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Abstract: Unmanned aerial vehicles (UAVs) can be deployed as backup aerial base stations due to
cellular outage either during or post natural disaster. In this paper, an approach involving multi-
UAV three-dimensional (3D) deployment with power-efficient planning was proposed with the
objective of minimizing the number of UAVs used to provide wireless coverage to all outdoor and
indoor users that minimizes the required UAV transmit power and satisfies users’ required data rate.
More specifically, the proposed algorithm iteratively invoked a clustering algorithm and an efficient
UAV 3D placement algorithm, which aimed for maximum wireless coverage using the minimum
number of UAVs while minimizing the required UAV transmit power. Two scenarios where users are
uniformly and non-uniformly distributed were considered. The proposed algorithm that employed a
Particle Swarm Optimization (PSO)-based clustering algorithm resulted in a lower number of UAVs
needed to serve all users compared with that when a K-means clustering algorithm was employed.
Furthermore, the proposed algorithm that iteratively invoked a PSO-based clustering algorithm and
PSO-based efficient UAV 3D placement algorithms reduced the execution time by a factor of ≈1/17
and ≈1/79, respectively, compared to that when the Genetic Algorithm (GA)-based and Artificial
Bees Colony (ABC)-based efficient UAV 3D placement algorithms were employed. For the uniform
distribution scenario, it was observed that the proposed algorithm required six UAVs to ensure 100%
user coverage, whilst the benchmarker algorithm that utilized Circle Packing Theory (CPT) required
five UAVs but at the expense of 67% of coverage density.

Keywords: unmanned aerial vehicles (UAVs); efficient 3D placement; K-means; Artificial Bees Colony
(ABC); Particle Swarm Optimization (PSO); Genetic Algorithm (GA)

1. Introduction

Unmanned aerial vehicles (UAVs) have become a promising solution in supporting
public safety, search and rescue operations and disaster management. In the case of natural
disasters such as earthquakes, floods or tsunamis, there are chances that the communica-
tion systems’ infrastructures become partially or completely disrupted. Therefore, rapid
solutions are necessary to provide wireless coverage in support of rescue operations [1,2].

Generally, the main uses of UAVs as wireless aerial base stations can be classified into
different categories based on their roles in different application scenarios [1,3,4]: (i) UAV-
aided wireless communication due to cellular outage, where a UAV is used as a backup
base station that operates at a much higher altitude to provide ubiquitous coverage when
the ground base station completely goes out of service during disastrous situations [5–8].
(ii) UAV-aided wireless communication during cellular network congestion, where a UAV
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is used to supplement the existing ground base stations during a massively crowded special
event when the cellular network is overloaded [9,10]. (iii) UAV-aided relay communication,
where UAVs are used as relay nodes in providing wireless connectivity between two or
more distant wireless points when there is no direct communication links or line-of-sight
(LoS) due to an obstruction such as hill [11]. (iv) UAV-aided data collection, where UAVs
are used to collect data from ground Internet of Things (IoT) devices [12].

In this paper, the deployment of multiple UAVs as backup base stations during natural
disasters is considered. More specifically, we consider a multi-UAV-aided system to estab-
lish an emergency network that aims to maximize the wireless coverage using the minimum
number of UAVs. Here, it is considered that each UAV serves both outdoor and indoor
users that are either uniformly or non-uniformly distributed inside the coverage area.

2. Related Works

Recently, there has been an extensive amount of research related to the deployment
of UAVs as aerial base stations. The optimal location of UAVs is one of the main issues
that must be addressed in the case of UAV-aided wireless communication due to cellular
outage or during cellular network congestion. The problem of finding the optimal location
of a UAV is formulated with various objective functions such as to maximize wireless
coverage or network throughput, to maximize user coverage probability and to minimize
power consumption.

The authors in [7,8,10,13–16] studied the case of the deployment of a single UAV as
an aerial base station to serve outdoor users with different objective functions. However,
these studies utilized the path loss model in [17], where a statistical propagation model
was proposed to predict the Air-To-Ground (ATG) pathloss between UAVs in low-altitude
platforms (LAPs) and ground nodes. The authors in [8] studied the problem of finding
the optimal altitude of a single UAV that aimed to provide maximum wireless coverage
with minimum UAV transmit power. The authors also studied the case of two UAVs
that provided maximum coverage in the presence and absence of interference. The study
in [13] proposed a model to find an efficient UAV 3D position that aimed to maximize the
network throughput. In [14], the authors proposed an optimal 3D placement algorithm for
the deployment of a single UAV base station that aimed to maximize the total number of
covered users by imposing the minimum required UAV transmit power constraint. The
authors in [16] studied an on-demand UAV placement problem for arbitrarily distributed
users. The problem was formulated with the objective of maximizing the covered users for
different user densities with guaranteed data rates.

On the other hand, the authors in [7] proposed a model to find an efficient 3D place-
ment of a single UAV that served indoor users by utilizing the outdoor to indoor pathloss
model of [18] certified by the International Telecommunication Union (ITU). The objective
was to minimize the total required UAV transmit power such that all indoor users were
covered. Furthermore, the authors in [10] studied the problem of finding the optimal
altitude of a single UAV that served outdoor and indoor users simultaneously and aimed
to minimize the total required UAV transmit power and maximize the coverage area.

The work presented so far is related to the deployment of a single UAV that serves
outdoor and/or indoor users within small coverage areas. Thus, in the case of users within
a large coverage area, the deployment of multiple UAVs is required.

The studies in [19–21] considered the cellular networking scenario where UAVs were
deployed to support the connectivity of existing terrestrial wireless networks. The study
in [19] proposed an approach to deploy multi-UAVs coexisting with a ground base station to
provide wireless coverage for users in a crowded region. In this work, the efficient number
and the 3D placement of UAVs were found in such that the traffic demands were satisfied,
with arbitrary user distribution, and the system sum-rate was maximized. In addition, this
work considered the problem of co-channel interference. In [20], the authors proposed a
coordination and cooperation model where a UAV was used to assist the terrestrial cellular
network. Specifically, the authors developed a cooperative UAV clustering approach to
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offload ground mobile terminals from ground cellular base stations to cooperative UAV
clusters. Meanwhile, the work in [21] addressed the issue in the backhaul links between
drones and ground base stations. More specifically, the authors in [21] proposed a 3D UAV
placement and trajectory model. Bezier curves were utilized to achieve the best coverage
for clusters of ground terminals.

Another main issue to be considered in the deployment of multi-UAVs is finding
the number of UAVs to be deployed. The studies in [9,22–24] considered the deployment
of multi-UAVs equipped with a directional antenna that has a circular coverage pattern.
The authors in [25] proposed an approach using a heuristic algorithm to find the minimum
number of UAVs along with their placements to provide coverage for outdoor users.
The coverage area was divided into equal regions and the users were distributed uniformly
with different densities. In [23], the authors proposed an optimal 3D deployment strategy
of multi-UAVs that used Circle Packing Theory (CPT). In this work, the optimal 3D location
of the UAVs were determined with the aim to maximize the circular coverage area. A
similar approach was presented in [9], where the authors proposed to utilize CPT to find
the number of UAVs with the aim to maximize the coverage density while ensuring the
coverage area of each UAV did not overlap. However, the authors considered three different
shapes of wireless coverage area, namely square, rectangular and circular regions. Here,
the CPT was utilized in tandem with the 3D efficient placement algorithm.

Another interesting approach is the deployment of multi-UAVs by employing a clus-
tering algorithm [26–30]. The authors in [26] proposed an algorithm to position UAVs in
order to complement the macrocell infrastructure. The K-means clustering algorithm was
used to partition user equipments (UEs) into K subsets, and a decision was made on which
subsets were to be serviced by UAVs. The centroid of the subset was set as the 2D location
of the UAV which served the UEs within the subset to offload from the macrocells. In [27],
the authors studied a similar approach as the work in [26]; however, the positioning of
multi-UAVs and the association of the UEs were jointly optimized and aimed to maximize
the number of UEs and satisfy the UE’s experienced data rate (represented via bandwidth
allocation). Two jointly optimized algorithms based on Particle Swarm Optimization (PSO)
and the Genetic Algorithm (GA) were proposed. Both proposed algorithms improved the
UE’s satisfaction with the provided data rates when compared with the proposed algorithm
that invoked a K-means algorithm.

However, both works in [26,27] considered the 2D placement of UAVs that served the
associated UEs.

The authors in [28] studied the 3D placement of a single UAV as an aerial base station
to serve indoor users alone inside a high-rise building. The problem was formulated with
the aim to minimize the number of UAVs required to serve all indoor users. This work
considered the indoor users that were distributed uniformly with the pathloss model of [18].
The proposed solution used a K-means clustering algorithm to partition the indoor users
into an initial k cluster and then exploited PSO to find an efficient 3D position of UAV
subjected to the constraint that the total transmit power was smaller than the threshold
value. A single UAV was assigned to each cluster. The number of clusters was increased if
the total transmit power constraint was not met. This process was performed iteratively
until the total transmit power constraint was met.

In [29], the authors proposed a UAV-aided emergency rescue network where each
UAV served as a wireless base station. The problem was formulated with the objective to
minimize the number of UAVs to cover all points of interest (POIs), which were locations
with a large number of people, for example, schools, hospitals or parks. This work consid-
ered the location of POIs that were distributed uniformly and were located outdoors and
indoors, with the pathloss model of [17,18], respectively. The authors proposed a similar
solution as the work in [28], where an iterative process was performed to partition the POIs
into k clusters using a K-means clustering algorithm and finding an efficient 3D position
of the UAV. However, this work exploited a Genetic Algorithm (GA) to find the efficient
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3D position of a UAV in providing wireless coverage to POIs that were located outdoors
and indoors.

In [30], the authors proposed a multi-UAV deployment strategy for resource allocation
in a UAV-enabled mobile edge computing (MEC) network. This work aimed to minimize
the sum power consumption of UEs and UAVs that included both communication-related
power and mechanical power with latency and coverage constraints. The sum power
minimization problem was decomposed into three subproblems on user association, com-
putation capacity allocation and location planning. The proposed algorithm iteratively
invoked the algorithm to solve the three subproblems. In this work, the Fuzzy C-means
clustering algorithm was proposed to solve the joint user association and location planning
subproblems. The proposed algorithm could efficiently reduce the sum power consumption
after three iterations, indicating the reduction in the number of UAVs used.

Meanwhile, in [24], the authors studied the efficient placement of multi-UAVs in
such that the user coverage probability was maximized and inter-cell interference (ICI)
was avoided. More specifically, the authors proposed a non-overlapped circle placement
method to find the optimal UAV placement in such that the circle covered the maximum
number of users by considering the required total transmit power. In this work, the outdoor
users were randomly distributed using spatial points processes (SPPs) and were partitioned
into K clusters using a K-means algorithm; subsequently, the optimal UAV placement was
determined using the proposed algorithm in such that the user coverage probability was
maximized while the total transmit power was minimized. The user coverage probability
and the power efficiency were further improved using the proposed iterative algorithms.

However, the clustering algorithm used in [24,26,28,29] exploited a K-means algorithm
to partition users into K clusters.

A K-means algorithm is relatively a simple algorithm and is easy to implement, which
makes it the most popular algorithm that is used in several fields. However, a K-means
algorithm is very sensitive to the initial cluster centers. More specifically, in K-means
algorithms, the initial cluster centers are chosen randomly; this may cause three possible
problems: (i) The final clustering results are not unique. For different runs of the same input
data, the algorithm produces different clusters [31]. (ii) The initial cluster center has an
influence on the number of iterations. The number of iterations required for the algorithm
to converge is high if the chosen initial cluster center is located far away from the final
cluster center [31]. (iii) The algorithm may converge in local minimum instead of global
minimum, which results in a sub-optimal solution [32,33]. Furthermore, the K-means
algorithm is sensitive to outliers and noisy data. The outliers have an influence on the
clustering of data points that results in some data points being clustered incorrectly [32,33].
Moreover, the algorithm produces clusters that are not symmetric, where the clusters have
unequal sizes and densities (unequal numbers of data points in each cluster) [34].

Various methods have been proposed in the literature to mitigate the drawbacks of
K-means algorithms. The authors in [35,36] proposed a GA-based clustering algorithm as a
solution to the problem that a K-means algorithm may get stuck at sub-optimal solutions
due to a poor randomly chosen initial cluster center. Meanwhile, the application of PSO
in data clustering was discussed in [32]. It has been demonstrated that both GA and PSO
algorithms overcome the problem associated with the K-means algorithm that tends to trap
in local optima [32,35,36].

Meanwhile, the work in [28,29] considered the location of users/POIs that were
distributed uniformly. In [26], three set of UEs were distributed with three different
distributions, namely Poisson, random and uniform distribution, whilst in [24], the authors
considered the users to be distributed using SPP.

With regard to the energy efficiency approach, the authors in [37] proposed an iterative
algorithm to solve the energy efficiency problem with the objective to maximize the ratio
of the ergodic total data size to the total energy consumption that included both transmit
power and propulsion power to hover. The problem was decomposed into two subprob-
lems on finding optimal coordinated power allocation and finding optimal hovering time
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scheduling. The proposed iterative algorithm resulted in higher energy efficiency as the
number of UAVs increased, due to higher diversity gain and flexibility in the coordina-
tion of aerial small cells. This observation was obtained because more UAVs resulted in
less hovering time for a fixed total transmit energy. Thus, the transmit power for each
UAV was higher; hence, the total data size increased. In [38], it was stated that the en-
ergy consumption of a UAV refers to the conventional communications-related energy
consumption and propulsion energy consumption. However, this work focuses on the
communications-related energy consumption alone.

In this paper, we propose a power-efficient algorithm that maximizes the coverage
area using the minimum number of UAVs that aims to minimize the required UAV transmit
power while satisfying the required users’ data rate. The proposed algorithm considers the
deployment of multi-UAVs that serve outdoor and indoor users by iteratively invoking a
clustering algorithm and an efficient 3D UAV placement algorithm.

More specifically, we study the proposed algorithm that invokes three variants of
clustering algorithms that are developed based on a K-means algorithm, PSO and GA
for partitioning both outdoor and indoor users into k clusters. Here, we define user
partitioning as dividing coverage area into k small subareas. In this study, we consider two
scenarios where users are distributed uniformly and non-uniformly using beta function.
Subsequently, the proposed algorithm invokes three variants of efficient 3D UAV placement
algorithms that are developed based on PSO, GA and Artificial Bees Colony (ABC).

Paper Contribution

The contributions of this paper are summarized as follows:

• K-means and meta-heuristic clustering algorithms, based on PSO and GA, respectively,
are utilized for partitioning outdoor and indoor users into clusters which correspond
with partitioning the disaster-affected area with the condition that the UAV transmit
power for each cluster is minimized. The employment of the meta-heuristic algorithm
is superior in comparison with the K-means based clustering algorithm in terms of
the cluster quality, where the resulting clusters are symmetrical.

• The efficient UAV 3D placement algorithm based on the ABC algorithm is proposed,
with the aim to minimize the required UAV transmit power while satisfying the data
rate requirement. The employment of each of the three variants of the efficient UAV
3D placement algorithm, namely PSO-based, GA-based and ABC-based algorithms,
are evaluated in terms of the computational complexity which is manifested in terms
of its execution time taken.

• A power-efficient algorithm is proposed that iteratively invokes a clustering algo-
rithm and an efficient UAV 3D placement algorithm that aims to minimize the num-
ber of UAVs to serve outdoor and indoor users simultaneously, while minimizing
each UAV transmit power. The proposed algorithm attained 100% coverage density,
which corresponds with providing wireless coverage to all users that are uniformly
and non-uniformly distributed using the minimum number of UAVs. Furthermore,
the proposed algorithm that invokes a PSO-based clustering algorithm resulted in a
lower number of required UAVs that served all outdoor and indoor users compared
to that when the K-means clustering algorithm was employed.

Section 3 introduces the system model. Section 4 presents the problem formulation
and the proposed algorithm to find the minimum number of UAVs that aims to maximize
wireless coverage by imposing the constraint to minimize the required UAV transmit power.
This is followed by the clustering algorithms that are invoked to partition users by the
proposed algorithm in Section 5. Then, Section 6 presents three variants of efficient UAV
3D placement algorithms based on PSO, GA and ABC algorithms. Section 7 quantifies
the comparison performance of the three clustering algorithms variants, as well as the
performance of the proposed power-efficient algorithm that iteratively invokes a clustering
algorithm and an efficient UAV 3D placement algorithm for the case when users are
distributed uniformly and non-uniformly. Finally, Section 8 concludes the paper.
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3. System Model

Consider an area where a natural disaster occurs, denoted as S. Figure 1 illustrates
the affected area, S, with minimum and maximum points of (xmin, ymin) and (xmax ,
ymax), respectively.

This work aims for an power-efficient deployment strategy of multi-UAVs that si-
multaneously serves all outdoor and indoor users within the disaster-affected area, S.
More specifically, in this work, three different clustering algorithms are invoked for use
in partitioning the users which corresponds to partitioning the coverage area, S, into n
subareas. One UAV is assigned to serve each subarea, Sn. Moreover, this work considers
two scenarios of user distribution inside the coverage area, namely uniform distribution
and non-uniform distribution using beta random distribution, denoted as function f (x, y).
In this work, the MATLAB beta random generation function betarnd (A, B, m, n) is used to
generate an m-by-n array. This array contains random numbers from the beta distribution
with parameters A and B, with A = 1, B = 1, m = 1 and n = number of users inside
coverage area. Figure 1 illustrates the distribution of outdoor and indoor users within the
disaster-affected area, S, which is represented as blue circles and red crosses, respectively.
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Figure 1. The distribution of outdoor and indoor users inside the disaster-affected area, S.

Path Loss Models

This section presents the Air-To-Ground (ATG) [17] and Outdoor-to-Indoor [18] path
loss models that are utilized when considering the deployment of UAVs to serve outdoor
and indoor users, respectively.

For the ATG channel modeling in an urban environment, both the line-of-sight (LOS)
links and the non-line-of-sight (NLOS) links between the UAV and the ground users are
considered. The propagation conditions in the probabilistic LAP model [17] have been
extensively used for coverage analysis and for finding the optimal UAV position [8,23]. The
probability of LOS and NLOS can be calculated based on the relative locations between
UAVs and ground outdoor users. The average path loss, PLout(dB), of the ATG channel
model can be formulated as:

PLout(dB) = PLOS × LLOS + PNLOS × LNLOS, (1)

where the path loss for the LOS link, LLOS, and the NLOS link, LNLOS, as well as the
probability of LOS, PLOS, and NLOS link, PNLOS, are given as [17]:
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LLOS = 20log(
4π fcd

c
) + ηLOS,

LNLOS = 20log(
4π fcd

c
) + ηNLOS,

PLOS =
1

1 + a · exp(−b[(
180
π

)θ − a])
,

PNLOS = 1− PLOS

(2)

where c is light speed, fc is the carrier frequency and ηLOS, ηNLOS are additional losses
depending on the environment. Meanwhile, a and b are constants that depend on the
environment. θ is the elevation angle between the UAV and ground user, h is the altitude
of the UAV and d is the distance between the UAV and the ground user.

Meanwhile, the Outdoor-to-Indoor path loss model of [18] is utilized when considering
wireless coverage for indoor users, which is given as:

PLin(dB) = PLPFS + PLPB + PLIN ,

PLPFS = 20log(d3D) + 20log( fc) + a1,

PLPB = a2 + a3(1− cosθ)2,

PLIN = a4 · d2Din

(3)

where PLPFS is the path loss in the free space, PLPB is the penetration loss of the building
and PLIN is the indoor path loss, d3D is the Euclidean distance between the UAV and
the indoor user i, fc is the carrier frequency, θ is the elevation angle, d2Din is the 2D
indoor distance between the UAV and indoor user i and a1, a2, a3 and a4 are environmental
constant values.

4. Problem Formulation

In this section, the deployment of multi-UAVs to provide wireless coverage for out-
door and indoor users using the minimum number of UAVs during a natural disaster is
formulated as an optimization problem.

Consider a disaster-affected area, S. Let the dimension of the area be denoted by
[0, xmax] × [0, ymax]. A set of Mout outdoor users and Min of indoor users are distributed
inside the area. The 2D user location is represented with their location vector P = (px, py).
The problem of finding the minimum number of UAVs that provide wireless coverage for
all outdoor and indoor users inside S and their efficient 3D placements can be formulated
as follows:

minimize
xu, yu, zu

K (4a)

subject to
Mk

out

∑
o=1

Pouto +
Mk

in

∑
i=1

Pini ≤ PUAVmax , (4b)

K

∑
k=1

(Mk
out + Mk

in) = (Nout + Nin), (4c)

Pj ∩ P j̄ = ∅ ∀j 6= j̄, (4d)

Bk =
B
K

, (4e)

xmin ≤ xiUAVk
≤ xmax, (4f)

ymin ≤ yiUAVk
≤ ymax, (4g)

zmin ≤ ziUAVk
≤ zmax (4h)
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where K is defined as the total number of UAVs that are deployed to serve all outdoor
and indoor users inside S and (xu, yu, zu) is the UAV 3D placement that minimizes its
transmit power.

The first constraint of Equation (4b) guarantees that the total power required to cover
all users is less than the threshold power of UAV PUAVmax , where the total required power
for outdoor and indoor users that satisfies the minimum data rate Rb can be represented
as follows:

Pouttot =
Mk

out

∑
o=1

[(2
Rb .Mk

out
B − 1)× Np × PLouto ]

Pintot =
Mk

in

∑
i=1

[(2
Rb .Mk

in
B − 1)× Np × PLini ]

(5)

The constraint of Equations (4c) and (4d) ensure that there is no overlapping between
all users that are served by kth UAV and other users that are not served by the kth UAV.
In Equation (4c), Mkth

out and Mkth
in denote the the outdoor and indoor users that are served by

kth UAV, whilst (Nout + Nin) defines the total number of users inside S. In Equation (4d), Pj

denotes the 2D location vector of each user that is served by the kth UAV, whilst P j̄ denotes
the 2D location vector of each user that is not served by the kth UAV.

In the constraint of Equation (4e), the total available bandwidth, B, is divided evenly
between UAVs, where Bk denotes the bandwidth that is allocated for each UAV. The
constraint of Equations (4f)–(4h) ensure that all UAVs are located within the range of
minimum and maximum values inside the coverage area.

In this paper, we assume that the interference is implicitly modeled as noise. In the
system model, Frequency Division Multiple Access (FDMA) is used. It is assumed that each
UAV allocates equal channel bandwidth to ground users, and in order to avoid interference,
each channel is assigned to one user.

Clearly, finding the minimum number of UAVs that serve all users inside S and their
efficient 3D placements such that the total transmit power of each UAV is minimized
makes the problem very complicated. Therefore, this optimization problem is an NP-hard
problem [39] and can be solved using meta-heuristic algorithms. Algorithm 1 shows the
pseudocode of the proposed algorithm to solve the formulated problem similar to the
approach in [28,29]. More specifically, the proposed approach to solve the formulated
problem can be performed in the following stages, as illustrated in Figure 2:

1. Initially, the number of UAVs that are used to serve all users inside the coverage area
S is set as k = 2.

2. Then, the proposed clustering algorithm is invoked to partition the users into k
clusters. The proposed three variants of clustering algorithm based on K-means
algorithm, PSO and GA are presented in Section 5.

3. The UAV 3D placement for each k cluster is determined by invoking the proposed
efficient UAV 3D placement algorithm. Section 6 presents the three variants of the
UAV efficient 3D placement algorithm.

4. The required total transmit power to provide wireless coverage to all users inside S
is determined using Equation (4b). If the UAV transmit power ≥ PUAVmax , then the
value of k is increased by 1. In other words, the number of clusters of users inside S is
increased by 1.

5. An iterative process of stage (2) to (4) is performed until the constraint of Equation (4b)
is met. In this work, we use PUAVmax = 1 watt.

The computational complexity of the proposed heuristic approach is the summation
of the complexity of the clustering algorithm and the complexity of the efficient UAV 3D
placement algorithm.
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Algorithm 1: Proposed heuristic approach.
1. STEP 1: Input: Coverage region S; p = (px, py) set of users location; k clusters.
2. STEP 2: Repeat:
3. Partitioning users inside S into k clusters using K-means, PSO and GA
algorithms. For each cluster an efficient UAV placement is found using
PSO and GA Algorithms such that:
4. Pouttot + Pintot ≤ PUAVmax , where

5. Pouttot = ∑Mout
o=1 [(2

r·Mout
B − 1)× Np × PLouto ]

6. Pintot = ∑Min
i=1 [(2

r·Min
B − 1)× NP × PLini ]

7. STEP 3: If UAV transmission power ≥ PUAVmax :
8. Increase the number of clusters by 1.
9. Go to Step 2.
10. STEP 3: else
11. Output = UAVk 3D placement
12. STEP 4: end
Output: Set of UAVs 3D placement

k = 2  cluster

Power-efficient 3D UAVk placement

Is the UAVk

transmit power < 

PUAV(max)

No

k=k+1

Partitioning users inside D into k clusters using 

clustering algorithms:

Yes

For each k: Find the required transmit power 

and efficient UAVs placement by employing 

UAV 3D placement algorithms

Yes

Figure 2. Flowchart of the proposed heuristic approach.

For the sake of benchmarking, the multi-UAV deployment approach that utilizes
CPT is used for comparison with the proposed power-efficient algorithm. The bench-
marker multi-UAV deployment is only considered for the scenario where all users are
uniformly distributed.

More specifically, the performance of the proposed power-efficient algorithm is com-
pared with the efficient 3D placement of multi-UAVs that utilizes CPT to serve users in a
square shape coverage region of [9]. The benchmarker multi-UAVs deployment approach
invokes CPT to find the optimal packing of nc non-overlapped and identical circles into
a unit square. Then, the altitude of each UAV is found using the algorithms presented in
Section 6.

The problem of packing nc identical circles inside a unit square with the objective to
maximize the radius rd of the packed circles such that the coverage density is maximized
can be formulated as [9]:
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maximize
xi, yi

rd (6a)

subject to rd ≤ xi ≤ 1− rd, ∀i ε I = (1, . . . , nc), (6b)

rd ≤ yi ≤ 1− rd, ∀i ε I = (1, . . . , nc), (6c)√
(xi − xj)2 + (yi − yj)2 ≥ 2rd, ∀ i 6= j, (6d)

(xi, yi) ε [0, 1] ∀i ∈ I = (1, . . . , nc, ) (6e)

where (xi, yi) is the center coordinates of the ith circle,
√
(xi − xj)2 + (yi − yj)2 is the Eu-

clidean distance between the centers of circles i and j and rd is the radius of each packed
circle. All packed circles are guaranteed to lie inside the square and there is no overlapping
between packed circles by imposing the constraint of Equations (6b)–(6d).

The density dn of packing nc identical and non-overlapped circles with radii rd inside
a unit square is defined as the ratio of the packed nc circles area to the square area as in the
following Equation [9]:

dn = ncr2
dπ (7)

5. Clustering Approaches

This section presents two different clustering approaches which may be referred to as
iterative distance-based clustering and meta-heuristic clustering algorithms. The objective
of the clustering problem formulation is to minimize the Euclidean distance between each
user and the centroid, as presented in Section 5.1. Sections 5.2 and 5.3 present the iterative
distance-based clustering and meta-heuristic clustering algorithms, respectively.

One of the most well-known clustering algorithms that falls in the iterative distance-
based clustering algorithm category is K-means. In [28,29], a K-means-based clustering
algorithm was employed to partition users and POIs in the case of the deployment of
multi-UAVs as aerial base sations. As discussed in Section 2, the clustering problem of the
K-means algorithm can also be mitigated by utilizing meta-heuristic algorithms.

Thus, this paper extends the clustering approach based on the meta-heuristic clustering
algorithm by invoking PSO, as presented in Section 5.3.2. The performances of the three
clustering algorithms are compared in terms of algorithm robustness to the outliers and
computational complexity, as presented in Section 7.

5.1. Mathematical Formulation of the Clustering Problem

The clustering algorithm involves the process of gathering similar data points into the
same cluster. Therefore, a similarity metric between two points must be defined. Euclidean
distance is the most common distant metric used in clustering algorithms that aims to
minimize the total variations within each cluster [40,41]. Thus, the clustering problem
can be formulated with the objective to minimize the sum of squared Euclidean distances
between each data point with the cluster center, as follows:

minimize F =
K

∑
k=1

N

∑
n=1

Wnk‖xn − ck‖ (8a)

subject to
K

∑
k=1

Wnk = 1 n = 1, . . . , N, (8b)

N

∑
n=1

Wnk ≥ 1 k = 1, . . . , K, (8c)

k ∈ [1, . . . , K], (8d)

n ∈ [1, . . . , N] (8e)
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where xn is the nth value of the data set ∈ N and the center of the cluster k, and ck is the
average value of all points in cluster k which can be determined using Equation (9).

ck =
∑N

i=1 Wnkxn

∑N
i=1 Wnk

(9)

where Wnk is a decision weight ∈
{

0, 1
}

, Wnk = 1 if the point n belongs to cluster k and
otherwise if the n point does not belong to the cluster k.

5.2. Iterative Distance-Based Clustering (K-Means)

A K-means algorithm is a partitioning clustering algorithm used to group data or
objects into clusters [31] which was developed by J. B. Mac Queen in 1967 [42]. A K-means
algorithm starts by randomly selecting k initial means as the cluster centers, referred to
as centroids. Then, this algorithm calculates the Euclidean distance from each data point
to these centroids, and a cluster is formed based on the shortest Euclidean distance from
the data point to the cluster centroid. Once the data points are grouped into clusters,
the centroid is replaced by a new mean value that is calculated based on the mean of
the points that belong to the cluster. These tasks are performed for several iterations
until the algorithm converges and produces K final means [31,43]. However, in this work,
the number of clusters are set using the proposed heuristic algorithm of Algorithm 1,
as described in Section 4. The K-means algorithm is described by the pseudocode of
Algorithm 2.

Algorithm 2: The K-means clustering algorithm.
Result: A set of K clusters
Input;
k: Number of desired clusters
Data set D =

{
di|i = 1, . . . , n

}
; n set of data points.

ck: set of centers k = 1, . . . , K.
uk: cluster position that minimizes the distance from the data points to the cluster
k = 1, . . . , K

Initialization;
ci = random(num): Arbitrarily choose k items from D as initial centroids;
Repeat for ∀j = 1:n

Assign i to Cluster ck according to the minimum distance from ck center

ui =
1
ci

∑j∈ck
Xj, ∀i: Calculate new centers

E = ∑K
k=1 ∑i∈ck

d(xi − uk) = ∑K
k=1 ∑i∈ck

||xi − uk||2
Until: E does not change

• K-means Complexity

The computational complexity of a K-means algorithm refers to the total number
of Euclidean distance computations. More specifically, in each iteration, for a data set
D =

{
di|i = 1, . . . , n

}
, where n is the total number of data points and k is the number

of clusters, the computation complexity is O(nk). Thus, for Nit number of iterations,
the computational complexity is O(nkNit).

5.3. Meta-Heuristic Clustering Algorithms

Several meta-heuristic-based clustering algorithms have emerged with nature-inspired
designs, namely GA and PSO [33,44]. As discussed earlier, several works on the deployment
of multi-UAVs as an aerial base station have employed K-means clustering algorithms to
partition users. Thus, in this work, we study the deployment of multi-UAVs by invoking
the meta-heuristic-based clustering algorithm that provides wireless coverage for both
outdoor and indoor users.
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5.3.1. Genetic Algorithm (GA)

A Genetic Algorithm (GA) is an optimization technique based on the principles of
evolution and natural genetics, which can be used to solve NP-complete global optimization
problems. It was demonstrated that the GA-based clustering algorithm provided superior
performance in solving clustering problems [35,36].

In the initialization stage, an initial population of k number of individuals is created,
which are referred to as chromosomes. These individuals represent the legitimate solu-
tions of the given optimization problem. In the case of the clustering problem presented
in Section 5.1, these individuals represent the cluster centers which initially are chosen
randomly. Each legitimate solution will be evaluated by its fitness, which is linked to
the objective function of the clustering problem. Then, the termination criterion will be
examined. In this work, the number of iterations, Nit, refers to the number of genera-
tions, which is used to be the termination criterion. If the termination criterion is not met,
the highest-fitness individuals are selected to generate the next generation. In this work,
the fitness proportional selection is used. Furthermore, the selected individuals, which are
referred to as parents, will undergo genetically inspired operators, namely crossover and
mutation. Thus, new individuals are generated with improved performance.

The fitness of the new set of legitimate solutions or individuals will be evaluated and
the termination criterion will be re-examined. The three GA operators, namely selection
of the fittest, crossover and mutation will be repeated during each iterative procedure
until the termination criterion is met. After this stage, the algorithm produces a set of the
best individuals with the highest fitness, which are the solution to the clustering problem,
namely the cluster centers [35]. Algorithm 3 presents the pseudo code for the GA-based
clustering algorithm.

Algorithm 3: Clustering using Genetic Algorithm.
Result: A set of K Clusters
Input;
k: Number of desired clusters
Data set D =

{
di|i = 1, . . . , n

}
; n set of data points.

Initialization: Population p(t) = random(pop); Initialized the population randomly;
Repeat:

Fitness computation (ft): Compute fitness for population p(t)
1. clusters are formed by assigning each point in D to one of clusters k j with

center cj such that:
||xi − cj|| < ||xi − cp||, ∀p = 1, 2, . . . , k

2. For each cluster the new center is c∗

C∗i =
1
ni

∑xj∈ck
xj, ∀i = 1, 2, . . . , k

3. The new C∗i is replaced by the old center ci
Select parents using proportional selection for the next Generation (G)
Apply the Crossover (C) operator for p(t)
Apply the Mutation (M) operator for p(t)

• GA Complexity

The computational complexity of the GA-based clustering algorithm relies on the total
number of Euclidean distance computation, as well as the three GA operators, namely
selection of the fittest, crossover and mutation. In the selection stage, the best individual will
be selected using the fitness proportional selection to be the parents for the new generation
of k individuals using the crossover and mutation operators. The fitness proportional
selection or roulette wheel selection has the computational complexity ofO(log(k)). Prior to
the selection stage, the Euclidean distance of each data point from each of k cluster center, ck,
will be computed. Hence, it takesO(nk) computations. Thus, for a Nit number of iterations,
the computational complexity of the GA-based clustering algorithm is O(Nit · nk log(k)).
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5.3.2. Particle Swarm Optimization (PSO)

In this work, the new clustering algorithm that invokes Particle Swarm Optimization
(PSO) is introduced. The PSO is a population-based evolutionary algorithm that was
developed by Kennedy and Eberhart in 1995 [45]. This robust algorithm simulates animals’
social behavior and movement of animal swarms such as schools of fish or flocks of birds,
and it is able to solve complex optimization problems.

In PSO, each swarm member is referred to as a particle, where each particle is the can-
didate solution to the optimization problem. During the movement of the particle swarm,
the members of the swarm interact and influence each others’ state. More specifically, each
member of the swarm moves cooperatively, which forms the speed and direction of the
whole swarm in finding the optimal solution. In the PSO algorithm, the speed and direction
are referred to as the velocity and position of each particle which are updated according to
its own experience and also that of a neighboring particle. Thus, this algorithm combines
both the local and global search in finding the optimal solution.

At the beginning of the PSO-based clustering algorithm for the problem formulated
in Section 5.1, the positions of k particles are initialized randomly and the velocities of
the k particles are set to 0. Here, each particle is referred to as the cluster center. Then,
the fitness of each particle in the swarm is evaluated based on the objective function of the
clustering problem.

For every iteration, each particle compares its fitness with its previous best fitness;
the highest fitness is set as the personal best, also known as local best, Lbest value. Then,
the best fitness, Lbest, of each particle is also compared with the Lbest of other particles in
the swarm, and the swarm global best is updated with the greatest fitness, which is known
as global best, GBest [46].

Subsequently, the velocity of each particle is modified towards its Lbest and GBest
using Equation (10), and its new position is calculated using Equation (11). The ith particle
in the swarm changes its velocity and position according to the following equations:

Velocityi(t + 1) = W ∗Velocityi(t) + r1 ∗ c1 ∗ (Lbesti(t)

− Positioni(t)) + r2 ∗ c2 ∗ (GBest(t)− Positioni(t))
(10)

Positioni(t + 1) = Positioni(t) + Velocityi(t + 1) (11)

In other words, each particle moves towards its previous best, Lbest, position and the
global best, GBest, position in the swarm. This process is repeated until the termination
criteria is met, that is after the given maximum number of iterations. Algorithm 4 illustrates
the pseudocode for the PSO-based clustering algorithm.

• PSO Complexity

Similar to the definition of computational complexity for the K-means and GA algo-
rithms presented in the previous Sections 5.2 and 5.3.1, respectively, the computational
complexity of the PSO-based clustering algorithm refers to the total number of Euclidean
distance computations and the additional computations in the algorithm. More specifically,
in each iteration, the Euclidean distance of each data point from each k cluster center, ck,
will be computed and additional computations update particles’ velocities and positions.
Hence, the computational complexity can be denoted as O(nkp). Thus, for Nit number of
iterations, the computational complexity is O(nkpNit).
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Algorithm 4: Clustering using Particle Swarm Optimization.
Result: A set of K Clusters
Input;
k: Number of desired clusters
Data set D =

{
di|i = 1, . . . , n

}
; n set of data points.

ck: set of centers k = 1, . . . , K.
Initialization;
For each particle randomly initialized position and velocity; Initialized each
particle with ck randomly;

for iterations:1:max_iterations do
for Particle:1:All Particles do

for {di|i = 1, . . . , n} do
Compute Euclidean distance of di with all cluster center:

K

∑
k=1

∑
i∈ck

di(xi − uk) =
K

∑
k=1

∑
i∈ck

||xi − uk||2

Assign di to the cluster with nearest ck;
end
Update Lbest and GBest for each particle
Update velocity for each particle using Equation (10) update the position of
the particle using Equation (11)

end
end

6. Efficient UAV 3D Placement Algorithms

As discussed in Section 4, in each iteration of the proposed heuristic algorithm, the ef-
ficient UAV 3D placement algorithm is invoked after the clustering process using one of
the algorithms of Section 5. More specifically, this algorithm is used to determine efficient
UAV 3D placement in each cluster, k.

The problem of finding an efficient UAV 3D placement is formulated with the objec-
tive to minimize its required transmit power that satisfies the users’ minimum data rate.
The formulation of this problem can be found in [9,10].

Due to the intractability of the problem, efficient UAV 3D placement algorithms that
invoked PSO and GA were proposed in [9,15], respectively. This paper extends the solution
by invoking ABC algorithm.

Readers are referred to the discussions presented in [9,15] for detailed discussion in
finding the efficient UAV 3D placement by invoking PSO and GA algorithms, respectively.

6.1. Problem Formulation

In this work, it is considered that UAV transmits data to Mout outdoor and Min indoor
users inside cluster k at a desired data rate, r, where, (Mout + Min) is the total number of
users inside a cluster, k (coverage subarea) and each user has a channel bandwidth equal to
A/(Mout + Min), where A is the UAV transmission bandwidth, Li is the path loss between
UAV and usersi and Np is the noise power. The total required transmit power of the UAV
to satisfy the data rate, r, for all users inside cluster, k can be formulated as:

Pttotal =
(Mout+Min)

∑
i=1

(2
Rb ·(Mout+Min)

A − 1)NpLi (12)
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Thus, the problem of finding an efficient UAV 3D placement in providing wireless
coverage for all users within each cluster such that the total required UAV transmit is
minimized can be formulated as follows [9,10]:

min
(x,y,z)UAV : ∈ k

PkTotal
=

Mout

∑
i=1

Piout +
Min

∑
j=1

Pjin

subject to

xmin ≤ xUAV ≤ xmax,

ymin ≤ yUAV ≤ ymax,

zmin ≤ zUAV ≤ zmax,

PkTotal
≤ Pmax

(13)

Here, the first three constraint equations represent the minimum and maximum
allowed 3D placement for xUAV , yUAV and zUAV . In the fourth constraint equation, Pmax is
the maximum allowable power, where Pt,max is the maximum transmit power of UAV.

6.2. Artificial Bees Colony (ABC)

The Artificial Bees Colony (ABC) algorithm is a meta-heuristic algorithm based on
the foraging behavior observed in honey bee swarms, which was introduced by Dervis
Karaboga in 2005 [47].

In the ABC algorithm, the colony consists of three groups of bees, namely employed
bees, onlooker bees and scout bees. Algorithm 5 shows the pesudocode of the efficient
UAV 3D placement that invokes ABC algorithm. The algorithm consists of the following
main steps:

1. Initialization: In the initialization phase, Npop random solutions are generated. In the
ABC algorithm, a solution to the optimization problem is referred to as food source, θi.

2. Employed bee phase: In this phase, each employed bee which has been assigned
to a food source, θi searches the neighboring region to seek the best food source.
The best food source is selected using greedy selection. More specifically, in this
phase, the employed bee seeks a new food source, that is denoted as υi, around the
assigned source. Then, the employed bee evaluates and compares the quality of the
nectar of the assigned food source, θi, and the new food source, υi. If the new food
source, υi, results in better nectar quality, then the food source, θi, will be replaced
by υi; otherwise, θi remains in the population. This selection process is known as
greedy selection. The nectar quality evaluation refers to the evaluation of the objective
function to the problem of finding UAV 3D placement.

3. Onlooker bee phase: Then, each employed bee returns to its hive and shares the food
source location with the onlooker bees that are waiting in the hive. In this phase,
the quality of the nectar from all of the employed bees is evaluated. The onlooker bee
selects the food source by applying the roulette wheel selection. Then, the onlooker
bee searches the neighboring region of the selected food source further. The on-
looker bee performs a similar selection process in the employed bee phase where the
best food source is selected using greedy selection, where the better one survives in
the population.

4. Scout bee phase: If a food source cannot be improved any more, the food source is
abandoned or eliminated from the population. In this work, the abandonment limit
parameter is defined as 0.6× nVar×Npop, where nVar is the dimension of the solution
and refers to the 3D coordinate of (x, y, z) and Npop is the population size. This is
carried out by replacing it with a random number. The employed bee whose food
source has been abandoned becomes a scout bee and is assigned to a random new
food source.

5. Termination criteria: If the termination criterion is not met, the employed bee phase,
the onlooker bee phase and the scout bee phase will be repeated. In this work,
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the maximum number of iteration, Nit is set as the termination criteria. The best food
source will remain in the population as the best solution to the optimization problem.

Moreover, Figure 3 presents the flowchart of the ABC algorithm.

Start

Initialize population with random 

solutions

Output: The Best Solution  

achieved

End

Yes

No

Are all 

Onlooker bees 

distributed?
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Max. #of iter.

Determine the neighbors 

of the selected food source

Calculate the nectar 

amount (fitness)
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Yes

Determine the neighbors' (vi) of the 

selected food source

Calculate the nectar amount 

(fitness) of the food sources (θi)
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Assign the scout bee to randomly 
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new food source

Memorize the best food source 

that results in the best nectar 

quality 

Figure 3. Flowchart of the Artificial Bees Colony (ABC) algorithm.
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Algorithm 5: Artificial Bees Colony (ABC) algorithm.
Input: Coverage subarea S; n set of users location.
Initialization: Initialize population with random solutions;
Repeat:

Assign the employed bees to their respective food sources
Calculate the fitness of the new food source
Apply Greedy selection process
Assign the onlooker bees to the selected food sources with the best quality of

nectar using roulette wheel selection
Identify the food source to be abandoned
Assign the scout bee to randomly select new area to search for new food source
Memorize the best food source that results in the best nectar quality (Best food

source found so far)
Until: The termination criteria is met.
Output: The Best Solution achieved.

7. Simulation Results

This section is structured as follows. Section 7.1 presents the performance comparison
of clustering algorithms in Section 5 to partition all users inside the disaster-affected area, S.
Then, the performance of the proposed power-efficient algorithm is presented in Section 7.2.

7.1. Performance Comparison of Clustering Algorithms

In this section, we comparatively study the performance of the iterative distance-
based and meta-heuristic based clustering algorithms that are presented in Section 5.
The simulation results were obtained when each clustering algorithm was employed to
partition outdoor and indoor users that were uniformly distributed. The user partitioning
corresponds to the partitioning of the disaster-affected area, S.

Figure 4 shows the clustering results using the three clustering algorithms where the
users are partitioned into six clusters. The users in each cluster are indicated with the same
color. It can be seen from Figure 4a that the K-means algorithm produces clusters that are
not symmetric, as shown by the clusters marked with the blue square. This observation is
consistent with the results presented in [34]. Meanwhile, the meta-heuristic based clustering
algorithms, namely the PSO-based and GA-based algorithms, form symmetric clusters.

It can also be observed in Figure 4a that an outlier that is marked with a red square
affects the clustering process of the neighboring data points. The outlier resulted in a
heavily unbalanced cluster, as marked with blue square. In other words, this indicates
that the outlier resulted in some data points being clustered incorrectly [32]. Meanwhile,
the same outlier data point (marked with red square) did not affect the clustering results
when PSO-based and GA-based algorithms were employed, as shown in Figure 4b,c.

Moreover, it can also be seen from Figure 4b,c that meta-heuristic algorithms lead to
the same clustering results [31].

The efficiency of each clustering algorithm is evaluated in terms of its execution time.
In this work, the simulations were conducted using a laptop with the following specifi-
cations: Intel core i7-4710HQ CPU with 3.1 GHz processor and 8 GB RAM in Windows
10 OS. Table 1 presents the execution time taken to partition all users that are uniformly
distributed into K clusters using K-means, PSO-based and GA-based clustering algorithms.
The execution time taken by each clustering algorithm reflects the computation complexity
defined in Section 5.1. More specifically, the K-means algorithm took the shortest time to
complete the clustering process compared to the meta-heuristic-based clustering algorithms.
Meanwhile, the employment of the GA-based clustering algorithm resulted in inferior
performance compared to that of the PSO-based clustering algorithm. More specifically,
the GA-based algorithm took a longer time to partition all users into clusters.
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Figure 4. Clustering results using (a) K-means, (b) PSO-based and (c) GA-based clustering algorithms.

Therefore, the performance of the proposed power-efficient algorithm of Algorithm 1
in Section 4 is evaluated by invoking K-means clustering and PSO-based clustering algo-
rithms. Moreover, the GA-based clustering algorithm produces similar clustering results as
that of the PSO-based clustering algorithm, but at the expense of higher complexity due to
the crossover and mutation operators.

Table 1. Execution time for clustering algorithms to partition uniformly distributed users.

Execution Time in Seconds
Clustering Algorithm Algorithm Complexity Uniform Distribution Non-Uniform Distribution

K-means O(nkL) 0.042 0.0685

PSO O(nkpL) 0.142 0.3824

GA O(L · nk log(k)) 3.1492 3.2331

7.2. Performance of Power-Efficient Algorithm

This section presents the performance of the proposed power-efficient algorithm of
Algorithm 1 in Section 4. Table 2 summarizes the parameters used in the simulation.

In this study, we consider the dimension of the coverage area, S, to be 1000 m× 1000 m.
The proposed power-efficient algorithm is evaluated in two scenarios where all users
are distributed with two distributions, namely uniform and non-uniform distributions,
as shown in Figures 5 and 6, respectively. In this simulation, the total number of users is
100, which is composed of 50 outdoor users and 50 indoor users.

In each scenario, the power-efficient algorithm invoked the K-means and PSO-based
clustering algorithms of Algorithms 2 and 4, respectively, to partition the users. Then,
the three variants of efficient UAV 3D placement algorithms of Section 6 that invoked
PSO, GA and ABC algorithms were employed. The clustering and the efficient UAV 3D
placement algorithms were iteratively invoked to find the minimum number of UAVs that
provide wireless coverage to the disaster-affected area, S, in such that the UAV transmit
power is minimized and the users’ data rate is satisfied. In this study, the minimum users’
data rate is 1 Mbps and the minimum UAV altitude zmin = 60 m. The minimum UAV
altitude value during SAR operation is 60 m. This value is less than 120 m, the allowable
height under the Drone Safety Rules [48].

More specifically, the clustering and the efficient UAV 3D placement algorithms were
performed iteratively until the the UAV total transmit power constraint of Equation (4b) was
met, as described in Section 4. In other words, the iteration was terminated if the UAV trans-
mit power required to cover all outdoor and indoor users inside each cluster was less than
the threshold of 1 watt, which is also referred to as the maximum allowable UAV transmit
power, PUAV max. The performance comparison of different combinations of the clustering
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and efficient UAV 3D placement algorithms were evaluated, in terms of the minimum total
UAV required transmit power, UAV placement and algorithm execution time.

For the uniform distribution scenario, the proposed power-efficient algorithm was
evaluated against the multi-UAVs deployment approach that utilized CPT as described in
Section 4.

Table 2. Simulation and system parameters.

Simulation Parameters System and Algorithms Parameters

Subarea (S) dimensions (xmax , ymax) (1000 m, 1000 m) Number of Decision Variables nVar 3

UAV altitude Zmin 60 m # of Individuals (GA selection phase) k-individuals 4

Number of outdoor users Mout 50 ABC Abandonment Limit Parameter Llimit 0.6 ∗ nVar ∗ Npop

Number of indoor users Min 50 ABC—Number of Onlooker Bees nOnlooker 50

Carrier frequency fc 2 GHz ABC, PSO, GA Max # of iterations Nit 50

Noise power Np −100 dBm ABC, PSO and GA Population size Npop 100

Data Rate r 1 Mbps Indoor Environment parameter a1, a2, a3, a4 31.4, 15, 14, 0.5

Total Bandwidth B 50 MHz Outdoor Environment parameter α, β 9.6, 0.28

Max. UAV transmit power PtUAVmax
1 watt Outdoor Environment parameter ηLSO, ηNLSO 1, 20
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Figure 5. Uniformly distributed outdoor and indoor users inside S, denoted as blue circles and red
crosses, respectively.
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Figure 6. Non-uniformly distributed outdoor and indoor users inside S, denoted as blue circles and
red crosses, respectively.

7.2.1. Uniform Distribution Users Scenario

Table 3 shows the simulation results of the proposed algorithm that minimizes the
number of UAVs in providing wireless coverage to all users within the disaster-affected
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area, S, such that the UAV required transmit power is minimized and the users’ data
requirements are satisfied. The number of UAVs in Table 3, indicates the number of clusters.

It can be observed that the power-efficient algorithm that invoked the PSO-based clus-
tering algorithm outperforms the algorithm that invoked the K-means clustering algorithm.
More specifically, six UAVs are required to be employed in providing wireless coverage to
users within the disaster-affected area, S, as evidenced by the required transmit power of
each UAV is less than 1 watt. However, in the case of the proposed algorithm that invoked
K-means clustering algorithm, it is observed that the required transmit power of UAV4 is
more than 1 watt. As explained in Section 4, the number of clusters will be increased by 1 if
the threshold value of UAV required transmit power is exceeded. Thus, this indicates that
more UAVs are needed when the K-means clustering algorithm is invoked.

Table 3. Simulation results of the power-efficient algorithm for uniform distribution scenario.

Cluster Clustering PSO Alg. UAV ABC Alg. UAV GA Alg. UAV
UAV# Algorithm Placement + Power Placement + Power Placement + Power

UAV1
K-means [685.8893 623.2211 60]:0.8546 watt [689.1949 622.4364 60.292]:0.8574 watt [685.7911 623.7972 60.000]:0.8547 watt

PSO [744.4978 749.1702 60]:0.8574 watt [742.6962 752.2831 60.189]:0.8584 watt [744.5963 748.8969 60.012]:0.8574 watt

UAV2
K-means [820.3453 103.3693 60]:0.063 watt [827.827 98.48832 60.9426]:0.064 watt [837.6544 118.0251 62.7099]:0.068 watt

PSO [421.8992 94.72741 60]:0.517 watt [434.3266 83.9485 60.3107]:0.522 watt [419.5079 100.2885 60.4114]:0.517 watt

UAV3
K-means [921.5019 608.1418 60]:0.2544 watt [923.3534 608.0932 60.042]:0.2546 watt [929.4961 610.5776 60.544]:0.2563 watt

PSO [234.0778 854.9350 60]:0.6173 watt [216.8301 866.1314 60.298]:0.6356 watt [230.4671 846.5856 62.311]:0.6400 watt

UAV4
K-means [144.2928 233.3356 60]:1.6854 watt [145.3373 236.797 60.7461]:1.6909 watt [143.4650 234.4760 60.079]:1.6855 watt

PSO [457.0585 375.8655 60]:0.4109 watt [462.1730 371.6102 61.888]:0.4161 watt [456.7381 375.6460 60.023]:0.4110 watt

UAV5
K-means [445.4709 268.8294 60]:0.6294 watt [440.3215 261.6336 60.408]:0.6346 watt [443.7819 271.0478 60.351]:0.6315 watt

PSO [838.0584 306.6074 60]:0.6739 watt [829.1685 295.4001 62.404]:0.6847 watt [841.5975 311.6093 62.432]:0.6817 watt

UAV6
K-means [252.3852 845.8628 60]:0.9052 watt [253.8206 847.070 60.357]:0.9081 watt [253.4335 846.8824 61.519]:0.9171 watt

PSO [96.30438 291.2943 60]:0.6069 watt [87.6339 297.0693 60.089]:0.6100 watt [100.2821 288.2098 60.146]:0.6082 watt

Figure 7 shows three of the clustering results and the UAVs placements from Table 3.
Figure 7a depicts the simulation results of the proposed algorithm that iteratively in-
voked the K-means clustering algorithm and the PSO-based efficient UAV 3D placement
algorithms. Meanwhile, the simulation results of the proposed algorithm that iteratively
invoked the PSO-based clustering algorithm and two of the variants of efficient UAV 3D
placement algorithms, namely PSO-based and ABC-based efficient UAV 3D placement
algorithms, are depicted in Figure 7b,c, respectively. In this case, the outdoor and indoor
users are distributed uniformly, which are denoted by the circle and cross symbols, re-
spectively. These figures illustrate that the users are partitioned into six clusters, and one
UAV is assigned to each cluster, where its 2D position is denoted by star. The coordinate of
the 3D placement of each UAV in Figure 7a–c is presented in Table 3. It can be observed
from Table 3 that the total UAV required transmit power is at a minimum when the UAV
altitude is close to the minimum UAV altitude of 60 m. This is because there is a trade-off
between the UAV altitude, the probability of LoS and the coverage performance in terms of
coverage radius [8]. For lower UAV altitudes, the probability of LoS between transmitter
and receiver decreases due to the shadowing impact. Thus, it results in a decrease in the
total UAV required transmit power of each UAV.

Figure 7a,b illustrate the comparison performance of clustering results between K-
means and PSO clustering algorithms. From these figures, it can be clearly seen that the
K-means algorithm produces clusters that are not symmetric, as discussed in Section 5.
Meanwhile, Figure 7b,c illustrate the comparison performance of the proposed power-
efficient algorithms that invoked PSO and ABC algorithms, respectively. It can be seen
that both combinations produce similar performances in terms of clustering results and the
UAV placements.
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Figure 7. Placement of UAV1 to UAV6 when users were uniformly distributed. (a) Clustering
using K-means, UAV placement using PSO. (b) Clustering using PSO, UAV placement using PSO.
(c) Clustering using PSO, UAV placement using ABC.

Meanwhile, the convergence speed of the proposed algorithm that iteratively invoked
PSO-based clustering algorithm and PSO-based efficient UAV 3D placement for the six
UAVs is shown in Figure 8. It can be observed from this figure that the proposed algorithms
converge to the total UAV transmit power smaller than the threshold value of 1 watt within
a few iterations.
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Figure 8. The convergence speeds of the power-efficient algorithm that iteratively invoked PSO-based
clustering and PSO-based efficient algorithms for UAV1 to UAV6 when users were uniformly distributed.

Figure 9 illustrates the optimal results of packing four, five and six equal circles inside
the coverage area, S, using the CPT-based benchmarker algorithm. The problem of packing
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nc identical and non-overlapped circles inside a unit square for 2 ≤ nc ≤ 22 was studied
in [9]. The problem is formulated with the objective to maximize the radius rd of the packed
circles such that the coverage density, dn, is maximized. The coverage density, dn, for
packing nc identical circles was determined using Equation (7). It was observed that the
maximum coverage density of 78.5% was achieved when nc = 4, 9 and 16 [9]. It was also
observed that the large number of UAVs (indicated by nc) did not necessarily result in the
maximum coverage density [9].

Indoor users Outdoor users

a) Packing 4 circles inside coverage area b) Packing 5 circles inside coverage area c) Packing 6 circles inside coverage area
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Figure 9. Optimal packing of (a) 4 circles, (b) 5 circles and (c) 6 circles using CPT inside a square region.

Packing four, five and six circles into the coverage area, S, that has a square shape
resulted in coverage density of 78.5%, 67.4% and 66.4%, respectively. Thus, the maximum
achievable coverage density of packing nc equal circles in the coverage region is 78.5%,
when nc = 4.

Readers who are specifically interested in the most efficient algorithm in finding the
minimum number of UAVs that maximizes wireless coverage using CPT to serve users
in large coverage areas with three different shapes, namely square, rectangle and circular
regions, are referred to [9] for further information. More specifically, discussions on the
problem of packing nc identical circles using CPT inside a unit square and three different
shapes of coverage area are presented in [9].

The performance of the proposed power-efficient algorithm that invoked a PSO-based
clustering algorithm is evaluated against the benchmarker algorithm with a CPT-based
approach. The condition of the total required UAV transmit power to be smaller than
the threshold value of 1 watt is also considered in the CPT-based benchmarker algorithm.
The results in Table 4 reveal that all users were partitioned into five clusters when the
CPT-based benchmarker algorithm was invoked. Therefore, the multi-UAVs deployment
with the CPT approach resulted in a smaller number of UAVs being deployed in providing
wireless coverage to all users, but at the expense of the coverage density of 67.4% in
comparison with the 100% coverage density using the proposed power-efficient algorithm.

Table 4. Simulation results of the CPT-based benchmarker algorithm for uniform distribution scenario.

Packed Circle Coverage PSO Alg. UAV ABC Alg. UAV GA Alg. UAV
Circle, UAV# Radius Density Placement + Power Placement + Power Placement + Power

UAV1

207.11 67.37%

[167.1695 219.9231 60]:0.6002watt [168.7157 217.7514 60.0000]:0.6002 watt [172.7874 228.5162 60.0258]:0.6021 watt
UAV2 [783.0499 220.4436 60]:0.4694 watt [789.3028 198.8249 60.33249]:0.4756 watt [697.2269 204.0371 62.7439]:0.5552 watt
UAV3 [412.758 389.7928 60]:0.35099 watt [423.4603 395.749 60.25453]:0.3532 watt [410.0991 392.8970 60.0000]:0.3512 watt
UAV4 [230.5809 846.9975 60]:0.4593 watt [239.4186 856.8646 60.4238]:0.4715 watt [220.0381 868.8871 60.2618]:0.4765 watt
UAV5 [810.9745 737.4375 60]:0.3658 watt [821.9865 733.8699 60.6021]:0.3697 watt [812.6761 732.1948 60.0000]:0.3664 watt
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7.2.2. Non-Uniform Distribution Users Scenario

For the case of users that are non-uniformly distributed, similar observations were
obtained from Table 5. More specifically, the power-efficient algorithm that invoked a
PSO-based clustering algorithm is superior in comparison to the algorithm that invoked
a K-means clustering algorithm, as presented in Table 5. This is evident as the required
transmit power for UAV3 is more than the threshold value of 1 watt when the K-means
clustering algorithm was used to partition the users. Thus, this indicates more than six
UAVs are required to be deployed in providing wireless coverage for all users within
the coverage area in comparison to the algorithm that invoked the PSO-based clustering
algorithm which requires six UAVs.

Table 5. Simulation results of the power-efficient algorithm for non-uniform distribution scenario.

Cluster Clustering PSO Alg. UAV ABC Alg. UAV GA Alg. UAV
UAV# Algorithm Placement + Power Placement + Power Placement + Power

UAV1
K-means [193.0913 195.5615 60]:0.1471 watt [195.6734 202.5016 60.058]:0.1481 watt [189.7199 197.735 60.000]:0.1473 watt

PSO [765.2653 178.5259 60]:0.5373 watt [765.0626 182.1474 60.698]:0.5402 watt [758.8278 185.712 65.197]:0.5587 watt

UAV2
K-means [322.8127 523.4081 60]:0.6871 watt [327.4116 523.0595 60.189]:0.6887 watt [325.1751 525.468 60.000]:0.6874 watt

PSO [681.2329 904.7334 60]:0.4773 watt [673.7837 916.3648 60.149]:0.4822 watt [679.2162 909.421 61.797]:0.4865 watt

UAV3
K-means [394.1480 917.7155 60]:1.8389 watt [394.9405 912.3090 60.313]:1.8425 watt [407.901 871.4571 62.349]:1.9651 watt

PSO [268.8858 147.3919 60]:0.6180 watt [275.8520 132.4072 60.913]:0.6284 watt [269.2245 147.445 60.000]:0.6180 watt

UAV4
K-means [436.3670 146.9905 60]:0.1385 watt [446.9090 135.1591 60.256]:0.1406 watt [438.2020 147.3331 60.00]:0.1385 watt

PSO [761.7588 546.8866 60]:0.3653 watt [756.2841 553.2898 61.699]:0.3694 watt [763.2174 546.104 69.191]:0.3847 watt

UAV5
K-means [791.0486 704.5362 60]:0.9549 watt [800.0364 708.7597 61.913]:0.9649 watt [788.6125 697.887 61.253]:0.9609 watt

PSO [256.3875 875.1078 60]:0.4577 watt [265.5788 884.0287 60.249]:0.4616 watt [237.6659 858.223 71.108]:0.5153 watt

UAV6
K-means [780.0924 222.0847 60]:0.5207 watt [766.9253 207.0314 61.019]:0.5288 watt [793.1164 222.281 60.462]:0.5257 watt

PSO [353.6876 497.1714 60]:0.6524 watt [367.5214 504.7673 60.095]:0.6634 watt [352.8407 499.851 60.273]:0.6544 watt

Moreover, Figure 10 shows the convergence speed of the proposed power-efficient
algorithm that iteratively invoked the PSO-based clustering algorithm and PSO-based
efficient UAV 3D placement for the case of non-uniformly distributed users. A similar
observation was obtained from this figure where the simulation results converge to the
total UAV transmit power smaller than the threshold value of 1 watt within a few iterations
for each UAV that serves each cluster of users.

Figure 11 shows three of the clustering results and the UAV placements from Table 5.
A similar observation was obtained from comparison of Figure 11a,b, where it can be clearly
seen that the K-means algorithm produces clusters that are not symmetric, as discussed in
Section 5. It can be seen from Figure 11b,c that the combination of the PSO-based clustering
algorithm and the two variants of efficient UAV 3D placement algorithms, namely ABC-
based and GA-based algorithms, produced similar performances in terms of clustering
results and the UAV placements.

The corresponding computational complexity performances for the proposed algo-
rithm in relation to Tables 3 and 5 is shown in Table 6. In both scenarios, the execution time
is used to represent the power-efficient algorithm computational complexity in finding
the minimum number of UAVs to provide wireless coverage to outdoor and indoor users
that are distributed uniformly and non-uniformly. It can be observed in Table 6 that the
power-efficient algorithm took the shortest execution time to find the minimum number of
UAVs by iteratively invoking the PSO-based clustering algorithm and the efficient UAV
3D placement algorithm based on PSO, rather than employing the other two variants of
efficient UAV 3D placement algorithms.

Although the employment of the K-means clustering algorithm resulted in a shorter
execution time when the PSO-based efficient UAV 3D placement algorithm was invoked,
the resultant number of UAVs that were required to be deployed was inferior to that when
the PSO-based clustering algorithm was invoked, as discussed in Section 7.1.
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Figure 10. The convergence speeds of the power-efficient algorithm that iteratively invoked PSO-
based clustering and PSO-based efficient algorithms for UAV1 to UAV6 when users were non-
uniformly distributed.
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Figure 11. (a–c) Placement of UAV1 to UAV6 when users were non-uniformly distributed.

Therefore, it was found to be beneficial to employ PSO-based clustering and a PSO-
based efficient UAV 3D placement algorithm for the case of users that were distributed
uniformly and non-uniformly.
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Table 6. Execution time for the power-efficient algorithm.

Clustering Algorithm Users Distribution
Execution Time in Seconds

Efficient UAV 3D Placement Algorithm
PSO GA ABC

PSO Uniform 0.0971 s 1.6540 s 7.9114 s

K-means Uniform 0.0900 s 1.5781 s 7.0895 s

PSO Non-Uniform 0.0925 s 1.4645 s 7.3660 s

K-means Non-Uniform 0.0683 s 1.1532 s 5.6793 s

8. Conclusions

In this work, a power-efficient algorithm was proposed for minimization of the num-
ber of UAVs to be deployed as aerial base stations to serve outdoor and indoor users
simultaneously, which led to maximum users’ coverage using the minimum number of
UAVs, such that the required UAV transmit power was minimized.

In this study, three variants of clustering algorithms based on the K-means algorithm,
PSO and GA were employed. It was observed that meta-heuristic clustering algorithms,
namely GA-based and PSO-based, were superior in comparison to the K-means algorithm
that resulted in a smaller number of user clusters.

It was observed that the proposed algorithm that iteratively invoked the PSO-based
clustering algorithm and the PSO-based efficient UAV 3D placement algorithm has the
lowest computational complexity compared to the proposed algorithm that invoked the
efficient UAV 3D placement algorithm based on GA and ABC. The computational complex-
ity performance was manifested in terms of the algorithm execution time. More specifically,
for the uniformly distributed users scenario, the proposed algorithm that iteratively in-
voked the PSO-based clustering algorithm and the PSO-based efficient UAV 3D placement
algorithm took about 0.0971 s to find the minimum number of UAVs which were positioned
at their efficient UAV 3D placements.

The proposed algorithm was evaluated against a benchmarker algorithm that utilized
CPT and efficient UAV 3D placement for a multi-UAV deployment scheme. It was observed
that the benchmarker algorithm required a lower number of UAVs to be deployed as aerial
base stations, but at the expense of the coverage density of 67.4% in comparison with
100% coverage density using the proposed power-efficient algorithm. The employment of
the proposed algorithm resulted in 100% coverage density, which was manifested by its
achievement to serve all users within the disaster-affected area, S.

Author Contributions: Conceptualisation, A.S. and N.S.O.; methodology, A.S. and G.L.; software,
A.S. and G.L.; validation, A.S., G.L. and N.S.O.; formal analysis, A.S. and N.S.O.; writing—original
draft preparation, A.S., and N.S.O.; writing—review and editing, A.S., N.S.O., G.L., A.K., A.A. (Ali
Alenezi) and A.A. (Abdulaziz Alanazi); supervision, N.S.O. and A.K.; funding acquisition, N.S.O.,
A.A. (Ali Alenezi) and A.A. (Abdulaziz Alanazi). All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Universiti Tenaga Nasional BOLD Research Grant 2020
(Grant No.: RJO10517844/102) and the Deputyship for Research & Innovation, Ministry of Education
in Saudi Arabia (Grant No.: IF_2020_NBU_401).

Acknowledgments: The authors extend their appreciation to the Deputyship for Research & Innova-
tion, Ministry of Education in Saudi Arabia for funding this research work through the project number
“IF_2020_NBU_401”. In addition, this work was supported by the Universiti Tenaga Nasional BOLD
Research Grant 2020 (Grant No.: RJO10517844/102).

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2022, 22, 223 26 of 27

References
1. Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M. Un-

manned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7, 48572–48634.
[CrossRef]

2. Zeng, Y.; Lyu, J.; Zhang, R. Cellular-connected UAV: Potential, challenges, and promising technologies. IEEE Wirel. Commun.
2018, 26, 120–127. [CrossRef]

3. Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE
Commun. Mag. 2016, 54, 36–42. [CrossRef]

4. Zeng, Y.; Wu, Q.; Zhang, R. Accessing from the sky: A tutorial on UAV communications for 5G and beyond. arXiv 2019,
arXiv:1903.05289.

5. Merwaday, A.; Guvenc, I. UAV assisted heterogeneous networks for public safety communications. In Proceedings of the 2015
IEEE Wireless Communications and Networking Conference Workshops (WCNCW), New Orleans, LA, USA, 9–12 March 2015;
pp. 329–334. [CrossRef]

6. Quaritsch, M.; Kruggl, K.; Wischounig-Strucl, D.; Bhattacharya, S.; Shah, M.; Rinner, B. Networked UAVs as aerial sensor network
for disaster management applications. Elektrotech. Inf. 2010, 127, 56–63. [CrossRef]

7. Shakhatreh, H.; Khreishah, A.; Alsarhan, A.; Khalil, I.; Sawalmeh, A.; Othman, N.S. Efficient 3D placement of a UAV using
particle swarm optimization. In Proceedings of the 8th International Conference on Information and Communication Systems
(ICICS), Irbid, Jordan, 4–6 April 2017; pp. 258–263.

8. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Drone small cells in the clouds: Design, deployment and performance analysis.
In Proceedings of the Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–6.

9. Sawalmeh, A.; Othman, N.; Shakhatreh, H. Efficient Deployment of Multi-UAVs in Massively Crowded Events. Sensors 2018,
18, 3640. [CrossRef]

10. Sawalmeh, A.; Othman, N.S.; Shakhatreh, H.; Khreishah, A. Providing wireless coverage in massively crowded events using
UAVs. In Proceedings of the 13th Malaysia International Conference on Communications (MICC), Johor Bahru, Malaysia, 28–30
November 2017; pp. 158–163.

11. Zeng, Y.; Zhang, R.; Lim, T.J. Throughput maximization for UAV-enabled mobile relaying systems. IEEE Trans. Commun. 2016,
64, 4983–4996. [CrossRef]

12. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Mobile unmanned aerial vehicles (UAVs) for energy-efficient internet of things
communications. IEEE Trans. Wirel. Commun. 2017, 16, 7574–7589. [CrossRef]

13. Bor-Yaliniz, R.I.; El-Keyi, A.; Yanikomeroglu, H. Efficient 3-D placement of an aerial base station in next generation cellular
networks. In Proceedings of the 2016 IEEE international conference on communications (ICC), Kuala Lumpur, Malaysia, 23–27
May 2016; pp. 1–5.

14. Alzenad, M.; El-Keyi, A.; Lagum, F.; Yanikomeroglu, H. 3-D placement of an unmanned aerial vehicle base station (UAV-BS) for
energy-efficient maximal coverage. IEEE Wirel. Commun. Lett. 2017, 6, 434–437. [CrossRef]

15. Sawalmeh, A.H.; Othman, N.S.; Shakhatreh, H.; Khreishah, A. Wireless coverage for mobile users in dynamic environments
using UAV. IEEE Access 2019, 7, 126376–126390. [CrossRef]

16. Lai, C.C.; Chen, C.T.; Wang, L.C. On-demand density-aware UAV base station 3D placement for arbitrarily distributed users with
guaranteed data rates. IEEE Wirel. Commun. Lett. 2019, 8, 913–916. [CrossRef]

17. Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal LAP altitude for maximum coverage. IEEE Wirel. Commun. Lett. 2014,
3, 569–572. [CrossRef]

18. Series, M. Guidelines for Evaluation of Radio Interface Technologies for IMT-Advanced; Report ITU; International Telecommunication
Union: Geneva, Switzerland, 2009.

19. Lai, C.C.; Wang, L.C.; Han, Z. The coverage overlapping problem of serving arbitrary crowds in 3d drone cellular networks.
IEEE Trans. Mob. Comput. 2020, 1. [CrossRef]

20. Wu, H.; Tao, X.; Zhang, N.; Shen, X. Cooperative UAV cluster-assisted terrestrial cellular networks for ubiquitous coverage. IEEE
J. Sel. Areas Commun. 2018, 36, 2045–2058. [CrossRef]

21. Arribas, E.; Mancuso, V.; Cholvi, V. Coverage optimization with a dynamic network of drone relays. IEEE Trans. Mob. Comput.
2019, 19, 2278–2298. [CrossRef]

22. Shakhatreh, H.; Khreishah, A.; Othman, N.S.; Sawalmeh, A. Maximizing indoor wireless coverage using uavs equipped with
directional antennas. In Proceedings of the 13th Malaysia International Conference on Communications (MICC), Johor Bahru,
Malaysia, 28–30 November 2017; pp. 175–180.

23. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless
coverage. IEEE Commun. Lett. 2016, 20, 1647–1650. [CrossRef]

24. Sun, J.; Masouros, C. Deployment strategies of multiple aerial BSs for user coverage and power efficiency maximization. IEEE
Trans. Commun. 2018, 67, 2981–2994. [CrossRef]

25. Kalantari, E.; Yanikomeroglu, H.; Yongacoglu, A. On the number and 3D placement of drone base stations in wireless cellular
networks. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21
September 2016; pp. 1–6.

http://doi.org/10.1109/ACCESS.2019.2909530
http://dx.doi.org/10.1109/MWC.2018.1800023
http://dx.doi.org/10.1109/MCOM.2016.7470933
http://dx.doi.org/10.1109/WCNCW.2015.7122576
http://dx.doi.org/10.1007/s00502-010-0717-2
http://dx.doi.org/10.3390/s18113640
http://dx.doi.org/10.1109/TCOMM.2016.2611512
http://dx.doi.org/10.1109/TWC.2017.2751045
http://dx.doi.org/10.1109/LWC.2017.2700840
http://dx.doi.org/10.1109/ACCESS.2019.2938272
http://dx.doi.org/10.1109/LWC.2019.2899599
http://dx.doi.org/10.1109/LWC.2014.2342736
http://dx.doi.org/10.1109/TMC.2020.3019106
http://dx.doi.org/10.1109/JSAC.2018.2864418
http://dx.doi.org/10.1109/TMC.2019.2927335
http://dx.doi.org/10.1109/LCOMM.2016.2578312
http://dx.doi.org/10.1109/TCOMM.2018.2889460


Sensors 2022, 22, 223 27 of 27

26. Galkin, B.; Kibilda, J.; DaSilva, L.A. Deployment of UAV-mounted access points according to spatial user locations in two-tier
cellular networks. In Proceedings of the 2016 Wireless Days (WD), Toulouse, France, 23–25 March 2016; pp. 1–6.

27. Plachy, J.; Becvar, Z.; Mach, P.; Marik, R.; Vondra, M. Joint positioning of Flying Base stations and Association of Users:
Evolutionary-based approach. IEEE Access 2019, 7, 11454–11463. [CrossRef]

28. Shakhatreh, H.; Khreishah, A.; Khalil, I. Indoor mobile coverage problem using UAVs. IEEE Syst. J. 2018, 12, 3837–3848.
[CrossRef]

29. Liu, G.; Shakhatreh, H.; Khreishah, A.; Guo, X.; Ansari, N. Efficient Deployment of UAVs for Maximum Wireless Coverage Using
Genetic Algorithm. In Proceedings of the 2018 IEEE 39th Sarnoff Symposium, Newark, NJ, USA, 24–25 September 2018; pp. 1–6.

30. Yang, Z.; Pan, C.; Wang, K.; Shikh-Bahaei, M. Energy efficient resource allocation in UAV-enabled mobile edge computing
networks. IEEE Trans. Wirel. Commun. 2019, 18, 4576–4589. [CrossRef]

31. Yedla, M.; Pathakota, S.R.; Srinivasa, T. Enhancing K-means clustering algorithm with improved initial center. Int. J. Comput. Sci.
Inf. Technol. 2010, 1, 121–125.

32. Sarkar, S.; Roy, A.; Purkayastha, B.S. Application of particle swarm optimization in data clustering: A survey. Int. J. Comput. Appl.
2013, 65, 38–46.

33. Cui, X.; Potok, T.E.; Palathingal, P. Document clustering using particle swarm optimization. In Proceedings of the 2005 IEEE
Swarm Intelligence Symposium, Pasadena, CA, USA, 8–10 June 2005; pp. 185–191.

34. Von Luxburg, U. Clustering stability: An overview. Found. Trends Mach. Learn. 2010, 2, 235–274.
35. Maulik, U.; Bandyopadhyay, S. Genetic algorithm-based clustering technique. Pattern Recognit. 2000, 33, 1455–1465. [CrossRef]
36. Hruschka, E.R.; Ebecken, N.F. A genetic algorithm for cluster analysis. Intell. Data Anal. 2003, 7, 15–25. [CrossRef]
37. Liu, C.; Feng, W.; Wang, J.; Chen, Y.; Ge, N. Aerial Small Cells Using Coordinated Multiple UAVs: An Energy Efficiency

Optimization Perspective. IEEE Access 2019, 7, 122838–122848. [CrossRef]
38. Wu, Q.; Zeng, Y.; Zhang, R. Joint Trajectory and Communication Design for Multi-UAV Enabled Wireless Networks. IEEE Trans.

Wirel. Commun. 2018, 17, 2109–2121. [CrossRef]
39. Korte, B.; Vygen, J.; Korte, B.; Vygen, J. Combinatorial Optimization; Springer: Berlin/Heidelberg, Germany, 2012; Volume 2.
40. Shelokar, P.; Jayaraman, V.K.; Kulkarni, B.D. An ant colony approach for clustering. Anal. Chim. Acta 2004, 509, 187–195.

[CrossRef]
41. Cura, T. A particle swarm optimization approach to clustering. Expert Syst. Appl. 2012, 39, 1582–1588. [CrossRef]
42. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 27 December 1965–7 January 1966; University of
California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297.

43. Nazeer, K.A.; Sebastian, M. Improving the Accuracy and Efficiency of the k-means Clustering Algorithm. In Proceedings of the
World Congress on Engineering, London, UK, 1–3 July 2009; Association of Engineers London: London, UK, 2009; Volume 1, pp.
1–3.

44. Saemi, B.; Hosseinabadi, A.A.R.; Kardgar, M.; Balas, V.E.; Ebadi, H. Nature Inspired Partitioning Clustering Algorithms: A Review
and Analysis. In International Workshop Soft Computing Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 96–116.

45. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks,
Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

46. Chen, C.Y.; Ye, F. Particle swarm optimization algorithm and its application to clustering analysis. In Proceedings of the 17th
Conference on Electrical Power Distribution, Tehran, Iran, 2–3 May 2012; pp. 789–794.

47. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)
algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

48. GACA. General Authority of Civil Aviation, Drone Laws in Saudi Arabia. 2020. Available online: https://gaca.gov.sa/web/en-gb/
news/gaca-bans-all-drones-in-kingdom-airspace (accessed on 25 December 2021).

http://dx.doi.org/10.1109/ACCESS.2019.2892564
http://dx.doi.org/10.1109/JSYST.2018.2824802
http://dx.doi.org/10.1109/TWC.2019.2927313
http://dx.doi.org/10.1016/S0031-3203(99)00137-5
http://dx.doi.org/10.3233/IDA-2003-7103
http://dx.doi.org/10.1109/ACCESS.2019.2938256
http://dx.doi.org/10.1109/TWC.2017.2789293
http://dx.doi.org/10.1016/j.aca.2003.12.032
http://dx.doi.org/10.1016/j.eswa.2011.07.123
http://dx.doi.org/10.1007/s10898-007-9149-x
https://gaca.gov.sa/web/en-gb/news/gaca-bans-all-drones-in-kingdom-airspace
https://gaca.gov.sa/web/en-gb/news/gaca-bans-all-drones-in-kingdom-airspace

	Introduction
	Related Works
	System Model
	Problem Formulation
	Clustering Approaches
	Mathematical Formulation of the Clustering Problem
	Iterative Distance-Based Clustering (K-Means)
	Meta-Heuristic Clustering Algorithms
	Genetic Algorithm (GA)
	Particle Swarm Optimization (PSO)


	Efficient UAV 3D Placement Algorithms
	Problem Formulation
	Artificial Bees Colony (ABC)

	Simulation Results
	Performance Comparison of Clustering Algorithms
	Performance of Power-Efficient Algorithm
	Uniform Distribution Users Scenario
	Non-Uniform Distribution Users Scenario


	 Conclusions
	References

