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ABSTRACT

PINTA (available at http://www.esat.kuleuven.be/
pinta/; this web site is free and open to all users
and there is no login requirement) is a web
resource for the prioritization of candidate genes
based on the differential expression of their neigh-
borhood in a genome-wide protein–protein inter-
action network. Our strategy is meant for
biological and medical researchers aiming at iden-
tifying novel disease genes using disease specific
expression data. PINTA supports both candidate
gene prioritization (starting from a user defined set
of candidate genes) as well as genome-wide gene
prioritization and is available for five species
(human, mouse, rat, worm and yeast). As input
data, PINTA only requires disease specific expres-
sion data, whereas various platforms (e.g.
Affymetrix) are supported. As a result, PINTA
computes a gene ranking and presents the results
as a table that can easily be browsed and down-
loaded by the user.

BACKGROUND

A major challenge in human genetics is to identify novel
disease genes to understand the mechanisms underlying
genetic conditions and, in the long term, elaborate novel
treatments for these disorders. Genetic studies, such as
association studies and linkage analyses, identify chromo-
somal regions involved in a disease or phenotype of
interest, but often result in large lists of candidate genes
of which only one or a few are really associated to the
disease or phenotype under study. Identifying, among
such a list, the most promising candidate genes for a
disease of interest has been defined as the gene

prioritization problem. Candidate gene prioritization is
key in genetics because it is generally too expensive and
time-consuming to experimentally validate all candidate
genes. Because of the huge amount of genomic data that
is publicly available, computational approaches have been
developed to avoid performing candidate gene prioritiza-
tion manually.

In the past couple of years, several gene prioritization
methods have been proposed by the bioinformatics com-
munity to address this problem. For a detailed review of
web based gene prioritization tools and their information
sources, the reader is referred to our recent review (1) and
its associated web site (http://www.esat.kuleuven.be/gpp).
Most of the available gene prioritization tools combine
different data and information sources, among which the
most commonly used data sources are literature, function-
al annotations, interactions, expression data and sequence
information (2,3). Among these tools, ToppGene (4),
SNPs3D (5), GeneDistiller (6) and Posmed (7) additional-
ly include model organism data (mainly mouse data).
Other tools, such as GeneWanderer (8), Prioritizer (9)
and PhenoPred (10) make use exclusively of genome-wide
protein–protein interaction networks. Prioritizer inte-
grates several networks obtained from different databases
(including expression data) and uses this huge network to
investigate diseases for which several loci are known.
Candidate genes from one locus that are connected to
candidate genes in another locus are considered promising
candidate genes. GeneWanderer uses a global network
distance measure to define similarity in protein–protein
interaction networks. PhenoPred is based on a human
protein–protein interaction network and uses a supervised
algorithm for detecting gene-disease associations, known
gene-disease associations, protein sequence and protein
functional information.

However, most of these tools are using a guilt-
by-association concept (candidate genes that are similar
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to the already confirmed disease genes are considered
promising) and are therefore not applicable when little is
known about the phenotype or when no confirmed disease
genes are available beforehand. One common strategy to
circumvent that problem is to rely on keywords to define
the genetic condition under study. However, most of the
existing tools that accept keywords also rely solely on
text-mining of the literature and are therefore less
suitable for novel discoveries (11–16). In a recent
study (17,18), we have proposed a method that over-
comes this limitation by representing prior knowledge
about the biological process by experimental data on
differential gene expression between affected and
healthy individuals.

At the core of the method are a protein–protein inter-
action or association network and a disease specific ex-
pression data set. The method propagates the expression
data over the network using an extended random walk
approach. Candidate genes are then ranked based on the
differential expression level (e.g. fold changes from a case–
control study) of their neighborhood. Our method relies
on the assumption that strong candidate genes tend to be
surrounded by many differentially expressed genes in a
genome-wide protein–protein interaction network. This
allows the detection of a strong signal for a candidate
even if its own differential expression value is too small
to be detected by a standard analysis, as long as its inter-
acting partners are highly differentially expressed. Our
benchmark on 40 publicly available knockout experiments
in mice showed that it outperforms a standard procedure
in genetics that ranks candidate genes based solely on their
own expression levels (18).

In this article, we describe a novel web server called
PINTA (http://www.esat.kuleuven.be/pinta/) that imple-
ments the method we have developed previously (17,18).
PINTA is a free, user-friendly and easy accessible web
tool, which performs candidate gene prioritization (i.e.
starting from a predefined set of candidate genes) as well
as genome-wide gene prioritization using the method
described above. To our knowledge, PINTA is the first
web based tool that can prioritize candidate genes for
diseases with only limited information about the pheno-
type or no confirmed disease genes by replacing this know-
ledge by expression data to model the disease under study.
To be of use to a large range of biologists and geneticists,
we have made PINTA available for multiple species
besides human (mouse, rat, worm and yeast) that repre-
sent some of the most common model organisms for
human. In addition to the approaches described in
(17,18), PINTA can also propagate the expression over
the network based on other extended random walk
approaches [HITS with priors and k-step Markov (19)].
PINTA also supports the use of probe set names from
various Affymetrix platforms.

PINTA WORKFLOW

A four-step wizard guides the user through the gene pri-
oritization procedure of PINTA (Figure 1). In the first
step, the user selects the organism of interest among

human, mouse, rat, worm or yeast. In the second step,
the user defines whether PINTA needs to compute a
genome-wide ranking or to rank a set of candidate
genes. In the latter case, the user can choose to provide
candidate genes using either official gene symbols or
Ensembl identifiers. In the third step, the user can option-
ally choose whether he wants PINTA to perform a com-
parison analysis between its own ranking and the ranking
obtained by simply ordering the differential expression
values. The fourth step consists in uploading disease
specific expression data, where probe set names of
various Affymetrix platforms are also supported (see
below). PINTA uses by default the best performing
settings that were determined in our benchmark (18),
which is convenient for non-expert users. Advanced
users can fine tune the parameters to fit their needs and
make the best of their data. Users can choose between five
different prioritization algorithms [Heat Kernel Ranking
(18), Arnoldi Diffusion Ranking (18), Random Walk on a
graph (20), HITS with priors (19) or k-step Markov (19),
for more details see below] and two different networks
[STRING version 8.2 (21) and I2D version 1.8 (22)]. By
default, the Heat Kernel Ranking and the STRING
network are used.

RANKING WITH DIFFERENTIAL EXPRESSION
DATA

As input data, PINTA only requires disease-specific ex-
pression data in the form of a text file in which each
gene is assessed by a differential expression value. The
user has to upload a tab delimited text file containing
the expression data in the form of two columns: the first
column contains the gene identifiers (Affymetrix probe
identifiers, gene symbols or Ensembl identifiers) and the
second column contains the gene’s differential expression
signal.
PINTA supports some of the most common Affymetrix

chips to accommodate the user with an easier handling of
the data and to avoid the need for manual mapping of
probe id to gene: HG 1.0 ST, HEx 1.0 ST, HGU 133
Plus2, MouseGenome 430 2.0, MouseGene 1.0 ST,
MouseExon 1.0 ST, RatExpressionArray 230 2.0,
RatGene 1.0 ST, RatExon 1.0 ST, Caenorhabditis
elegans Genome Array and Yeast 2.0 Array. If the user
is not using one of these Affymetrix chips, he can still
upload the expression data using Ensembl identifiers or
gene symbols according to the drop down menu of
PINTA.
PINTA requires one differential expression value per

gene and is neither performing any kind of preprocessing
nor normalization of the data; this step lies in the respon-
sibility of the user. If the microarray experiment consists
of several experiments or chips, the user has to provide
one characteristic expression value for each gene/probe
(e.g. the average expression value across all chips). The
text file can be created in Microsoft

�
Excel and then con-

verted into a tab delimited text file, or it can be directly
created as a text file as an output of any preprocessing or
normalization tool. Since the text file may contain headers
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(e.g. internal describable notes), the user can specify how
many rows of the file belong to the header and PINTA will
ignore these rows in its internal computation. If the user is
unsure how to choose the correct format for the text file,
he can go back to the exemplary text file provided online
by PINTA.
PINTA provides five different prioritization algorithms

from which the user can choose in the advanced setting by
activating the corresponding radio button. Performing a
random walk on a network consists in taking successive
random steps (20). In the Heat Kernel Ranking (18)
(default algorithm in PINTA), the input signal given by
the expression level of a candidate is adjusted according to
a global network measure taking direct and indirect asso-
ciation into account, whereas the Arnoldi Diffusion
Ranking performs network diffusion by applying the
Arnoldi algorithm (18,23). The HITS with priors algo-
rithm (19) is a random walk on the network based on
mutual reinforcement relation between authorities and
hubs using prior knowledge about the importance of
nodes and the k-step Markov algorithm (19) is a

random walk on the network defined by the probability
transition of the graph.

PRIORITIZATION RESULTS AND DATA
VISUALIZATION

PINTA computes a ranking of the candidate genes and
presents the results in a table containing the gene ranks,
internal scores, P-values and Bonferroni–Holm P-values
(multiple testing correction). The P-values are calculated
by random permutation on the expression data (random
reassignment of the expression values to network nodes
and computation of the corresponding randomized scores
for all candidate genes). The user can sort this table by
P-values, scores or expression values to check the differ-
ences in the corresponding rankings. PINTA provides for
the top ranked genes (with the default settings) a graphical
view of the strongest contributing interacting genes and
their expression signal in the network. With this graphical
view, the user can assess the importance of a top-ranked
gene by investigating its neighborhood and the

Figure 1. The PINTA workflow. In the first step, the user selects the organism of interest. The second step consists in defining whether PINTA needs
to compute a genome-wide ranking or to rank a defined set of candidate genes. In the last step, a disease-specific expression data is required in the
form of a text file in which each gene is assessed by an expression value. PINTA computes a ranking of all candidate genes and presents the results in
a table containing the gene ranks, internal scores, P-values and Bonferroni–Holm P-values (multiple testing correction). For the top ranked genes,
PINTA provides (with the default settings) a graphical view of the strongest contributing interacting genes that lead to the candidate’s strong scoring
signal together with their expression signal in the network.
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neighboring genes’ expression levels. Highly influencing
neighboring genes are not necessarily genes that are
strongly connected with the candidate gene in the
network, because our method based on a random walk
approach considers both the strength of the interactions
and the differential expression levels of the interactors.
Therefore, a candidate gene might still be highly
influenced by low interacting genes with high differential
expression, leading to a high ranking score.

Furthermore, if chosen by the user, PINTA provides a
comparison analysis between its own ranking and the
ranking obtained by simply ordering the differential ex-
pression values decreasingly in a second table using differ-
ent color schemes for an easy visualization. This
comparison highlights that some highly ranked genes by
PINTA have a strongly differentially expressed neighbor-
hood, although their own differential expression level is
low leading to a low ranking position in the differential
expression ranking. These candidate genes would not be
detected by this standard analysis as our benchmark could
demonstrate (18).

All output tables and subnetworks containing the
strongest contributing genes can be downloaded by the
user for further use. The output tables are available as
tab delimited text files that can be directly opened in
Microsoft� Excel as well as in any text file reader. The
graphical views of the subnetworks are available as
pictures (.jpg).

SOFTWARE DOCUMENTATION

PINTA provides an online manual. In this manual, the
workflow of PINTA is explained step-by-step using an
exemplary expression data set. Additional pictures and
screenshots can guide the user who wants to understand
the details and to fine tune the prioritization parameters.

For testing purposes only, PINTA provides an exem-
plary expression data file that can easily be used by
checking a dedicated checkbox during the fourth step of
the wizard. By doing so, users find a quick way to examine
PINTA’s features. The data set is publicly available
(GSE10849) and represents a mouse knockout experiment
of the Cav1 gene. This data was RMA (24) preprocessed
and as differential expression measures we computed the
test statistic derived from cyberT (25). Performing a
genome-wide ranking with default setting, PINTA ranks
the knockout gene Cav1 on the first position, because this
gene causes the most disrupted neighborhood in expres-
sion within the network.

IMPLEMENTATION

The gene prioritization method used by PINTA was im-
plemented in MATLAB. To make it universally access-
ible, we have developed a PHP web-based interface that
runs with the most common web browsers, for which Java
does not have to be installed. PINTA is freely accessible
and there is no login requirement.

CONCLUSION

We have developed the freely accessible web resource
PINTA designed for the prioritization of candidate
genes based on the differential expression of their neigh-
borhood in a genome-wide protein–protein interaction
network. PINTA is dedicated to the study of genetic dis-
orders for which only little is known beforehand or when
no background knowledge is assumed. PINTA relies on
the presence of disease specific expression data, which
makes it particularly attractive to study genetic conditions
for which such expression data can easily be collected.
PINTA propagates the expression data over the network
using several random walk strategies. This allows the de-
tection of a strong signal for a candidate gene even if its
own differential expression value is small. PINTA is avail-
able for some prominent model organisms beside human
and various array platforms are supported. PINTA ranks
the candidate genes based on the assumption that strong
candidate genes tend to be surrounded by many differen-
tially expressed neighboring genes. A benchmarked on 40
mouse knockout experiments has shown that PINTA out-
performs traditional approaches.
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