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Abstract

Site-specific genetic and epigenetic targeting of distinct cell populations is a central goal in molecular neuro-
science and is crucial to understand the gene regulatory mechanisms that underlie complex phenotypes and
behaviors. While recent technological advances have enabled unprecedented control over gene expres-
sion, many of these approaches are focused on selected model organisms and/or require labor-intensive
customization for different applications. The simplicity and modularity of clustered regularly interspaced
short palindromic repeats (CRISPR)-based systems have transformed genome editing and expanded the
gene regulatory toolbox. However, there are few available tools for cell-selective CRISPR regulation in
neurons. We designed, validated, and optimized CRISPR activation (CRISPRa) and CRISPR interference
(CRISPRi) systems for Cre recombinase-dependent gene regulation. Unexpectedly, CRISPRa systems
based on a traditional double-floxed inverted open reading frame (DIO) strategy exhibited leaky target
gene induction even without Cre. Therefore, we developed an intron-containing Cre-dependent CRISPRa
system (SVI-DIO-dCas9-VPR) that alleviated leaky gene induction and outperformed the traditional DIO
system at endogenous genes in HEK293T cells and rat primary neuron cultures. Using gene-specific
CRISPR sgRNAs, we demonstrate that SVI-DIO-dCas9-VPR can activate numerous rat or human genes
(GRM2, Tent5b, Fos, Sstr2, and Gadd45b) in a Cre-specific manner. To illustrate the versatility of this tool,
we created a parallel CRISPRi construct that successfully inhibited expression from a luciferase reporter in
HEK293T cells only in the presence of Cre. These results provide a robust framework for Cre-dependent
CRISPR-dCas9 approaches across different model systems, and enable cell-specific targeting when com-
bined with common Cre driver lines or Cre delivery via viral vectors.
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Significance Statement

This manuscript reports a novel set of clustered regularly interspaced short palindromic repeats (CRISPR)
tools for Cre-dependent transcriptional targeting in neurons and non-neuronal dividing cells. Our results
demonstrate that these tools perform well at multiple gene targets and can be used for both transcriptional
activation or repression. Compared with traditional Cre-dependent overexpression or knock-out models,
Cre-dependent CRISPR activation (CRISPRa) and CRISPR interference (CRISPRi) provide several advan-
tages, including targeting of one or multiple endogenous genomic loci, titration of effect size, and bidirec-
tional regulation using the same CRISPR sgRNA. Further, SVI-DIO-dCas9 tools can be used in existing
transgenic animal models or wild-type models via viral delivery. This advance enables applications in less
common animal models and can be used to target endogenous genomic loci for fine-tuned transcriptional
activation or repression.
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Introduction
Genetic and epigenetic targeting are fundamental strat-

egies to study gene regulation and function, and also pro-
vide novel therapeutic avenues for genetic diseases. In
recent years, clustered regularly interspaced short palin-
dromic repeats (CRISPR) systems have revolutionized the
field as tools for site-specific DNA and RNA editing (Jinek
et al., 2012; Cong et al., 2013; Savell and Day, 2017;
Pickar-Oliver and Gersbach, 2019). In these systems, a
Cas nuclease is directed to target DNA by an engineered
CRISPR single guide RNA (sgRNA), resulting in nuclease-
mediated cleavage of the targeted nucleic acid sequence.
In addition to CRISPR-Cas9 systems, a number of new
approaches have been developed based on a mutated,
catalytically dead Cas9 (dCas9). CRISPR-dCas9 strat-
egies target specific genomic loci without causing dou-
ble-strand breaks, and can instead be fused to an array of
different effector proteins (Savell and Day, 2017). dCas9 sys-
tems are commonly used to induce transcriptional activation
(CRISPRa) or interference (CRISPRi), epigenetic modifica-
tions, chromatin looping, tagging, or can be used as an an-
chor system to deliver non-coding RNAs (CRISPR-Display;
Hilton et al., 2015; Konermann et al., 2015; Shechner et al.,
2015; Yeo et al., 2018; Chen et al., 2019; Savell et al., 2019a;
Carullo et al., 2020).
DNA recombinases are commonly used to enable inver-

sion, deletion, or integration of transgenes in a cell-specif-
ic manner. The Cre/Lox system is a commonly used
recombination approach in which the Cre recombinase
recognizes specific 34-bp palindromic Lox sites within a
DNA sequence (Anton and Graham, 1995; Gibb et al.,
2010). Cre-mediated inversion or deletion occurs when
flanking Lox sites are oriented in opposing or parallel
orientations, respectively. Importantly, Cre recombinase
expression driven under cell type-specific promoters ena-
bles targeted gene manipulation of these cell populations
(Madisen et al., 2012; Daigle et al., 2018). Due in part to
the ease and versatility of this system, hundreds of differ-
ent Cre-driver transgenic lines have been generated for
cell-targeted approaches (Gong et al., 2007; Madisen et
al., 2012; Daigle et al., 2018). Likewise, Cre-dependent
genetic FLEX switches (flip-excision; also known as dou-
ble-inverted open reading frame, or DIO switches) invert

DNA sequences to enable gene activation or silencing
(Schnütgen et al., 2003). This approach has widely been
used in neuroscience, enabling cell type-specific optoge-
netic and chemogenetic activation, overexpression or
knock-down of transgenes, and perturbation of endoge-
nous genes (Kühn et al., 1995; Tsien et al., 1996; Gong et
al., 2007; Atasoy et al., 2008; Madisen et al., 2012; Erwin
et al., 2020).
While CRISPR/dCas9 approaches have enabled tar-

geted induction of transcriptional or epigenetic states at
selected genes, inducible cell type-specific CRISPR tools
based on these platforms remain limited (Kumar et al.,
2018; Bäck et al., 2019). For example, most currently
available transgenic CRISPR-dCas9 lines are limited to
the mouse (Zhou et al., 2018; Gemberling et al., 2021),
and existing rat transgenic lines rely on Cre-dependent
CRISPR guide RNA constructs to achieve cell type speci-
ficity (Bäck et al., 2019). These approaches are limited to
the specific transgenic model system, and require costly
crosses with Cre lines and time-consuming animal colony
management. Similar approaches based on viral delivery
of CRISPR machinery have so far been limited to constitu-
tive transgene expression (Zheng et al., 2018; Savell et al.,
2019a), or only enable genome editing via the introduction
of double-strand breaks (Kumar et al., 2018). Here, we de-
veloped novel Cre-dependent CRISPRa and CRISPRi
systems that incorporate a synthetic intron into the dCas9
transgene. Creating an intron-containing dCas9 construct
offers two advantages: (1) introns can increase transgene
expression compared with intron-lacking counterparts
(Shaul, 2017); and (2) introns provide a non-coding locus
for insertion sites of Lox sequences without disturbing the
integrity of the coding protein. By separating the dCas9
transgene into two segments with a short SV40 intron
(SVI), we created CRISPRa and CRISPRi systems in
which the first segment of dCas9 is double-floxed and in-
verted. Importantly, this SV40 intron is only 97bp, and
therefore does not substantially affect construct size or
compatibility with viral vector delivery. This approach
prevents leaky expression of functional CRISPR con-
structs by requiring Cre-induced inversion to orient
both dCas9 segments into an open reading frame.
Furthermore, the construct is designed for easy rear-
rangement and replacement of promoters and effector
fusions and can be applied for various CRISPR/dCas9
systems.

Materials and Methods
Cultured neuron experiments
Primary rat neuronal cultures were generated from em-

bryonic day 18 rat striatal tissue as described previously
(Savell et al., 2019a). Briefly, cell culture wells were coated
overnight at 37°C with poly-L-lysine (0.05mg/ml for cul-
ture wells supplemented with up to 0.05mg/ml laminin)
and rinsed with diH2O. Dissected tissues were incubated
with papain for 25min at 37°C. After rinsing in HBSS, a
single-cell suspension of the tissue was re-suspended in
Neurobasal media (Invitrogen) by trituration through a se-
ries of large to small fire-polished Pasteur pipets. Primary
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neuronal cells were passed through a 100 mM cell strainer,
spun and re-suspended in fresh media. Cells were then
counted and plated to a density of 125,000 cells per well
on 24-well culture plate with or without glass coverslips
(60,000 cells/cm). Cells were grown in Neurobasal media
plus B-27 and L-glutamine supplement (complete neuro-
basal media) for 11 days in vitro (DIV) in a humidified CO2

(5%) incubator at 37°C.
For virus experiments, cells were transduced with

lentiviruses on DIV4 or DIV5. All viruses had a mini-
mum titer of 1� 109 GC/ml, with a target multiplicity of
infection (MOIs) of at least 1000. After an 8- to 16-h in-
cubation period, virus-containing media was replaced
with conditioned media to minimize toxicity. A regular
half-media change followed on DIV8. On DIV11, trans-
duced cells were imaged and virus expression was
verified before RNA extraction. EGFP and mCherry ex-
pression was also used to visualize successful trans-
duction using a Nikon TiS inverted epifluorescence
microscope.

RNA extraction and RT-qPCR
Total RNA was extracted (RNAeasy kit, QIAGEN) with

DNase treatment (RNase free DNase, QIAGEN), and re-
verse-transcribed (iScript cDNA Synthesis kit, Bio-Rad).
cDNA was subject to qPCR for genes of interest, as de-
scribed previously (Savell et al., 2016). A list of PCR
primer sequences is provided in Table 1.

CRISPR-dCas9 construct design
To achieve transcriptional activation or inactivation, len-

tivirus-compatible plasmids were engineered to express
dCas9 fused to either VPR or KRAB-MeCP2, based on
existing published plasmids [Addgene plasmid #114196
(Savell et al., 2019a); Addgene plasmid #155365 (Duke et
al., 2020)]. A Cre-dependent DIO version of the dCas9-
VPR construct was generated by insertion of LoxP and
Lox2272 sequences flanking the dCas9-VPR cassette.
dCas9-VPR was PCR-amplified to insert additional re-
striction sites (KpnI, BmtI, and BspDI) to allow for LoxP
and Lox2272 insertion and was subsequently inserted in
reverse orientation to create an intermediate construct via
sequential digest and ligation (AgeI, EcoRI). LoxP and
Lox2272 sites were amplified from a DIO construct
(Addgene plasmid #113685; Don et al., 2017) to create re-
striction sites (KpnI and BmtI around one set; BspDI and
KpnI around another set) and were inserted into the inter-
mediate construct via sequential restriction digest and li-
gation (KpnI, BmtI, BspDI, and EcoRI). Intron-containing
dCas9-VPR was constructed by the insertion of a gBlock
containing the SV40 intron into the original dCas9-VPR
plasmid via Gibson assembly (Gibson Assembly kit, New
England BioLabs). The SVI-FLEX construct was built via
Gibson assembly of the original dCas9-VPR backbone
and two gBlocks encoding the SV40 intron sequence,
LoxP and Lox2272 sites (sequences based on DIO con-
struct described above) and dCas9-part1 in inverted ori-
entation. The intron-containing CRISPRi construct (SVI-
dCas9-KRAB-MeCP2) was built via restriction digest and
Gibson assembly (SfiI, EcoRI, and Xhol, Gibson Assembly kit,

New England BioLabs) of the KRAB-MeCP2 and SVI-dCas9-
VPR constructs. A Cre-encoding construct (Addgene plasmid
#49056; Kaspar et al., 2002) was used to amplify and insert a
Cre transgene into a lentivirus compatible backbone that
contained the hSYN promoter and expressed mCherry for
visualization via Gibson assembly. To create an additional
Cre construct, mCherry was replaced with GFP via sequential
digest and ligation (EcoRI and XhoI). dCas9-VPR-expressing
constructs were co-transduced with sgRNA-containing con-
structs. Gene-specific sgRNAs were designed using an on-
line sgRNA tool, provided by the Zhang Lab at MIT (crispr.
mit.edu) and inserted in a previously described lentivirus
compatible sgRNA scaffold construct (Addgene plasmid
#114199; Savell et al., 2019b). To ensure specificity, all
CRISPR crRNA sequences were analyzed with the National
Center for Biotechnology Information’s (NCBI) Basic Local
Alignment Search Tool (BLAST) and Cas-OFFinder (http://
www.rgenome.net/cas-offinder/). sgRNAs were designed
to target GRM2, Tent5b, Sstr2, Gadd45b, and Fos, re-
spectively. A list of the target sequences is provided in
Table 1. crRNA sequences were annealed and ligated
into the sgRNA scaffold using the BbsI or BsmBI cut
site. Plasmids were sequence-verified with Sanger se-
quencing; final crRNA insertion was verified using PCR.
Lentivirus-compatible SYN-SVI-DIO-dCas9-VPR and
SYN-SVI-DIO-dCas9-KRAB-MeCP2 plasmids are avail-
able on Addgene (plasmids #164576 and #170378).

Lentivirus production
Viruses were produced in a sterile environment sub-

ject to BSL-2 safety by transfecting HEK293T cells with
specified CRISPR-dCas9 plasmids, the psPAX2 pack-
aging plasmid, and the pCMV-VSV-G envelope plasmid
(Addgene plasmids #12260 and #8454) with FuGene
HD (Promega) for 40–48 h as previously described
(Savell et al., 2019b). Viruses were purified using filter
(0.45mm) and ultracentrifugation (25,000 rpm, 1 h 45min)
steps. Viral titer was determined using a qPCR Lentivirus
Titration kit (Lenti-X, qRT-PCR Titration kit, Takara). For
smaller scale virus preparation, each sgRNA plasmid was
transfected in a 12-well culture plate as described above.
After 40–48 h, lentiviruses were concentrated with Lenti-X
concentrator (Takara), resuspended in sterile PBS, and used
immediately. Viruses were stored in sterile PBS at �80°C in
single-use aliquots.

HEK293T cell culturing and transfection
HEK293T cells were obtained from American type

Culture Collection (ATCC; catalog #CRL-3216, RRID:
CVCL_0063) and cultured in standard HEK media: DMEM
(DMEM high glucose, pyruvate; Invitrogen 11995081)
supplemented with 10% bovine serum (Qualified US
Origin; BioFluid 200–500-Q) and 1 U penicillin-streptomy-
cin (Invitrogen 15140122). Cells were maintained in T75 or
T225 tissue flasks. At each passage, cells were trypsi-
nized for 1–3min (0.25% trypsin and 1 mM EDTA in PBS,
pH 7.4) at room temperature. For transfection experiment
cells were plated in 24-well plates and transfected with
FuGene HD (Promega).
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Luciferase assay
Bidirectional regulation by SVI-DIO CRISPRa and

CRISPRi machinery was examined using a previously de-
scribed Fos luciferase reporter plasmid (Duke et al.,
2020). A total of 80,000 HEK293T cells were plated in
500ml HEK Media. After cells reached 40–50% conflu-
ence, 500 ng total plasmid DNA was transfected with
1.5ml FuGene HD (Promega) as follows: 50 ng of lucifer-
ase plasmid, 450 ng in 1:2 molar ratio of total sgRNA:
CRISPRa or CRISPRi plasmid. A luciferase glow assay
was performed according to manufacturer’s instructions
40 h following transfection (Thermo Scientific Pierce
Firefly Glow assay; Thermo Scientific 16177). Cells were
lysed in 100ml 1� luciferase cell lysis buffer while shaking
at low speed and protected from light for 30min; 20ml of
cell lysate was then added to an opaque 96-well micro-
plate (Corning 353296) and combined with 50ml 1� D-lu-
ciferin working solution supplemented with 1� firefly
signal enhancer (Thermo Scientific Pierce Firefly Signal
Enhancer; Thermo Scientific 16180). Following a 10-min
dark incubation period to allow for signal stabilization, lumi-
nescence was recorded using a Synergy 2 Multi-Detection
Microplate Reader (BioTek). Luminescence in dCas9-
KRAB-MeCP2 and dCas9-VPR experiments was recorded
with a read height of 1 mm, 1-s integration time, and 135-
or 100-ms delay, respectively. Representative images of
luciferase reporter activity assays were captured using an
Azure c600 imager (Azure Biosystems).

Results
Creation and validation of a traditional FLEX-CRISPRa
system
AAV-driven FLEX systems are among the most common

Cre/Lox approaches used in neurons, enabling inducible ex-
pression by combination with Cre-driver animal models.
While this strategy has proven to be a versatile ap-
proach for cell-specific targeting, few tools have been
described for Cre-dependent CRISPR manipulation.
Given the flexibility of CRISPRa and CRISPRi systems
for transcriptional manipulation at endogenous loci, de-
velopment of Cre-dependent platforms for these sys-
tems are of interest. To create a Cre-inducible system
for transcriptional activation, we adapted a CRISPRa
tool recently validated in neurons (Savell et al., 2019a)
using a common DIO strategy. In this DIO system, an in-
verted dCas9-VPR cassette was flanked by LoxP and
Lox2272 sites (Fig. 1A), enabling Cre-dependent inver-
sion of dCas9-VPR into the correct orientation followed
by the excision of one antiparallel Lox site to prevent
further inversion events. To validate this system in di-
viding cells, HEK293T cells were co-transfected with ei-
ther a constitutively active dCas9-VPR construct or the
DIO-dCas9-VPR construct, in tandem with sgRNA plas-
mids targeting either the human GRM2 promoter, or a
non-targeting control (sgRNA for the bacterial lacZ
gene). The DIO-dCas9-VPR construct was tested with
or without transfection of a Cre-2A-mCherry plasmid
that was driven under the human synapsin (hSYN) pro-
moter (Fig. 1B). Constitutive activation of the

endogenous GRM2 gene yielded a 75-fold increase of
GRM2 mRNA compared with a non-targeting lacZ con-
trol sgRNA. While the Cre-dependent DIO-dCas9-VPR
system was able to induce GRM2 mRNA transcription
by 112-fold, we also observed a 49-fold increase in the
absence of Cre. Next, to examine gene induction in
neurons, we transduced rat primary striatal neuron cul-
tures with lentiviruses expressing sgRNAs, CRISPR
machinery, and Cre recombinase (Fig. 1C). CRISPR
sgRNAs targeting the Tent5b (also known as Fam46b)
promoter resulted in strong upregulation of Tent5b
mRNA with both the constitutive and Cre-dependent
constructs. However, in neurons the DIO system also
exhibited leaky expression, indicated by an 8-fold in-
crease of Tent5b mRNA in the absence of Cre. Tent5b
is a highly inducible gene which could be more suscep-
tible to baseline/leaky induction compared with other
genes. Therefore, we tested the DIO-dCas9-VPR sys-
tem at two other genes including a gene encoding the
neuropeptide receptor Sstr2 and DNA-damage induci-
ble gene Gadd45b (Fig. 1D). Although these genes are
less inducible than Tent5b (with induction rates of 8- to
19-fold compared with lacZ controls), we still observed
non-specific gene induction in the absence of Cre (2- to
5-fold induction without Cre). While we chose efficient
gRNAs validated in prior studies (Savell et al., 2019a,
2020; Carullo et al., 2020), it is possible that the differ-
ences in inducibility across gene targets are driven by
the respective gRNA properties rather than inherent in-
ducibility of the target genes. Alternately, this difference
may correspond to variation in gene inducibility, driven
by baseline expression, gene length, or other features
of transcript regulation. Nevertheless, the induction of
target genes in the absence of Cre recombinase is likely
because of leaky expression of the DIO-dCas9-VPR
transgene, since no transgene inversion could be de-
tected in PCR verification using genomic DNA isolated
from cells lacking Cre (Fig. 1E). These results are con-
sistent with recent evidence that DIO transgenes can be
expressed in the inverted orientation at low levels in the
absence of Cre recombinase (Fischer et al., 2019).

Intron insertion into dCas9 increases expression and
enables creation of a split-dCas9 FLEX system
Given that an inverted dCas9-VPR cassette still resulted

in target gene induction in the absence of Cre, we next
aimed to design a system that would prohibit expression
of the full length dCas9-VPR fusion protein without
Cre-mediated recombination. To achieve this goal, we de-
signed an intron-containing FLEX system. First, we in-
serted a small SV40 intron (SVI) into the dCas9 sequence
to create a constitutively active, intron-containing con-
struct (SVI-dCas9-VPR) in which the dCas9 cassette is di-
vided into two segments by the SV40 intron (Fig. 2A). We
created two versions (1.0 and 2.0) of this SVI-dCas9-VPR
construct to determine optimal intron positioning and
maximal splicing efficiency. While the intron was only
slightly shifted between versions 1.0 and 2.0, SVI-dCas9-
VPR 2.0 created a frameshift immediately after the intron,
resulting in a premature stop codon within ,100 bases if
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the product was not spliced (Fig. 2B). PCR amplification
from cDNA with primers spanning this intron sequence
following HEK293T plasmid transfection revealed that
both constructs produced detectable dCas9 expression.
However, splicing efficiency of the SVI-dCas9-VPR 2.0
version was higher as compared with SVI-dCas9-VPR 1.0
(Fig. 2C,D). This variability is not surprising given the
known effects of intron placement on splicing efficiency
(Shaul, 2017). While we still detected low levels of un-
spliced mRNA using the SVI-dCas9-VPR 2.0 construct,
this is potentially driven by nascent RNA that has not yet
undergone splicing rather that intron retention (which
would result in a premature stop codon).
Using the more efficient SVI-dCas9-VPR 2.0, we next

generated a split-dCas9 DIO cassette by inverting and
flanking the first segment of dCas9 with LoxP and
Lox2272 sites to prevent leaky transgene expression (Fig.
2E). With only part of the dCas9 cassette inverted, Cre-
dependent inversion and recombination is required to
yield a full-length functional dCas9-VPR fusion protein.
Using the same intron-spanning primer set as in previous
validations, we compared PCR products amplified from
the original constitutive dCas9-VPR, the intron-containing

constitutive VPR (SVI-dCas9-VPR 2.0), and the new Cre-
dependent SVI-dCas9-VPR (SVI-DIO-dCas9-VPR) plas-
mids. As predicted, the SVI-dCas9-VPR 2.0 plasmid
yielded a longer product compared with the original
dCas9-VPR with no intron (Fig. 2F), because of the 97bp
intron in the SVI-dCas9-VPR 2.0 plasmid. However, be-
cause the SVI-DIO-dCas9-VPR contains an inverted
dCas9 segment, the validation primers target the same
strand and yield no PCR product. These results further
validate the absence of non-specific recombination fol-
lowing plasmid transfection.
We next transfected HEK293T cells with each of these

three constructs to compare recombination, expression,
and splicing efficiency of the SVI-DIO-dCas9-VPR con-
struct. The SVI-DIO-dCas9-VPR groups also received a
Cre-EGFP plasmid that was driven under the hSYN pro-
moter to initiate recombination. PCR amplification of
cDNA generated from the transfected HEK293T experi-
ments with intron-spanning primers revealed strong sig-
nals for the short, spliced PCR product for all three
groups (Fig. 2G). This indicates that all three constructs
were expressed in HEK293T cells and that both SVI-
dCas9-VPR 2.0 and SVI-DIO-dCas9-VPR transgenes
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Figure 1. Design and validation of a DIO-dCas9-VPR CRISPRa plasmid. A, Illustration of CRISPRa construct designs for a tradi-
tional constitutive dCas9-VPR (top) and a Cre-dependent double-floxed inverted open reading frame (DIO) dCas9-VPR (bottom).
PCR products for primer sets used in panel e are illustrated as p1 and p2 (red). B, In transfected HEK293T cells, the constitutive
dCas9-VPR construct induced the endogenous target gene GRM2 by 75-fold compared with the non-targeting lacZ sgRNA control
(Welch’s t test t(2) = 14.43, p=0.0048). DIO-dCas9-VPR significantly induced transcription of GRM2 with and without expression of
the Cre construct (n=3 per group, two-way ANOVA F(1,8) = 32.89, p=0.0004). C, Lentiviral expression of constitutive dCas9-VPR
construct as well as the DIO-dCas9-VPR and Cre constructs in rat striatal neurons revealed increased mRNA for the target gene
Tent5b (Welch’s t test for constitutive t(2) = 22.81, p=0.0019, two-way ANOVA for DIO with n=3 per group, F(1,8) = 487.9,
p, 0.0001). D, Additional CRISPRa target genes tested in neurons demonstrated leaky induction in the absence of Cre recombi-
nase (two-way ANOVA with n=3 per group for Gadd45b F(1,12) = 91.03, p, 0.0001, and for Sstr2 F(1,12) = 142.1, p, 0.0001). E,
qPCR on transfected HEK293T cell DNA showed high levels of the inverted dCas9-VPR cassette with and without lentiviral Cre ex-
pression (p1, left, n=4 per group, Kruskal–Wallis test F(3,12) = 13.06 p, 0.0001). Inversion into the correct orientation only occurred
in the presence of Cre (p2, right, n=4 per group, Kruskal–Wallis test F(3,12) = 12.11 p=0.0002). Constitutive VPR and DIO groups
(with and without Cre) are compared with a non-transduced control (NTC). Data expressed as mean 6 SEM.
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generated mRNA transcripts with efficient splicing and in-
tron exclusion. We further observed that, in HEK293T
cells, SVI-dCas9-VPR and SVI-DIO-dCas9-VPR mRNA
was expressed at levels 4-fold and 2-fold higher (respec-
tively) than observed with the constitutive dCas9-VPR
plasmid (Fig. 2H). Together, these experiments demon-
strate that this newly developed intron-containing FLEX
system is capable of efficient splicing and transcription
and that Cre-dependent recombination is required for in-
version and expression of the dCas9-VPR transgene.

Intron-containing FLEX system drives Cre-dependent
CRISPR targeting with no leaky gene induction
Next, we sought to test this newly developed intron-

containing FLEX CRISPR system in vitro to validate Cre-
specific expression and gene induction (Fig. 3A). Using a
similar experimental design as in the DIO-dCas9-VPR
experiments (Fig. 1), we transfected HEK293T cells with plas-
mids expressing constitutive dCas9-VPR, SVI-dCas9-VPR,

and SVI-DIO-dCas9-VPR constructs, along with sgRNA tar-
geting the GRM2 gene promoter (or lacZ control). Both the in-
tron-containing SVI-dCas9-VPR and constitutive dCas9-VPR
caused strong induction of GRM2 compared with their re-
spective lacZ controls (Fig. 3B). Notably, unlike the classic
DIO-dCas9-VPR construct, the SVI-DIO-dCas9-VPR plasmid
exhibited very little induction without Cre (2-fold) and strong
induction with Cre (66-fold).
Similarly, targeting the highly inducible Tent5b gene in

cultured striatal neurons using lentiviral transgene delivery
resulted in strong upregulation of Tent5b mRNA with the
Cre-dependent constructs (41-fold), but not in the ab-
sence of Cre (2-fold; Fig. 3C). These patterns of Cre-de-
pendent induction without leaky effects were also
observed for both of the moderately inducible target
genes tested in Figure 1 (Sstr2 and Gadd45b; Fig. 3D).
PCR amplification of genomic DNA that was extracted
from transduced primary neurons further validated that
recombination required expression of Cre (Fig. 3E).
Together, these data demonstrate that this novel SVI-

Lenti-hSyn-SVI-dCas9-VPR
(constitutive, with intron) 

Lenti-hSyn-SVI-DIO-dCas9-VPR
(Cre-dependent) 

hSyn dCas9-2 WPREVPR
SVI

dC1

500bp

200bp

+Cre

hSyn
Lox2272

LoxP

Lox2272

LoxP

dC1

dCas9-2 WPREVPR

hSyn WPREdC1
**

**Stop codon if unspliced

Intron-spanning PCR products
(HEK293T cDNA) 

A

B

C

500bp

200bp

Intron-spanning PCR products
(Plasmid DNA) 

500bp

200bp

Intron-spanning PCR products
(HEK293T cDNA) 

Unspliced
Spliced

D

E

dC
as

9

SVI-d
Cas

9 1
.0

SVI-d
Cas

9 2
.0

0

50

100

%
 T

ot
al

 S
ig

na
l

SVI-dCas9-VPR 1.0 SVI-dCas9-VPR 2.0

F G

Signal
intensity

Intron-induced 
frameshift

Stop codon
F primer R primer

SVI
* *

dCas9-2 VPR

dC
as

9

SVI-d
Cas

9 2
.0

SVI-D
IO

-dC
as

9
dC

as
9

SVI-d
Cas

9 2
.0

SVI-D
IO

-dC
as

9

dC
as

9

SVI-d
Cas

9 1
.0

SVI-d
Cas

9 2
.0

Unspliced
Spliced

Unspliced

Spliced

dC
as

9

SVI-d
Cas

9 2
.0

SVI-D
IO

-dC
as

9
0

2

4

6

H dCas9 mRNA
(HEK293T) 

Fo
ld

 c
ha

ng
e

(v
s.

 n
o 

in
tro

n 
dC

as
9-

V
P

R
)

4x

2x
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DIO-dCas9-VPR construct mitigates the leaky gene in-
duction seen in conventional DIO systems for CRISPRa
approaches while maintaining the capacity for robust and
specific gene induction.

Cre-dependent CRISPRa and CRISPRi constructs
modulate expression from a luciferase reporter
To further validate functionality of our SVI-DIO-dCas9-

VPR construct, we tested this system at a luciferase re-
porter plasmid driven by the rat Fos promoter (Fig. 4A,B;
Duke et al., 2020). Luciferase assays are a common lumi-
nescence reporter system used to validate effects of an
effector molecule on gene expression. Luciferase, when
paired with its substrate D-luciferin and in the presence of
ATP, O2, and Mg21, produces bioluminescence that can
provide insight into the direct transcriptional activity at a regu-
latory element driving luciferase expression. HEK293T cells
were co-transfected with plasmids expressing the Fos lucifer-
ase plasmid, constitutive or Cre-inducible CRISPRa plas-
mids, and plasmids expressing sgRNAs targeting either the
rat Fos promoter or a non-targeting lacZ control. Additionally,

the SVI-DIO-dCas9-VPR construct was transfected with a
Cre-EGFP plasmid. Notably, the constitutive dCas9-VPR
constructs with and without the SV40 intron increased lumi-
nescence 26-fold and 25-fold change, respectively, when
compared with lacZ. Likewise, the SVI-DIO-dCas9-VPR in-
creased luminescence in a similar range (18-fold), but only in
the presence of Cre recombinase (Fig. 4C). Consistent with
our previous results in neurons and HEK293T cells (Fig. 3),
this Cre-dependent CRISPRa construct exhibited no leaky in-
duction in the absence of Cre, confirming the utility of this ap-
proach for Cre-specific expression and gene induction.
While gene overexpression is useful for gain-of-function

experiments, CRISPR/dCas9 approaches benefit from
the ability to use the same sgRNA for both gene activation
and repression, based on the identity of the protein fused
to dCas9. However, given the possibility of DIO transgene
expression in reverse orientation (Fischer et al., 2019),
leaky expression is likely not limited to dCas9-VPR based
systems but could also occur in other CRISPR-DIO based
systems. In order to generate Cre-dependent system for
CRISPRi, we created a parallel Cre-dependent construct
in which dCas9 is fused to a KRAB-MeCP2 repressor
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domain that results in robust gene silencing when tar-
geted to gene promoters (Yeo et al., 2018; Duke et al.,
2020; Fig. 4D). Following similar transfection and lucif-
erase assay protocols used for our CRISPRa system,
we found that constitutive KRAB-MeCP2 both with
and without the SV40 intron effectively inhibited lumi-
nescence from the Fos-luciferase reporter in HEK293T
cells (Fig. 4E). Likewise, the SVI-DIO-dCas9-KRAB-
MeCP2 inhibited luciferase activity only in the presence
of Cre recombinase. Together, these results demonstrate
the capacity of our SVI-DIO CRISPR constructs to target
and modulate gene expression at specific transcriptional
regulatory regions in a Cre-dependent manner. Likewise,
because luciferase reporter assays require successful
translation of luciferase protein, these experiments also
demonstrate the capability of this system to bidirectionally
regulate protein levels in addition to mRNA of targeted
genes. Furthermore, adaptation of this SVI-DIO system for
multiple CRISPR approaches, such as CRISPRi, highlights
the potential and versatility of this tool for cell type-specific
and gene-specific regulation in future experiments.

Discussion
The mammalian brain consists of heterogeneous cell

populations with distinct characteristics and functions.
Technologies to study gene function in specific tissues,
brain regions, or cell populations are therefore necessary
to understand their role in behavior and disease. For ex-
ample, cell type-selective promoters have been used for
specific targeting of excitatory neurons (Camk2a; Mima et
al., 2001), astrocytes (Gfap; Morelli et al., 1999), and cell
populations that express specific enzymes or receptors
such as tyrosine hydroxylase (Th; Savitt et al., 2005), do-
pamine or serotonin transporters (Slc6a3, Slc6a4; Zhuang
et al., 2005; Bäck et al., 2019), or dopamine receptors
(Drd1, Drd2; Lobo et al., 2006; Zhang et al., 2006). In
this study we developed and optimized Cre-dependent
CRISPRa and CRISPRi systems that enable gene and
cell type-specific transcriptional activation and inacti-
vation, respectively. In cultured dividing and non-diving
cell lines, we demonstrate that this SVI-DIO-dCas9
based CRISPRa system can activate highly inducible en-
dogenous genes in HEK293T cells (GRM2 gene) and stria-
tal neurons (Tent5b), without undesired gene induction in
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Cre (n=6 per group, two-way ANOVA F(1,20) = 40.37, p, 0.0001). Data expressed as mean 6 SEM.
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the absence of Cre recombinase (Figs. 3, 4). This system
also performed well when targeted to moderately inducible
genes such as Sstr2 and Gadd45b in neurons (Fig. 3), dem-
onstrating a wide range of effect size and application possi-
bilities. Furthermore, successful activation and repression of
a Fos luciferase reporter in HEK293T cells using SVI-DIO
CRISPR constructs demonstrates the versatility of this ma-
chinery to provide robust bidirectional control over gene ex-
pression and protein levels.
Using a classic DIO strategy in which the entire dCas9-

VPR cassette was double-floxed and inverted, we ob-
served leaky target gene induction in the absence of Cre
(Fig. 1). While it is unclear what drives this leaky expres-
sion, it is conceivable and in line with recent findings that
DIO transgenes can be expressed in the inverted orienta-
tion in the absence of Cre (Fischer et al., 2019). To avoid
this leaky expression, we generated a novel SVI-DIO-
dCas9 system in which dCas9 was broken up into two
segments by an SV40 intron. This intron provided a loca-
tion for insertion of Lox sites to invert and double-flox
the first dCas9 fragment while leaving the second frag-
ment undisturbed. Without Cre-mediated recombination,
the dCas9 segments remain in opposing orientations and are
thus unable to yield functional dCas9 protein. Consistent with
observations that introns can facilitate nuclear mRNA
export and translation processes and potentially in-
crease functional protein levels (Shaul, 2017), we found
that intron insertion increased dCas9-VPR mRNA expres-
sion following plasmid transfection (Fig. 2H). Critically, be-
cause of the small size of this intron (97bp), it is unlikely to
substantially limit viral packaging and could easily be ap-
plied to increase transgene expression in other constructs.
One of the first cell type-specific CRISPR systems used

in neurons was based on Cre-dependent expression of
CRISPR sgRNAs. Bäck et al., developed a Lox-stop-Lox
based sgRNA construct and used it for CRISPR-Cas9
mediated gene knock-out (Bäck et al., 2019). This study
tested this approach in transgenic rats that expressed
Cre recombinase under the rat dopamine transporter
(Slc6a3) promoter to specifically target and knock-out the
Th gene in dopaminergic neurons. While this approach al-
lowed for cell type-specific expression of sgRNA con-
structs, a concern with similar systems is the untargeted
overexpression of Cas9 or dCas9 fusion proteins, which
could potentially cause unintended and non-specific ef-
fects on gene expression.
Our system extends this previous work in two ways.

First, the SVI-DIO-dCas9 approach alleviates some of
these concerns, as the dCas9 construct itself is Cre de-
pendent, and therefore, functional fusion proteins are not
expressed without Cre recombinase. Second, our SVI-
DIO-dCas9 system is compatible with traditional vali-
dated sgRNA constructs, which can be multiplexed for ef-
fect size titration at a single gene (Savell et al., 2019a).
Additionally, this approach is also compatible with more
complex sgRNA arrays that target entire gene programs
(Savell et al., 2020). Thus, this study adds another ap-
proach for gene regulation to the CRISPR toolbox, while
also outlining a novel intron/DIO strategy to avoid leaky
Cre-independent transgene expression. Compared with

traditional Cre-dependent overexpression vectors, Cre-
dependent CRISPR strategies provides several advan-
tages as they enable targeting of one or multiple endoge-
nous genomic loci and titration of effect size for more
physiological expression levels.
Prior work has incorporated temporal specificity into

Cre/Lox systems, either via use of optically or chemically
inducible proteins. For example, selective estrogen re-
ceptor modulator (SERM) inducible systems have been
generated by fusion of the ligand binding domain of the ER
to Cre (Cre-ER). In this approach, a mutated version of the
mouse ER that binds tamoxifen but not estrogen was used to
create a Tamoxifen-inducible Cre system (Danielian et al.,
1993; Metzger and Chambon, 2001). Activity of Cre recombi-
nase can therefore be activated or inactivated on Tamoxifen
injections, increasing temporal control of gene editing events.
In addition to cell type-specificity, selective promoters

can be used to drive expression in response to stimulation
or experience. Bacterial artificial chromosome (BAC)
transgenic animals were generated to express GFP or
channelrhodopsin (ChR2) under an immediate early gene
promoter such as Fos or Arc (Guenthner et al., 2013).
Using activity-induced approaches in combination with
our SVI-DIO-dCas9 system would allow for experience-
dependent genetic and epigenetic manipulations.
Cre/Lox systems are also among the most common ap-

proaches for intersectional circuit-specific manipulations
in neuroscience. For example, in recent work, circuit-spe-
cific CRISPR genome editing was achieved by injection of
a Cre-dependent Cas9 viral vector in the nucleus accum-
bens (NAc) and injection of a monosynaptic rabies virus
expressing a sgRNA targeting the Fosb gene in the ventral
hippocampus (vHPC; Eagle et al., 2020). While the sgRNA
virus successfully spread through all hippocampal projec-
tions, significant knock-out of Fosb occurred only in
vHPC neurons that projected to the NAc. In future studies,
our SVI-DIO-dCas9 system could similarly be used to
gain a better understanding of projections between spe-
cific cell types in the brain. The intron-containing effector
construct could be delivered to one brain region and a
Cre-expressing construct to the second brain region
through a monosynaptic rabies virus or retrograde AAV
serotype. Genetic or epigenetic editing would then only
occur in cells with projections between the two targeted
brain regions without leaky expression or side effects re-
lated to effector protein overexpression in non-targeted
cells.
While the use of our SVI-DIO-dCas9 system in Cre

driver animal models is an expected application, this
approach does not require transgenic organisms. In
addition to sgRNA and SVI-DIO-dCas9-VPR or SVI-
dCas9-KRAB-MeCP2 delivery, a separate construct
expressing Cre can be delivered as necessary to target
brain tissues. Additionally, this intron-containing dCas9
provides a basic framework that can be customized and
combined with a number of effector proteins to introduce a
variety of genetic or epigenetic modifications. The system
can easily be customized for expression in various cell
types and brain regions and adjusted for inducible efforts
and enhanced temporal specificity.

Research Article: Methods/New Tools 9 of 11

July/August 2021, 8(4) ENEURO.0188-21.2021 eNeuro.org



References

Anton M, Graham FL (1995) Site-specific recombination mediated by
an adenovirus vector expressing the Cre recombinase protein: a
molecular switch for control of gene expression. J Virol 69:4600–
4606.

Atasoy D, Aponte Y, Su HH, Sternson SM (2008) A FLEX switch tar-
gets channelrhodopsin-2 to multiple cell types for imaging and
long-range circuit mapping. J Neurosci 28:7025–7030.

Bäck S, Necarsulmer J, Whitaker LR, Coke LM, Koivula P,
Heathward EJ, Fortuno LV, Zhang Y, Yeh CG, Baldwin HA,
Spencer MD, Mejias-Aponte CA, Pickel J, Hoffman AF, Spivak CE,
Lupica CR, Underhill SM, Amara SG, Domanskyi A, Anttila JE, et
al. (2019) Neuron-specific genome modification in the adult rat
brain using CRISPR-Cas9 transgenic rats. Neuron 102:105–119.
e8.

Carullo NVN, Phillips Iii RA, Simon RC, Soto SAR, Hinds JE,
Salisbury AJ, Revanna JS, Bunner KD, Ianov L, Sultan FA, Savell
KE, Gersbach CA, Day JJ (2020) Enhancer RNAs predict en-
hancer-gene regulatory links and are critical for enhancer function
in neuronal systems. Nucleic Acids Res 48:9550–9570.

Chen LF, Lin YT, Gallegos DA, Hazlett MF, Gómez-Schiavon M,
Yang MG, Kalmeta B, Zhou AS, Holtzman L, Gersbach CA, Grandl

J, Buchler NE, West AE (2019) Enhancer histone acetylation mod-
ulates transcriptional bursting dynamics of neuronal activity-in-
ducible genes. Cell Rep 26:1174–1188.e5.

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X,
Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineer-
ing using CRISPR/Cas systems. Science 339:819–823.

Daigle TL, Madisen L, Hage TA, Valley MT, Knoblich U, Larsen RS,
Takeno MM, Huang L, Gu H, Larsen R, Mills M, Bosma-Moody A,
Siverts LA, Walker M, Graybuck LT, Yao Z, Fong O, Nguyen TN,
Garren E, Lenz GH, et al. (2018) A suite of transgenic driver and re-
porter mouse lines with enhanced brain-cell-type targeting and
functionality. Cell 174:465–480.e22.

Danielian PS, White R, Hoare SA, Fawell SE, Parker MG (1993)
Identification of residues in the estrogen receptor that confer dif-
ferential sensitivity to estrogen and hydroxytamoxifen. Mol
Endocrinol 7:232–240.

Don EK, Formella I, Badrock AP, Hall TE, Morsch M, Hortle E, Hogan
A, Chow S, Gwee SSL, Stoddart JJ, Nicholson G, Chung R, Cole
NJ (2017) A Tol2 gateway-compatible toolbox for the study of the
nervous system and neurodegenerative disease. Zebrafish 14:69–
72.

Duke CG, Bach SV, Revanna JS, Sultan FA, Southern NT, Davis MN,
Carullo NVN, Bauman AJ, Phillips RA, Day JJ (2020) An improved

Table 1: Sequences of primers and sgRNAs

cDNA primers

(RT-qPCR)
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