was lower on d 1 and at 1, 4, and 8 weeks than at 12 weeks.

Figure 2. Chondrocyte proliferation rate. Note: * p < 0.05, WD vs. KO (n = 6); + p < 0.05, vs. age of
12 weeks (n = 6); •: WD; #: KO. Some markers may be overlapping.
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Table 1. Summary of histomorphometric analyses.

1d (n = 6) 1w (n = 6) 2w (n = 6) 3w (n = 6) 4w (n = 6) 6w (n = 6) 8w (n = 6) 10w (n = 6) 12w (n = 6) η2

Chondrocyte
proliferation rate (%)

WD 20.0 ± 11.2 † 50.6 (47.3–54.3) 47.7 ± 16.1 47.1 ± 11.5 31.5 ± 15.0 52.4 ± 16.4 55.1 ± 21.2 54.1 ± 5.5 44.4 ± 18.5 0.406
KO 0 † 32.4 ± 25.4 † 58.3 ± 23.6 64.6 ± 14.1 18.2 ± 10.6 † 65.3 ± 19.2 26.7 ± 16.2 † 53.0 ± 15.7 65.9 ± 19.0 0.670

p value 0.002 * 0.012 * n.s. n.s. <0.001 * n.s. 0.002 * n.s. n.s.

Chondrocyte apoptosis
rate (%)

WD 34.1 ± 5.2 44.0 ± 10.8 † 42.4 ± 14.6 42.4 ± 6.1 74.8 ± 6.0 † 68.1 ±16.9 † 71.1 ± 28.2 † 14.2 (8.6–48.6) 30.3 ± 21.5 0.547
KO 0.0 (0.0–4.2) 37.1 ± 32.5 † 49.5 ± 14.2 † 54.0 ± 23.3 † 50.0 ± 9.8 † 44.7 ± 15.7 † 39.9 ± 27.6 † 12.6 ± 7.7 4.7 ± 3.4 0.569

p value 0.002 * n.s. n.s. n.s. <0.001 * 0.032 * n.s. n.s. 0.033 *

Numbers of
chondrocytes/width of

insertion (n/mm)

WD 983.1 ± 122.3 † 708.4 ± 57.9 † 285.8 ± 91.5 192.4 ± 90.0 324.2 ± 82.2 329.4 ± 134.7 247.3 ± 59.8 256.1 ± 47.5 228.1 ± 53.5 0.910

KO 426.4 ± 99.3 † 436.2 ± 337.7 † 470.6 ± 91.5 † 198.8 ± 108.1 279.4 ± 131.5 222.8 ± 30.4 157.3 ± 55.6 69.8
(62.7–102.2) 140.7 ± 47.7 0.473

p value <0.001 * n.s. 0.006 * n.s. n.s. n.s. 0.022 * n.s. 0.014 *

Thickness of safranin
O–stained

glycosaminoglycan
areas (µm)

WD 118.5 ± 62.9 † 109.6 ± 18.3 † 15.4 (12.4–19.0) 19.3 ± 9.2 27.0 ± 10.4 22.6 ± 5.5 21.8 ± 8.2 26.5 (26.0–29.2) 29.9 ± 6.0 0.750
KO 0 17.6 ± 19.3 † 47.5 ± 17.4 † 11.2 ± 9.8 0.0 (0.0–2.9) 30.4 ± 13.5† 9.3 ± 3.9 2.4 ± 1.6 0.7 ± 0.8 0.718

p value 0.002 * <0.001 * 0.009 * n.s. 0.002 * n.s. 0.007 * 0.002 * <0.001 *

Thickness of type II
collagen staining areas

(µm)

WD 0 † 0 † 0 † 0† 0† 5.8 ± 8.1 36.0 ± 18.5 30.6 ± 3.8 30.2 ± 19.5 0.751
KO 0 † 0 † 0 † 0† 0.0 (0.0–0.8) 0.0 (0.0–0.0) 0.0 (0.0–2.7) 35.1 ± 11.4 47.3 ± 9.3 0.888

p value n.s. n.s. n.s. n.s. n.s. n.s. 0.004 * n.s. n.s.

Percentage of tidemark
length (%)

WD 0 † 0 † 0 † 15.9 ± 18.8 54.5 (41.2–58.8) 54.4 ± 18.2 56.6 ± 24.0 58.9 ± 31.2 68.4 ± 10.0 0.734
KO 0 † 0 † 0 † 0† 0.0 (0.0–0.0) 0.0 (0.0–0.0) 28.4 ± 22.8 81.3 ± 17.5 81.3 ± 8.4 0.906

p value n.s. n.s. n.s. n.s. 0.015 * 0.002 * n.s. n.s. 0.036 *

Width of insertion (µm)
WD 77.5 ± 27.4 † 161.4 ± 16.8 163.3 ± 15.5 178.1 ± 23.7 188.6 ± 13.5 196.7 ± 31.9 204.3 ± 12.3 199.3 ± 30.3 188.5 ± 24.1 0.756
KO 74.7 ± 7.2 † 112.2 ± 24.8 † 148.9 ± 24.6 † 198.1 ± 27.1 124.3 ± 30.6 † 184.7 ± 19.8 182.4 ± 21.2 184.8 ± 33.0 190.0 ± 13.7 0.779

p value n.s. 0.002 * n.s. n.s. <0.001 * n.s. n.s. n.s. n.s.

Results are presented as the mean ± SD, if normality was confirmed. Results are presented as the median (interquartile range), if normality was not confirmed. * p < 0.05: significant
difference between WD and KO. † p < 0.05 compared with the value of 12 weeks; KO, periostin knockout mice; WD, wild type mice.
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The chondrocyte apoptosis rate (Figure 3) in KO was lower than that in WD on d 1
and at 4, 6, and 12 weeks. In WD, the chondrocyte apoptosis rate was higher at 1, 4, 6, and
8 weeks than at 12 weeks, and in KO, the rate was higher at 1, 2, 3, 4, 6, and 8 weeks than at
12 weeks.

Figure 3. Chondrocyte apoptosis rate. Note: * p < 0.05, WD vs. KO (n = 6); + p < 0.05, vs. age of
12 weeks (n = 6); •: WD; #: KO. Some markers may be overlapping.

The number of chondrocytes per width of insertion (Figure 4) in KO was lower than
that in WD on d 1 and at 8 and 12 weeks but higher at 2 weeks. In WD, the number of
chondrocytes per width of insertion was higher on d 1 and at 1 week than at 12 weeks, and
in KO, the rate was higher on 1 d 1 and at 1 and 2 weeks than at 12 weeks.

Figure 4. Numbers of chondrocytes per width of insertion. Note: * p < 0.05, WD vs. KO (n = 6);
+ p < 0.05, vs. age of 12 weeks (n = 6); •: WD; #: KO. Some markers may be overlapping.

The thickness of safranin O-stained GAG areas (Figure 5) in KO was lesser than that
in WD on d 1 and at 1, 4, 8, 10, and 12 weeks but greater at 2 weeks. In WD, the thickness



Medicina 2022, 58, 957 7 of 11

of safranin O-stained GAG areas was greater on d 1 and at 1 week than at 12 weeks, and in
KO, the number was greater at 1, 2, and 6 weeks than at 12 weeks.

Figure 5. Thickness of safranin O-stained glycosaminoglycan areas. Note: * p < 0.05, WD vs. KO
(n = 6); + p < 0.05, vs. age of 12 weeks (n = 6); •: WD; #: KO. Some markers may be overlapping.

The thickness of type II collagen staining areas (Figure 6) in KO was lesser than that in
WD at 8 weeks. In WD, the thickness of type II collagen staining areas was lesser on d 1
and at 1, 2, 3, and 4 weeks than at 12 weeks, and in KO, the thickness was lesser on d 1 and
at 1, 2, and 3 weeks than at 12 weeks.

Figure 6. Thickness of type II collagen staining areas. Note: * p < 0.05, WD vs. KO (n = 6); + p < 0.05,
vs. age of 12 weeks (n = 6); •: WD; #: KO. Some markers may be overlapping.

The percentage of the tidemark length (Figure 7) in KO was lower than that in WD
at 4 and 6 weeks but higher at 12 weeks. In WD, the percentage of the tidemark length
was lower on d 1 and at 1, 2, and 3 weeks than at 12 weeks, and in KO, the percentage was
lower on d 1 and at 1, 2, 3, and 4 weeks than at 12 weeks.
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Figure 7. Percentage of the tidemark length. Note: * p < 0.05, WD vs. KO (n = 6); + p < 0.05, vs. age of
12 weeks (n = 6); •: WD; #: KO. Some markers may be overlapping.

The width of insertion (Figure 8) in KO was lesser than that in WD at 1 and 4 weeks.
In WD, the width of insertion was lesser on d 1 than at 12 weeks, and in KO, the width was
greater on d 1 and at 1, 2, and 4 weeks than at 12 weeks.

Figure 8. Width of insertion. Note: * p < 0.05, WD vs. KO (n = 6); + p < 0.05, vs. age of 12 weeks
(n = 6); •: WD; #: KO. Some markers may be overlapping.

4. Discussion

Although the number of chondrocytes in both groups gradually decreased, chon-
drocyte proliferation, chondrocyte apoptosis, and the number of chondrocytes were low
from early birth to the end of growth of the PT tibial insertion in KO. Moreover, the GAG
production and type II collagen areas and the tidemark length in KO were smaller than
those in WD at 12 weeks, 8 weeks, and 4 and 6 weeks, respectively.

The GAG-stained area was large from day 1 to week 1 in WD and from week 1 to
week 6 in KO. The GAG-stained area in KO was lesser than that in WD on day 1 and at
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weeks 1, 4, 8, 10, and 12. Absence of periostin can delay and decrease GAG production.
The type II collagen staining area in KO was lesser than that in WD at 8 weeks. Absence of
periostin can also decrease type II collagen production. Although chondrocyte proliferation
and increased GAG-stained areas were observed in the early stage of growth, it has been
reported that type II collagen is observed after calcified and uncalcified cartilage layers
are formed at the insertion [12]. Therefore, type II collagen was expected to have been
observed in the second half of the growth process. The percentage of the tidemark length in
KO was lower than that in WD at 4 and 6 weeks. Absence of periostin can delay tidemark
production. Periostin plays an important role in the growth of the ECM at the PT tibial
insertion and prevents complete growth.

Chondrocyte proliferation in KO was lower than that in WD on day 1 and at 1, 4, and
8 weeks. Chondrocyte apoptosis in KO was also lower than that in WD on day 1 and at 4, 6,
and 12 weeks. Although the number of chondrocytes gradually decreased in both groups,
the number of chondrocytes in KO was also lower than that in WD on day 1 and at 2, 8,
and 12 weeks. Periostin may upregulate chondrocyte proliferation and apoptosis in the
PT tibial insertion. The imbalance between chondrocyte proliferation and apoptosis can
affect the number of chondrocytes. As a result, it can lead to delayed and incomplete ECM
growth at the PT tibial insertion. In PT tibial insertion growth, periostin is thought to be an
important regulator.

In comparison with a previous study that reported ACL insertion growth using
periostin KO mice [13], significant differences were observed in chondrocyte proliferation,
chondrocyte apoptosis, and the number of chondrocytes, even from 4 weeks to 12 weeks in
this study. Moreover, tidemark length of the PT insertion showed a significant difference
earlier than that of the ACL insertion, and GAG production showed a significant difference
at 8, 10, and 12 weeks in this study. Other phenomena were similar in both the ACL and
PT insertions. Both ACL and PT tibial insertions are direct-type insertions that include
four transitional tissue layers, ligament or tendon, two fibrocartilage layers (uncalcified
and calcified), and bone, that transmit mechanical stress [11]. However, in the ACL, both
ends are made up of bone, whereas one end of the PT tibial insertion is a muscle through
the patella. The differences between the ACL and PT tibial insertions can be due to the
differences in structure and mechanical environments. It has been reported that the actual
1/3 width of the bone–PT–bone complex has a higher ultimate load than the femur–ACL–
tibia complex [18,19]. Therefore, the PT tibial insertion is affected by muscle traction in
the growth period and may be subjected to greater tensile stresses than the ACL insertion.
Moreover, periostin is sensitive to mechanical stress and controls bone modeling and
remodeling [20]. Periostin is involved in the growth of the ACL insertion and the PT tibial
insertion in a mechanical environment; however, periostin may have a different influence
on the ACL insertion than the PT tibial insertion where the mechanical load is larger.

In terms of clinical diseases, Osgood–Schlatter disease is a well-known tendinopathy
involving the PT tibial insertion [14], which requires prolonged treatment. Periostin has
been reported to be upregulated by growth factors such as BMP-2, basic FGF, TGF-β, and
platelet-derived growth factor [5]. Periostin is upregulated during muscle regeneration [21]
and fracture healing [22] and is necessary to regenerate tendons [23]. The previously
mentioned growth factors enhanced tendon-to-bone healing [24]. Moreover, dynamic
tensile stimulation may be an essential factor for tendon regeneration [25]. In bone modeling
and remodeling, mechanical stress plays an important role, and periostin is expected to be
involved in controlling these systems in bone [20]. Therefore, it is possible that periostin
influences growth factors and is involved in the growth, maintenance, and regeneration
of tendons and bones in a mechanical environment. Periostin may be a candidate to treat
tendinopathies such as Osgood–Schlatter disease. Moreover, periostin may contribute
as a marker of the repair/healing process and a predictor of treatment response and
tendon-to-bone healing.

The limitations of this study need to be noted. Although the complete skeletal growth
of mice is achieved at 3 months [15], evaluations after 3 months of age might be necessary
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to investigate the effects after growth. Moreover, mechanical evaluations are necessary to
elucidate the influence of mechanical loads.

5. Conclusions

Periostin decreased chondrocyte proliferation, chondrocyte apoptosis, and the number
of chondrocytes in the growth process of the PT tibial insertion. Moreover, periostin
decreased and delayed GAG and type II collagen production and tidemark formation in
the growth process of the PT tibial insertion. Periostin can contribute to the growth of
fibrocartilage layers in the PT tibial insertion. Periostin deficiency may result in incomplete
PT tibial insertion growth.
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