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At present, emotion recognition based on electroencephalograms (EEGs) has attracted much more attention. Current studies of
affective brain-computer interfaces (BCIs) focus on the recognition of happiness and sadness using brain activation patterns. Fear
recognition involving brain activities in different spatial distributions and different brain functional networks has been scarcely
investigated. In this study, we propose a multifeature fusion method combining energy activation, spatial distribution, and brain
functional connection network (BFCN) features for fear emotion recognition. The affective brain pattern was identified by not
only the power activation features of differential entropy (DE) but also the spatial distribution features of the common spatial
pattern (CSP) and the EEG phase synchronization features of phase lock value (PLV). A total of 15 healthy subjects took part in the
experiment, and the average accuracy rate was 85.00% + 8.13%. The experimental results showed that the fear emotions of subjects
were fully stimulated and effectively identified. The proposed fusion method on fear recognition was thus validated and is of great
significance to the development of effective emotional BCI systems.

1. Introduction

Emotion is a person’s internal reaction to the external en-
vironment and plays a crucial role in his or her daily life [1].
Affective computing attempts to endow computers with the
capacity to recognize, understand, and express human
emotions [2]. At present, there have been certain research
results on emotion recognition using physical signals (e.g.,
facial expressions and verbal speech) and biological signals
(e.g., electroencephalogram (EEG)) [3-5]. Compared with
nonphysiological signals, EEG signals provide a more ob-
jective understanding of emotional processes and responses
[6].

In recent years, EEG-based emotion detection has
attracted increasing research interest. In these studies [7, 8],
EEG-based emotion recognition mainly detected happy and
sad emotions, and few studies have directly aimed at the
detection of fear emotions. de Man and Stassen [9] analyzed
the psychological and physiological responses of fear stimuli
using one single-sensor EEG, and the results showed a

significant difference between the number of brainwave
peaks in a calm state and a fearful state (p <0.05). Masood
and Farooq [10] proposed a method for analyzing fear
emotion brain signals based on common spatial pattern
(CSP) and linear discriminant analysis (LDA) and achieved
an accuracy of 74.81% in eight channels and 76.81% in
fourteen channels.

Due to the complexity of emotions, EEG-based affective
computing relies on the exact EEG features associated with
emotions. Researchers have focused on finding the key
channels and their interrelationships for EEG-based emo-
tion recognition using different methods. When subjects are
undergoing a transition in their emotional state, certain
energy differences in the activation patterns of various re-
gions of the brain are detected. Bong et al. [11] analyzed the
six emotional states of stroke patients, extracted activation
features of five frequency bands by using the wavelet packet
transform technique, and achieved a classification accuracy
of 82.32% in the beta band. Zheng et al. [12] distinguished
different emotional states using differential entropy (DE)
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and found that the lateral temporal areas had more activities
in the beta and gamma bands for positive emotions than
those in negative emotions. It should be noted that all the
mentioned studies were only based on the analysis of neural
activation patterns.

In fact, current studies [13, 14] have revealed that
spatial distribution and functional connection features are
also important in emotion recognition. On the one hand,
the brain function network connection pattern can reflect
the connection of various brain areas when transmitting
information in emotion recognition [15]. The network
function connection is usually used to describe the
mechanism of brain network activity. It can be studied by
analyzing the time series of EEG data to obtain synchro-
nization between EEG signals. Dasdemir et al. [16] used the
phase lock value to detect the brain function connection
pattern of conquering emotions. Their results showed that
the phase synchronization value between the positive,
negative, and neutral emotional channels was significant.
The study of emotion recognition based on the functional
connectivity pattern of EEG signals can help people un-
derstand the potential neural mechanism of emotion
processing in the brain.

On the other hand, the spatial distribution model is
suitable for EEG emotional classification, and the spatial
distribution features can provide more relevant emotional
information for identifying different emotional states [17].
CSP is a commonly used strong spatial filtering method that
can effectively construct an optimal spatial filter to distin-
guish two types of EEG data and can effectively extract the
eigenvalues of the two types of spatial patterns. Yan et al. [18]
proposed an improved CSP method for EEG emotion
recognition and achieved average accuracy rates of 85.85%
and 94.13%, respectively. Hatamikia and Nasrabadi [19]
proposed a simple EEG-based emotion recognition system
based on two different public space mode channel reduction
methods. Their experimental results show that the spatial
pattern algorithm can effectively extract spatially distributed
component information from multichannel EEG signals,
and the accuracy of distinguishing between fear and neutral
emotion reaches 81.48%.

Taken together, EEG-based activation, spatial and
connection patterns obtain complementary information on
EEG signals during emotional transformation from various
aspects. In this study, we propose a fear emotion recognition
system based on the fusion of the three EEG-based patterns.
Specifically, the DE feature of the activation pattern, the CSP
feature of the spatial pattern, and the PLV feature of the
connection pattern are extracted and combined. Fifteen
healthy subjects joined our experiment and had an average
accuracy of 85.00% + 8.13%, indicating that the emotions of
the subjects were fully induced and effectively recognized.

The paper is organized in the following manner. Section
2 introduces the methods, including subjects, the data ac-
quisition procedure, stimulus materials, graphical interface,
experimental paradigm, data processing, and algorithm. The
experiments and results are described in Section 3. The
discussion and conclusion are presented in Section 4 and
Section 5, respectively.
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2. Method

2.1. Subjects. Fifteen healthy subjects (H1 to H15, age 21-37
years, mean age 26 + 3.8 years, 7 females) from South China
Normal University took part in this study after providing
written informed consent. All healthy subjects must not only
have a normal or corrected-to-normal vision but also have
normal hearing.

2.2. Data Acquisition. In this study, EEG signals were col-
lected by using the Synamps2 amplifier of the ESI NeuroScan
System (Compumedics, Neuroscan, Inc., Australia). Subjects
wore a 32-channel EEG cap, and the electrode position
conformed to the international 10-20 system placement.
However, in this study, we recorded EEG signals in 30
channels. Twelve symmetric electrodes (Fpl-Fp2, F7-F8,
F3-F4, FI7-FT8, FC3-FC4, T7-T8, P7-P8, C3-C4, TP7-
TP8, CP3-CP4, P3-P4, and O1-02) and 6 central axis
electrodes (Fz, FCz, Cz, CPz, Pz, and Oz) were used. This
electrode configuration only excluded reference electrodes
Al and A2. Using the right mastoid as a reference, the
ground electrode was placed on the subjects’ foreheads. The
EEG signal was amplified and sampled at a frequency of
250Hz. During data acquisition, the impedance of all
electrodes was kept below 5kQ.

2.3. Stimulus Materials. In this experiment, we chose horror
movie clips and neutral videos as stimulus videos to quickly
and effectively evoke the subjects to produce specific
emotional states (fear and neutral, respectively). Fear video
clips were mainly from famous fear movies from various
countries, including “The Grudge,” “The Conjuring 2,”
“Bunshinsaba,” “The Bride,” “The Haunted Apartments,” “It:
Chapter One,” “MaMa,” “Terrified,” etc. Neutral videos are
mainly from “World Heritage in China Documentary.” The
selection process of the video clips was as follows: first, we
collected 100 video clips containing horror or neutral scenes
from horror movies or short films at home and abroad. Next,
the duration of each segment was clipped to approximately
30 seconds, and the total power value was adjusted to match
the audio power level of all segments. Then, 10 volunteers
(not joined in the BCI experiment) were recruited and asked
to evaluate their emotions and indicated a level (no, slight, or
extreme) and a keyword (fear or neutral) to describe their
emotions while watching the video. Ultimately, the volun-
teers selected 40 video clips that were considered extremely
scary or clearly neutral. Each emotion sort (fear and neutral)
included 20 segments.

2.4. Graphical Interface and Experimental Paradigm. The
experiment was carried out in a dimly lit laboratory. Before
starting the experiment, each participant was notified of the
entire experimental process. Participants were asked to sit on
a comfortable chair in front of a 22-inch LED screen. The
distance between the display and the participant was ap-
proximately 0.5 meters. During the experiment, the par-
ticipants were asked to watch the video played on the screen
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attentively and keep it as still as possible. Participants were
required to perform 40 trials, in which videos of fearful and
neutral emotions were played 20 times each in a random
fashion.

Figure 1 shows the experimental paradigm in each trial.
At the beginning of each test, an 8-second prompt was
presented to each subject. The subject was asked to watch the
horror or neutral videos attentively and experience the
corresponding emotion. Then, a horror or neutral video was
presented for 30s. The EEG data were collected synchro-
nously. After the video screening, feedback on a fearful or
calm cartoon face based on the online classification was
displayed on the screen. The feedback time was 5 seconds,
and the rest time was 10 seconds.

2.5. Data Processing and Algorithm. In this study, the data
processing is shown in Figure 2. Specifically, the EEG data
were copied and then fed into three feature selection pro-
cedures simultaneously. The analysis methods and algo-
rithms used in this study are described in the following.

2.5.1. Preprocessing. The raw EEG data collected in the
experiment were usually accompanied by artifacts, such as
electrooculography (EOG) and electromyography (EMG).
The data baseline was first corrected by subtracting the mean
value of the 1s signal before the stimulus started. To reduce
noise, we then applied a notch filter to remove the 50 Hz
power-line noise. Next, a tenth-order bandpass filter be-
tween 0.1 and 70 Hz was used in this study.

2.5.2. Feature Extraction. Based on the filtered data, we first
calculate the power density spectrum of each channel using a
discrete Fourier transform. During the Fourier analysis, we
used the zero-padding method to increase the number of
data points to 1024 (a power of 2). Next, the band-power
values are computed by averaging values in five frequency
bands: delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta
(14-30 Hz), and gamma (31-48 Hz).
The original formula of DE is defined as follows:

b
DE = - J p(x)log(p(x)) dx. (1)

In this equation, p(x) represents the probability density
function of continuous information, and [a, b] represents
the interval of information value. In this study, we used DE
features with a 1-second sliding time window for temporal
analysis, and we mainly evaluated the performance of DE
features and used classification accuracy as a performance
indicator.

The spatial filtering of EEG data is crucial when ana-
lyzing brain activity. Spatial filtering is used to enhance task-
related neural activities to improve the signal-to-noise ratio
of EEG data [20]. In this study, CSP was used to extract
spatial features and to distinguish different emotional states
caused by the stimulation of fear videos and neutral videos.
We copied the EEG data, segmented the EEG data usinga1s
time window, and performed bandpass filtering in five

selected frequency bands. Through bandpass filtering, the
EEG data fragments of each channel and each frequency
band are extracted. Then, each EEG data segment undergoes
CSP transformation, and the obtained features are used for
classification. First, we need to use the two types of emotions
corresponding to fear and neutral emotional states in the
training data to obtain the CSP spatial filter F. Then, we use
this filter to extract the CSP features of each trial:

fy = 1og10<diag<ﬁ EETFT>>, 2)

where fv is the feature vector, F is the submatrix formed by
selecting the ﬁrst three rows and the last three rows of F, and
diag (F EETF' ) is the EEG data matrlx corresponding to one
experiment. In formula (2), F EETE" is the vector consisting
of all items on the diagonal of matrix E, and the logarithm of
each item in the vector is calculated by the operator log,, ().
In this study, to better distinguish the categories of fear and
neutral emotional states, we selected the first three com-
ponents and the last three components from F. In addition,
by calculating their logarithmic variance, a 6-dimensional
feature vector of each frequency band was constructed.
Then, the CSP feature vectors of all frequency bands are
concatenated to obtain the feature vector of an experiment.

In this study, the phase lock value (PLV) is used to
address the synchronization problem of the nonlinear phase.
We select the sliding time window with a step of 0.4s to
calculate the PLV. Assuming that the instantaneous phases
of the two signals x (f) and y (¢) are ¢ (x) and ¢ (y), the PLV
is defined as follows:

PLV = (3)

LIS g
1 t
N

i

where j indexes the trial number, N is the total number of
trials in the process and A¢(t) is defined as follows:

Ap(1) = ¢, (jAL) - ¢, (jAL), (4)

and represents the instantaneous phase difference between
the signals x(¢) and y(t). ¢, (jAt) and ¢, (jAt) are the
instantaneous phases of the signals in x and y, respectively.
At is the sampling period, and j is the jth sample point.
Through (3), the average PLV of all tests can be calculated.
When the value of PLV is zero, the phases of the two signals
are not coupled, and a PLV of 1 means that the signals are
tully coupled. Based on the calculation of the PLV of the
brain function connection network, we proposed an EEG-
based network pattern (ENP) feature based on EEG data.
When estimating the ENP feature, we used the same fre-
quency band and time window to extract the DE feature and
CSP feature. In this study, we defined the extracted ENP, DE,
and CSP features to utilize their complementary
information.

2.5.3. Classification. In this study, we inputted the extracted
features into the SVM classifier. During training, all n EEG
signal samples had the same emotional label as the corre-
sponding EEG signal segment. During the test, the predicted
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F1GURE 2: Flow chart of emotional recognition. (a) Video-evoked emotional EEG. (b) A feature set was constructed by fusion of DE, CSP,
and ENP. (c) Five kinds of frequency features (delta, theta, alpha, beta, and gamma) were selected. (d) Emotion recognition by SVM.

emotion label of an EEG signal segment was obtained by
calculating the frequency of the predicted label of its cor-
responding # test samples, and the most common emotion
prediction label was identified as the prediction of the EEG
picture segment label. Finally, the evaluation index indicated
the classification accuracy.

3. Experiment and Results

To effectively validate our method, we adopted the leave-one-
out cross-validation strategy in this experiment. In this
strategy, we use all the trials of the same subject as the data set.
Each time, only one trial is used as the test set, and the rest are
used as the training set; this step is repeated 40 times. Finally,
the accuracy rate is calculated by averaging all results.

The classification results of different types of features in
the delta, theta, alpha, beta, and gamma bands are shown in
Table 1. ENP represents the connection characteristics of
brain function, DE describes entropy, CSP describes spatial
characteristics, and DE_ENP_CSP is the fusion of the three
characteristics. All bands refer to the frequency bands that
connect all five frequency bands. The results show that the
EEG feature that concatenated DE, CSP, and ENP features in
all bands achieve the highest recognition accuracies, except
for subjects H3 and Hé6. In addition, the accuracy of the
classifier trained with the DE_ENP_CSP feature is signifi-
cantly higher than that of the DE, CSP, or ENP feature
training alone.

Table 2 shows the average classification accuracy of all
healthy subjects. These experiments employed 4 different
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TaBLE 1: Classification accuracy using different features.
Subject Feature Delta (1-3Hz) Theta (4-7Hz) Alpha (8-13Hz) Beta (14-30Hz) Gamma (31-48Hz) All bands
DE 95 92.5 92.5 97.5 97.5 95
Hi1 ENP 65 70 95 100 95 85
CSp 85 97.5 92.5 95 95 97.5
DE_ENP_CSP 90 97.5 97.5 100 97.5 100
DE 95 95 90 75 75 90
H2 ENP 75 75 65 75 45 65
CSP 75 70 85 50 40 80
DE_ENP_CSP 95 90 85 60 65 92.5
DE 82.5 85 77.5 72.5 87.5 90
H3 ENP 60 60 64 60 65 57.5
CSP 90 92.5 95 80 72.5 77.5
DE_ENP_CSP 85 85 85 77.5 75 87.5
DE 57.5 60 80 75 67.5 85
Ha ENP 60 60 65 67.5 65 60
CSP 55 77.5 92.5 72.5 60 90
DE_ENP_CSP 62.5 85 87.5 80 62.5 92.5
DE 82.5 80 85 82.5 67.5 87.5
H5 ENP 65 62.5 67.5 65 65 65
CSP 67.5 65 77.5 72 75 75
DE_ENP_CSP 72 82.5 87.5 87.5 70 95
DE 70 65 75 65 82.5 82.5
Heé ENP 65 67.5 67.5 70 70 67.5
CSP 80 92.5 87.5 70 72 62.5
DE_ENP_CSP 75 75 75 67.5 75 77.5
DE 62.5 62.5 72.5 75 70 72.5
H7 ENP 67.5 67.5 67.5 72.5 70 67.5
CSP 57.5 65 67.5 73.5 70 67.5
DE_ENP_CSP 67.5 65 70 77.5 72.5 75
DE 62.5 75 80 57.5 67.5 72.5
HS ENP 60 60 67.5 67.5 65 60
CSP 55 73.5 80 75 77.5 82.5
DE_ENP_CSP 65 70 80 70.75 70 80
DE 67.5 77.5 67.5 47.5 52.5 72.5
H9 ENP 62 65 65 65 67.5 62.5
CSP 67.5 40 60 67.5 70 70
DE_ENP_CSP 65 62.5 67.5 57.5 62.5 75
DE 60 70 70 67.5 65 75
H10 ENP 60 60 62.5 60 61.75 60
CSP 70 85 82.5 77.5 75 80
DE_ENP_CSP 70 77.5 82.5 72.5 75 82.5
DE 75 70 80 82.5 47.5 77.5
H11 ENP 65 67.5 72.5 72.5 67.5 65
CSP 57.5 77.5 77.5 77.5 62.5 75
DE_ENP_CSP 72.5 72.5 80 85 67.5 80
DE 97.5 92.5 92.5 77.5 80 92.5
H12 ENP 75 75 80 80 75 75
CSP 67.5 80 80 50 67.5 87.5
DE_ENP_CSP 87.5 95 90 77.5 75 95
DE 60 60 75 57.5 52.5 72.5
H13 ENP 70 70 67.5 65 67.5 70
CSP 70 65 72.5 60 50 70
DE_ENP_CSP 60 72.5 77.5 65 70 77.5
DE 60 67.5 77.5 62.5 60 77.5
Hi4 ENP 60 60 57.5 57.5 55 60
CSp 57.5 75 67.5 60 42.5 75
DE_ENP_CSP 57.5 72.5 77.5 57.5 55 82.5
DE 60 70 70 67.5 65 75
Hi5 ENP 60 60 62.5 60 61.75 60
CSP 70 85 82.5 77.5 75 80
DE_ENP_CSP 70 77.5 82.5 72.5 75 82.5
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TaBLE 2: The average classification accuracy of different features.

Feature Delta (0.5-3.5Hz)  Theta (4-7Hz)  Alpha (8-13Hz)  Beta (14-30Hz) = Gamma (31-48 Hz) All bands

DE 72.50 + 14.45 74.83 +11.89 79.00 £ 8.01 70.83 +12.27 69.17 £ 13.68 81.17+8.18

ENP 64.63 £5.27 65.33 £5.50 68.43 £8.89 69.17 £10.59 66.40 £10.56 65.33+£7.19

CSP 68.33 +10.84 76.07 +14.37 80.00 + 10.04 70.53+11.78 66.97 £ 14.26 78.00 £ 9.07

DE_ENP_CSP 72.97 £11.43 78.83 £10.34 81.67+7.72 73.83+11.73 71.17 £9.40 85.00£8.13

feature extraction methods. The results showed that the DE
feature had a better classification effect in the alpha band.
The accuracy of the ENP feature in the beta band was higher
than that of the other bands. The effect of the CSP feature in
the alpha band was better than that of the other bands, while
the accuracy of the DE_ENP_CSP feature in the theta, alpha,
and beta bands was better. In addition, for the features based
on DE and DE_ENP_CSP, the classification performance of
connecting all five-word bands is significantly better than the
classification performance of any single frequency band.

Table 3 shows the performance comparison of the single-
feature method and the feature-fusion method in each
frequency band. The f test was used for analysis to determine
whether there was a significant difference between the ac-
curacy of feature fusion and the accuracy of a single feature.
In all bands, the classification accuracy of the feature fusion
method ED_ENP_CSP significantly outperforms the clas-
sification accuracy of the single feature method DE, CSP, or
ENP, which proves that the performance of the fusion
method is better than that of a single feature.

It is difficult to compare the accuracy of obtaining in-
dividual emotional states with state-of-the-art because the
classes of target emotions identified and the methods used
vary between studies. Table 4 lists the classes of emotion,
features, frequency bands, and the corresponding accuracies
in the previous studies, which aims to compare the per-
formance of different features in emotion recognition and to
explore the frequency bands with more significant activa-
tions under different emotional states.

In addition to identifying the classification of emotions,
it is also important to understand the brain activation
patterns of emotions. We observed the activation state of the
brain through a topographic map of the brain. As shown in
Figure 3, the classification weight of each electrode was the
mean of the weights of all frequency bands. The weight value
was determined from the SVM training model. We found
that fear emotions were mainly processed in the right
hemisphere, showing an asymmetrical phenomenon [27].

To illustrate the neural pattern of fear emotions, we drew
a topographic map based on 5 frequency bands. Figure 4
shows the DE distribution of all subjects, that is, the
characteristics of all healthy subjects and the average of all
trials. However, the distribution patterns of neural activity
activation in different frequency bands between a fearful
emotional state and normal emotional state have high
similarities. In response to fear emotions, we found that the
temporal lobes on both sides were more active in the delta,
theta, and alpha bands, and for the gamma band, they were
more active in the occipital region. In response to neutral
emotions, the right prefrontal region was more active in the
five frequency bands.

In addition, we further analyzed the connection mode
between different electrodes in different frequency bands. To
determine the different connectivity indexes between all 30
electrodes, we used repeated measures analysis of variance
(ANOVA) to test whether there were significant differences
in the EEG channel connection strength between fear and
neutral emotion in different frequency bands. Figure 5
depicts the associations with significant differences be-
tween the fear and neutral emotional states of all subjects.
These associations were revealed by a one-way analysis of
variance in different frequency bands. In Figure 5, the results
show that in the delta and theta bands, there are significantly
different connections in the parietal region, while in alpha,
there are significantly different connections in the frontal
region. In the beta zone, connections with significant dif-
ferences mainly existed between the nodes in the left tem-
poral lobe, parietal lobe, and occipital lobe. In the gamma
zone, it is concentrated between the nodes of the left
temporal lobe, parietal lobe, and occipital lobe. There was
also little connection between the frontal lobe and the right
temporal lobe. Significant differences between the two
emotional states mainly appear in the alpha, beta, and
gamma bands. These significant differences may further
indicate that the features of the alpha, beta and gamma bands
have higher classification accuracy.

The CSP spatial filtering method is used to analyze the
EEG signals in the spatial domain. We constructed spatial
feature vectors of EEG signals under fear and neutral
emotions. After CSP spatial filtering, all the EEG data of each
participant were visualized, and the EEG signal was drawn
with a whole head topographic map, as shown in Figure 6.
For the delta band CSP spatial filter, the value of the right
frontal lobe region is higher than other frequency bands,
while the theta band is significantly different from other
frequency bands in the temporal lobe region, and the alpha
band has a higher value in the parietal lobe region. The beta
band has higher values in the prefrontal lobe and posterior
parietal lobe, and the gamma band has higher values in the
left frontal region than other frequency bands.

4. Discussion

In this study, an EEG-based BCI system for emotion rec-
ognition was developed to identify the fear and neutral
emotional states of subjects when watching videos. Com-
pared with single-modal features, multimodal features can
provide more separable information, which may improve
the recognition accuracy [28, 29]. Zheng [12] compared the
efficiency of different features in emotion recognition and
found that the DE feature achieved the highest classification
results. Masood and Farooq [10] proved that CSP features
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TaBLE 3: The performance of feature fusion and single-feature extraction.

-48 Hz) All bands

Feature Delta (0.5-3.5Hz) Theta (4-7Hz) Alpha (8-13Hz) Beta (14-30Hz) Gamma (31
DE/DE_ENP_CSP 0.77 0.12 0.07 0.09 0.09

p value ENP/DE_ENP_CSP <0.01 <0.01 <0.01 0.09 0.01
CSP/DE_ENP_CSP 0.06 0.41 0.36 0.19 0.09

<0.01
<0.01
<0.01

TaBLE 4: List of studies using EEG signals to perform emotion recognition.

Studies Features Accuracies Classes of emotion Relevant frequency bands
Fear Alpha
DE 79.00 £ 8.01 Neutral Alpha
Our study CSp 80.00 + 10.04 Fear/neutral Alpha
ENP 69.17 +10.59 Fear/neutral Beta/gamma
DE_ENP_CSP 81.67+7.72 Fear/neutral Alpha
Positive Theta
Huang et al. [21] DE 87.00 +7.30 Negative Theta
Pan et al. [22] CSp 62.92 Happiness/sadness Gamma
Happiness Beta/gamma
Disgust Gamma
Li et al. [23] DE 62.37 +10.27 Fear Alpha
Sad Alpha
Neutral Alpha
. Positive Beta
Li et al. [24] DE 4510+8.13 Negative Alpha
Angry Theta
Jiang et al. [25] DE 84.76 +14.62 Surprise Beta/gamma
Neutral Theta/alpha
Positive/neutral Beta
PSD 60.00£0.07 Negative/neutral Beta/gamma
DE 65.00 4 0.09 P0s1t1.ve/ neutral Beta
Li et al. [26] Negative/neutral Beta/gamma
’ ENP 65.00 4 0.09 Positive/neutral Beta/gamma
R Negative/neutral Beta/gamma
PSD_ENP 68.00+0.07 Positive/neutral/negative Beta
DE_ENP 67.00£0.08 Positive/neutral/negative Gamma

29

-29

FiGure 3: Topographical map of the classification weight.
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Gamma

FiGuRre 4: Topographical maps of the average DE features of all subjects in the five bands (delta, theta, alpha, beta, and gamma) with fear or
neutral emotional states. Note that the top 5 topographic maps are the scalp DE distributions in different frequency bands during the fearful
emotional state, and the bottom 5 topographic maps are the scalp DE distributions in different frequency bands during the neutral emotional

state.

also contain information to distinguish different emotional
states. Therefore, in this study, we extracted the single-modal
features of DE, CSP, and ENP and further constructed the
multimodal features of DE_ENP_CSP. As shown in Table 1,
the fusion features of all bands achieved the highest clas-
sification accuracies in almost all subjects. This result also
shows that the combination of EEG-based activation pat-
terns, spatial patterns, and brain functional connection
patterns can improve recognition performance.

Table 2 shows the average recognition accuracies of all 15
healthy subjects in each feature and different frequency
bands. The fusion (multimodal) feature of DE_ENP_CSP in
all bands achieves the best classification results of
85.00% + 8.13%. The results in Table 3 show that fear
emotion is related to multiband features, and the fusion
method performs significantly better than the single feature
method (p value<0.01). The results in Table 4 show that
generally higher frequency bands have better activation
emotion results. Meanwhile, from the above comparison
with other EEG-based studies, we can infer that our pro-
posed feature extraction method has acceptable classification
performance. At the same time, when comparing our results
with other EEG-based emotion recognition systems, we
found that the same feature method differs in emotion
recognition, and different studies have different accuracy
ranges. Since we study feature fusion methods based on
three different modes, we cannot make precise comparisons
with other studies, but it can be found that our fusion feature
achieves an average accuracy of approximately 80% in the
frequency band, with the most significant activation results,
which shows that our fusion method can produce good
results.

The high performance of our emotion recognition sys-
tem may be attributed to the following points. First, since the
appropriate stimulus materials play a critical role in in-
ducing emotions, the carefully selected and edited horror
movie clips used in this study can more fully simulate
participants’ fear emotion. Second, the subjects were asked
to pay more attention to the task of emotion recognition
during the experiment. Finally, we included a period of rest

after the end of each video, during which subjects could
adopt suitable strategies to adjust their emotions and prepare
for the next trial.

Our study also verified proper emotional patterns. As
shown in Figure 3, fear emotion was mainly processed in the
right hemisphere, which is consistent with the results of
previous studies [29, 30]. As presented in Table 2, for the
brain activation pattern, the DE feature of the alpha band
achieves the highest recognition accuracy rates in all fre-
quency bands. Previous studies have found that subjects
have more alpha and beta activations while they are expe-
riencing fear [31]. Regarding the characteristic pattern of
brain function connection, when subjects watched tense and
panic-inducing movie clips [32], the accuracy of fear
emotion recognition in the alpha band was better than that
in other bands, which is consistent with the research results
of [33]. For the spatial pattern, the recognition accuracy in
the alpha band is better than that in the other bands. No-
tably, when a person experiences fear, his or her muscles will
tremble, and electromyography activity is mainly distributed
in the high-frequency band [34]. However, through the
above analysis, we found that our high recognition accuracy
is not caused by myoelectric activity. In conclusion, our
emotion recognition BCI system could arouse and identify
subjects’ fear and neutral emotions well, and that fear
emotion has a better classification effect in the alpha band.

The classification results show that the connectivity
index of each frequency band contains distinguishable in-
formation on fear and neutral emotions. Related research
[32] found that the alpha frequency band is associated with
emotions, but some studies also found that the frequency
band activities of theta [33], beta [34], and gamma [35] are
also affected by emotional states. Our results show that
functional connections based on EEG signals have a certain
correlation with fear emotions in each frequency band. That
is, the connection between fear and EEG patterns is not
limited to a certain frequency band but has good recognition
in all frequency bands. Some related studies also extracted
features from all frequency bands to identify the emotional
state of the user [36], but these studies did not compare it
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FiGure 5: The paired differential networks between fear and neutral emotional states in different frequency bands. Note that the blue line
indicates that the synchronization state between the electrodes is significant.
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FIGUure 6: Topographic maps of emotions in CSP spatial filtering in different frequency bands.

with the classification performance of extracting features
from a single frequency band. The results of Tables 1 and 2
show that features extracted from multiple bands tend to
obtain better classification results than single band features.
The study by Nie et al. [37] also reached similar results.
Moreover, our feature extraction method of fusing three
patterns also obtained the best classification effect when
connecting five frequency bands. Therefore, for the recog-
nition of fear emotion, it may be better to extract the features
from multiple frequency bands rather than just a single
frequency band.

As shown in Figure 4, there are certain differences in the
activation patterns between fear emotion and neutral
emotional states. In general, the degree of activation of fear
emotion is higher in the low-frequency band but lower in the
high-frequency band than neutral emotion. The activation
areas of fear emotion in the delta, theta, and alpha bands are
mainly the temporal lobe, parietal lobe, and occipital lobe,
while activation areas in the beta and gamma bands are only
the parietal and occipital lobes. The neutral emotion had
obvious right prefrontal activation in all five frequency
bands. The results imply that the activation patterns of
different emotional states are different, and there are also
certain differences in the activation patterns of the same
emotion in different frequency bands.

Brain functional connections represent information
transmission among different brain areas. From Figure 5, we
can conclude that the connections with significant differ-
ences were mainly concentrated in the alpha, beta, and
gamma bands. A previous study [38] also showed that
negative emotions have a better processing effect in high-
frequency bands. In addition, the significantly different
connections in the high-frequency range were mainly
concentrated in the left temporal lobe, parietal lobe, and
occipital lobe. In the low-frequency range, the connection
between the parietal lobe and the occipital lobe is stronger.

This also shows that in different emotional states, there may
be information transmission between different areas of the
brain.

It can be seen from the topographic map of the CSP
mode in Figure 6 that the spatial distribution of the energy
distribution of the fear emotion in different frequency bands
is different. The CSP pattern of the delta band is more
pronounced on the right unilateral frontal lobe. In the theta
band, after processing by the CSP filtering method, the
emotional energy is concentrated in the left temporal lobe
and posterior occipital lobe. For the alpha band, the emo-
tional energy values are distributed in the frontal lobe,
parietal lobe, and occipital lobe. In the beta band, when the
CSP spatial filtering method is used, the energy value of
emotion is mainly concentrated in the prefrontal lobe. In the
gamma band, the energy value of emotion is mainly dis-
tributed in the left frontal lobe.

In our daily lives, the emotion of fear is often difficult to
judge. We cannot accurately determine whether some of our
physiological reactions are caused by fear or other factors.
Furthermore, it is difficult to consciously regulate one’s
emotional state [37]. The ability to self-regulate and calmin a
state of fear is conducive to people’s physical and mental
health. Therefore, the establishment of a BCI detection
system for fear emotion can help people better analyze and
adjust their emotions.

Although the system has high recognition accuracy in
detecting the fear emotions of healthy subjects, it still has
certain limitations. First, we only verified our system in a
small number of subjects, and their emotions were induced
through video. More participants should be recruited, and
more emotional stimulus methods should be devised. Sec-
ond, when extracting features for classification, we only
analyzed the classification effects of DE, CSP, ENP, and
DE_ENP_CSP and did not analyze the classification per-
formance of other extracted features. Finally, we only used
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the classification method of SVM, and other classifiers and
deep learning methods should be considered. Considering
these limitations, we will work to improve our emotional
BCI system in the future and develop it into an emotional
regulation BCI system.

5. Conclusions

In this study, we proposed a method for identifying fear
emotions based on EEG data and verified it by using fear
videos to induce fear emotions in 15 healthy subjects. The
good recognition effect proves the effectiveness of our
recognition method. We propose to integrate the functional
connection pattern characteristics of the brain network, the
activation signs based on EEG signals, and the spatial pattern
characteristics to identify fear emotions. We can conclude
that the use of EEG signals to establish functional con-
nections between brain regions may be an important way to
improve the performance of BCI, reflecting brain emotions
in the future.
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