
Frontiers in Immunology | www.frontiersin.

Edited by:
Hu Li,

Mayo Clinic, United States

Reviewed by:
Steven Offer,

Mayo Clinic, United States
Ti Wen,

The First Affiliated Hospital of China
Medical University, China

*Correspondence:
Kathryn Miller-Jensen

kathryn.miller-jensen@yale.edu

Specialty section:
This article was submitted to

Systems Immunology,
a section of the journal

Frontiers in Immunology

Received: 27 February 2022
Accepted: 25 March 2022
Published: 28 April 2022

Citation:
Bridges K and Miller-Jensen K (2022)

Mapping and Validation of
scRNA-Seq-Derived Cell-Cell

Communication Networks in the
Tumor Microenvironment.

Front. Immunol. 13:885267.
doi: 10.3389/fimmu.2022.885267

REVIEW
published: 28 April 2022

doi: 10.3389/fimmu.2022.885267
Mapping and Validation of
scRNA-Seq-Derived Cell-Cell
Communication Networks in the
Tumor Microenvironment
Kate Bridges1 and Kathryn Miller-Jensen1,2,3*

1 Department of Biomedical Engineering, Yale University, New Haven, CT, United States, 2 Department of Molecular, Cellular,
and Developmental Biology, Yale University, New Haven, CT, United States, 3 Systems Biology Institute, Yale University,
New Haven, CT, United States

Recent advances in single-cell technologies, particularly single-cell RNA-sequencing
(scRNA-seq), have permitted high throughput transcriptional profiling of a wide variety
of biological systems. As scRNA-seq supports inference of cell-cell communication, this
technology has and continues to anchor groundbreaking studies into the efficacy and
mechanism of novel immunotherapies for cancer treatment. In this review, we will highlight
methods developed to infer inter- and intracellular signaling from scRNA-seq and discuss
how they have contributed to studies of immunotherapeutic intervention in the tumor
microenvironment (TME). However, a central challenge remains in validating the
hypothesized cell-cell interactions. Therefore, this review will also cover strategies for
integration of these scRNA-seq-derived interaction networks with existing experimental
and computational approaches. Integration of these networks with imaging, protein
secretion measurements, and network analysis and mathematical modeling tools
addresses challenges that remain with scRNA-seq to enhance studies of
immunosuppressive and immunotherapy-altered signaling in the TME.

Keywords: single-cell RNA-sequencing (scRNA-seq), cell-cell communication network, tumor microenvironment,
immunotherapy, spatial profiling, single-cell secretomics, graph theory
INTRODUCTION

Single-cell technologies provide the resolution necessary to study intercellular heterogeneity.
Specifically, single-cell RNA-sequencing (scRNA-seq) permits whole-transcriptome profiling of
individual cells (1), which supports identification of rare cell subpopulations (2), inference of
complex gene-gene regulatory networks (3), and tracing of developmental lineages (4). Further,
scRNA-seq facilitates inference of cell-cell communication by measuring expression of genes
encoding for corresponding ligands, receptors, intermediate signaling proteins, and intracellular
targets across interacting cell types and under homeostatic and diseased conditions.

While scRNA-seq has been applied to a broad range of biological contexts, it has become an
important tool to probe the tumor microenvironment (TME). The TME is a heterogeneous and
constantly evolving milieu made up of populations of different cell types, cell-surface and secreted
org April 2022 | Volume 13 | Article 8852671
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signals, and extracellular matrix (5, 6). These different cell types
include cancer cells, stromal cells including fibroblasts and
endothelial cells, and infiltrating immune cells, although this list is
not exhaustive (7). Immune cells further partition into innate and
adaptive immune cells, which are responsible for carrying out non-
specific and tumor antigen-specific mechanisms of host defense,
respectively (8). Innate immune cell types in the tumor
predominantly include macrophages, dendritic cells (DCs), and
neutrophils, while adaptive immune cell types include T cells and
B cells. From the perspective of developmental lineage, it is worth
noting that innate and adaptive immune cells do not derive from
respective progenitors. Hematopoietic stem cells, which give rise to
all immune cells, diversify into myeloid and lymphoid cell lineages
(9). While myeloid cells can differentiate into the macrophages,
DCs, and granulocytes of the innate immune system, lymphoid
lineage cells contribute to both arms of immunity. For example, T
cells and natural killer (NK) cells derive from a common lymphoid
progenitor, although NK cells are considered innate immune cells
due to their lack of tumor antigen-specific cell surface
receptors (10).

Tumor cells promote their own survival by establishing an
immunosuppressive and tolerogenic microenvironment. Through
interactions with neighboring immune cells, tumor cells can
manipulate immune functions to avoid immunosurveillance and
coordinate delivery of key nutrients for growth (11). For example,
tumor cells can take advantage of macrophage plasticity to
reprogram them toward an anti-inflammatory phenotype (12).
Anti-inflammatory tumor-associated macrophages (TAMs) have
been shown to promote production of growth factors and
neovascularization (13), which contribute to tumor growth and
metastasis. These TAMs can also actively suppress adaptive T cell
responses (14). Additionally, tumor cells can directly
communicate with T cells via “immune checkpoints” (15),
which act as gatekeepers to prevent an antitumor immune
response from being mounted. Tumor cells can further act as
architects of the spatial organization of the TME, orchestrating
restriction of activated tumor-infiltrating lymphocytes to the
periphery of the tumor bulk (16). This behavior yields an
immune-excluded TME, which drastically limits the tumor-
killing capacity of infiltrating immune cells. Broadly, immune
cell infiltration into the tumor falls into three categories: immune-
excluded, immune-inflamed (i.e., widespread presence in the
tumor), and immune-desert (i.e., few to no cells in the tumor)
(17). These patterns in infiltration are generally more applicable to
the distribution of lymphoid lineage cells in the tumor, particularly
T cells, while myeloid cells are commonly more ubiquitously
distributed. Overall, the TME represents a spatially organized
community of dysregulated cells, with communication between
them giving rise to emergent behaviors including immune evasion
and tumor growth.

Immunotherapy has emerged as a leading treatment option for
advanced-stage tumors (18). By breaking immunosuppressive
tumor-immune cell interactions and reestablishing anti-tumor
immune signaling, this therapeutic option takes advantage of the
body’s immune system to restore host defenses that were initially
hijacked by the tumor. Immunotherapies have improved survival
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outcomes in numerous cancer types, and ongoing clinical trials
serve to enhance the pool of effective interventions (19). Advancing
our understanding of aberrant signaling in the TME directly
supports the development of new immunotherapeutic strategies.
Robust construction of hypothetical intercellular interaction
networks from scRNA-seq is therefore critical to the design and
testing of novel immunotherapeutic drugs that will ultimately
continue to improve patient outcomes. This review will thus
begin with an overview of existing computational methods for
inference of communication between and within cells from scRNA-
seq (Figure 1). Particular attention will be paid to their
contributions to the fields of tumor immunology and
immunotherapy development.

Despite these advances, a central challenge remains in the
validation of the hypothesized cell-cell interactions.
Computationally constructed communication networks often
comprise hundreds to thousands of signaling interactions,
which can make these networks impossible to probe
experimentally in their entirety. Therefore, we will also review
approaches to integrate these scRNA-seq-derived interaction
networks with an array of existing experimental and
computational methods to yield more meaningful biological
conclusions (Figure 1).
INITIAL STRATEGIES TO INFER
CELL-CELL COMMUNICATION FROM
SCRNA-SEQ FOCUSED ON MATCHED
EXPRESSION OF PAIRED
RECEPTOR AND LIGAND

scRNA-seq affords the ability to measure expression of ligands
and receptors to systematically decode how cells are
communicating with one another. Evaluation of these
interaction networks across homeostatic and diseased
conditions facilitates identification of experimentally testable
targets for tumor immunotherapy, among countless other
applications. Many computational methods have been
developed to examine cell-cell communication with scRNA-
seq, and they exist along a spectrum with respect to their
computational complexity and integration of additional
signaling information. It should be noted that these algorithms
require clustering of single cells into cell types or subsets of
interest. There are many strategies for clustering and annotation
of scRNA-seq data, which have been reviewed elsewhere (20–23).

Initial approaches generated hypotheses about cell-cell
communication by quantifying matched expression of
corresponding ligand and receptor. Zhou et al. (24)
constructed the first cell-cell communication network of its
kind from scRNA-seq collected from 19 patients with primary
and metastatic melanoma (25). Interactions between malignant,
immune, stromal, and endothelial cells were hypothesized by
identifying paired receptor- and ligand-encoding genes from an
author-curated list for which respective expression in two cell
type populations was three standard deviations above the average
April 2022 | Volume 13 | Article 885267
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across all populations. While the authors were then able to
characterize tumor-immune, tumor-stromal, and tumor-
endothelial cell crosstalk through specific signaling axes, they
recognized the need to link this information with biological
outcomes of interest, like tumor growth.

To address this limitation, Kumar et al. (26) developed a
computational technique to quantitatively relate scRNA-seq-
derived interaction networks from mouse and human metastatic
melanomas to pathophysiological characteristics of the TME.
They quantified cell-cell communication by calculating the
product of average ligand and receptor expression across
interacting cell type populations (referred to as interaction
scores), with literature-supported ligand-receptor pairs sourced
from the FANTOM5 database (27). To filter out interactions with
inappropriately high scores due to noisy gene expression, the
authors used statistical comparisons against null networks.
Correlating interaction scores against tumor growth rate and
anti-tumor immune response hypothesized ECM- and adhesion-
related interactions, in addition to certain cytokine and chemokine
interactions, as potential contributors to tumor progression in
mice. This approach has thus helped to lay the foundation for
identifying experimentally testable targets for immunotherapy
from scRNA-seq-derived cell-cell communication networks.
1https://blog.wellcomeopenresearch.org/2020/07/17/to-share-and-share-alike-
why-cellphonedb-a-friendly-open-source-platform-is-good-for-data-sharing-
and-collaborations/
EMERGENCE OF OPEN-SOURCE TOOLS
FOR INTERACTION NETWORK
CONSTRUCTION FROM SCRNA-SEQ HAS
ADVANCED THE DEVELOPMENT OF
CANCER IMMUNOTHERAPIES

Despite the progress posed by the aforementioned methods,
scalable application to existing scRNA-seq datasets remained a
Frontiers in Immunology | www.frontiersin.org 3
challenge as user-friendly platforms for construction of interaction
networks did not exist. CellPhoneDB (28, 29) presented one of the
first open-source tools for inference of cell-cell communication
from single-cell transcriptomic data, which was originally applied
to scRNA-seq from the human placenta. It quickly became one of
the most utilized algorithms for the task, with their manuscripts
amassing over 1,200 citations collectively since publication, and
their online resource (www.cellphonedb.org) being used by over
500 users per month as of July 20201. As with previously discussed
approaches, CellPhoneDB probes cell-cell interactions by
investigating matched expression of ligand-receptor pairs
sourced from the UniProt (30, 31), Ensembl (32), Protein Data
Bank (PDB) (33, 34), International Molecular Exchange (IMEx)
consortium (35), and IUPHAR (36–38) databases. Critically,
CellPhoneDB considers subunit architecture for both ligands
and receptors, as opposed to the binary representation adopted
by most methods.

CellPhoneDB has been widely used to understand cell-cell
communication in the TME, particularly to characterize pro-
tumor crosstalk between tumor, immune, and stromal cells.
Macrophages are a type of immune cell that are especially
vulnerable to exploitation by tumor cells because their activation
is heavily context-dependent (39). Therefore, uncovering the
signaling mechanisms by which tumor cells reprogram
macrophages toward an anti-inflammatory pro-tumor
phenotype, along with the mechanisms by which macrophages
then carry out their pro-tumor behavior, will provide new targets
for immunotherapeutic intervention. In both hepatocellular
carcinoma (40) and esophageal squamous cell carcinoma
(ESCC) (41), CellPhoneDB implicated the SPP1-CD44 signaling
FIGURE 1 | Once scRNA-seq-derived cell-cell communication networks are mapped, spatial profiling, protein-level measurements, and computational pruning can
aid validation and interpretation. Cell-cell communication can be inferred from scRNA-seq using a variety of computational methods, such as CellPhoneDB, CellChat,
NicheNet, or CytoTalk. Experimentally, connections between cell populations can be validated with spatial profiling and protein-level measurements. Networks can
also be further analyzed computationally with network analysis and mathematical modeling tools. Created with BioRender.com.
April 2022 | Volume 13 | Article 885267
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axis, among other receptor-ligand pairs, as a potential
reprogramming interaction from tumor cells to macrophages.
This axis has been previously implicated as an immune
checkpoint in human cancers (42), and tumor cell signaling to
macrophages and monocytes through the CD44 receptor has been
shown to inhibit their anti-tumor response in in vitro co-culture
models (43). In colorectal cancer (CRC), Zhang et al. (44) used
CellPhoneDB to characterize the anti-inflammatory signaling
from macrophages that had already shown evidence of pro-
tumor reprogramming. Their analysis linked interactions
involving SDC2, SPP1, and FN1 ligands between macrophages
and cancer-associated fibroblasts, myofibroblasts, and endothelial
cells to tumorigenesis and metastasis in CRC.

Beyond identifying potential therapeutic targets by
characterizing pro-tumor signaling in the TME, CellPhoneDB has
aided studies in understanding immunotherapy-altered signaling
from single-cell transcriptomics. Immune checkpoint blockade
(ICB) is the current standard of care for immunotherapeutic
intervention for many cancers (45). Over time, anti-tumor
effector immune cells in the tumor become “unresponsive” or
“exhausted,” and become negatively regulated by ligands
expressed in the TME. ICB aims to prevent or revert that
immunosuppression by blocking these inhibitory interactions.
One of the common targets of ICB is the programmed cell death
protein 1 (PD-1) checkpoint. Signaling through PD-1 has been
shown to negatively regulate T cell effector activity (46), and thus its
blockade should limit the ability of tumor cells to evade immune
surveillance and promote a successful anti-tumor response.
However, mixed response rates to ICB in patients highlight the
need for adeeperunderstandingof themechanismof this therapy in
the microenvironment. Studies in patients with breast cancer (47),
advanced renal cell carcinoma (48), and basal cell carcinoma
(49) have leveraged CellPhoneDB to characterize cell-cell
communication associated with response and resistance to ICB.
Across tumor types, this analysis identified signaling toCD8+Tcells
via HAVCR2-LGALS9 (TIM3-Galectin9) as enhanced in non-
responding and resistant patients. As TIM3 has been known to
inhibit CD8+ cytotoxic activity and therefore can contribute to
tumor progression (50), these studies emphasize the promise of
CellPhoneDB to uncover conserved biomarkers for therapy
resistance from scRNA-seq.

It is worth noting additional open-source packages for
inference of cell-cell communication from scRNA-seq that use
algorithms similar to CellPhoneDB. Network Analysis Toolkit
for Multicellular Interactions (NATMI) (51) quantifies potential
communication by calculating the product of average expression
of matched ligand and receptor across two interacting cell type
populations. The novelty of this method primarily derives from
the curation of its reference database of ligand-receptor pairs,
which borrows from competing methods and only includes pairs
with primary literature support. NATMI does not consider
subunit architecture for ligands or receptors. This method has
been used to identify prognostic communication between tumor,
stromal, and immune cells in patients with pancreatic ductal
adenocarcinoma (PDAC) (52). CellTalker (53) probes matched
expression of paired ligands and receptors from the FANTOM5
Frontiers in Immunology | www.frontiersin.org 4
(27) database. This algorithm also does not take heteromeric
complexes into account. While CellTalker does limit its analyses
to genes that are differentially expressed across cell populations,
which supports identification of population-specific signaling, it
does not assign quantitative scores to potential interactions
which restricts data-driven comparisons across conditions of
interest. Finally, ICELLNET (54) also assigns interaction scores
by multiplying the average expression of paired ligand and
receptor, with an adjustment to this formula intended to
account for receptor subunits. The ligand-receptor databases
referenced by ICELLNET largely overlap with its competitors,
including CellPhoneDB. This method has yet to be applied to
investigate the TME in a published study.
FUNCTIONAL UNDERSTANDING
OF CELL-CELL COMMUNICATION
MAY REQUIRE MORE THAN
PAIRED EXPRESSION OF
RECEPTOR AND LIGAND

CellPhoneDB in particular has advanced the study of intercellular
signaling in the tumormicroenvironment from scRNA-seqwith its
scalable and accessible platform. However, functional cell-cell
communication extends beyond the interaction of extracellular
ligand and receptor, as signaling cofactors can upregulate or
antagonize downstream signal propagation, and ligands from
“sender” cells can influence intracellular signaling cascades and
target gene expression in “receiver” cells.

CellChat (55) is an algorithm for cell-cell communication
inference from scRNA-seq that was developed to address the lack
of modulation by signaling cofactors, such as soluble agonists,
antagonists, and membrane-bound co-receptors, considered in
previous methods. A mass action-based model underlies the
interaction probability assigned to each ligand-receptor pair for
each communicating set of cell populations. As opposed to
inferring cell-cell communication directly from gene
expression, CellChat first projects the transcriptomic profiles
onto experimentally validated protein-protein interaction
networks (56) using a network propagation approach (57).
These projected profiles are then used to calculate interaction
probability scores, with the scoring equation taking advantage of
Hill functions to model positive and negative modulation of an
interaction by signaling agonists and antagonists, respectively.
This intermediate projection step is intended to account for the
role of protein-protein interactions in ligand-receptor binding,
which cannot be reflected in sparse gene expression profiles from
scRNA-seq data without prior knowledge of how the proteins
encoded by these genes can influence each other’s expression.
Using the law of mass action addresses the fact that these
protein-protein interactions can saturate.

First applied to the wound healingmicroenvironment, CellChat
has shown promise in the characterization of malignant and
immunotherapy-altered signaling in glioblastoma (58),
esophageal squamous cell carcinoma (41), gastric cancer (59), and
April 2022 | Volume 13 | Article 885267
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breast cancer (60). When compared directly to CellPhoneDB (55)
across four mouse skin scRNA-seq datasets, CellChat achieved a
slightly better true positive rate, a lower false positive rate, and
higher accuracy. Accuracy in this context was defined as having
more predictions that overlapped with the predictions of one or
more methods, which in this study included the methods
iTALK (61) (which has been published as a preprint) and
SingleCellSignalR (62) in addition to CellPhoneDB. CellChat’s
advantage over CellPhoneDB may also relate to the fact that this
method limits its inquiries to genes that are differentially expressed
(DEGs) across all cell groups in the data, as opposed tomaintaining
the transcriptome-wide gene set, which simplifies comparison across
conditions. Including this same DEG-limiting step in the
CellPhoneDB workflow, which was implemented in the newest
version of the CellPhoneDB toolkit (CellPhoneDB v.3.0) (63), has
improved its predictions aswell. Further, CellChat andCellPhoneDB
were found to similarly distinguish spatially adjacent from spatially
distant interactions (55), unlike competing algorithms that only
consider expression of paired receptor and ligand. This result
supported the assertion that including subunit architecture and
signaling cofactors serves as a proxy to help distinguish spatially
relevant interactions from scRNA-seq. CellChat can also be
distinguished from many of its competitors by its built-in tools for
visualization and downstream analyses, which use concepts from
graph theory, pattern recognition, and manifold learning to identify
conserved and context-specific patterns across inferred signaling
networks, among other important interpretations.

Other recently published algorithms NicheNet (64) and
CytoTalk (65) have recognized the need to integrate intracellular
signaling into scRNA-seq-derived communication networks.
NicheNet was the first computational method to consider prior
knowledge of intracellular signaling networks in its analysis of
scRNA-seqby leveragingdatabasesdescribing interactions between
ligands, receptors, intracellular intermediaries, transcriptional
regulators, and target genes. Strong correlation between expected
patterns in gene expression, based on links between ligands and
Frontiers in Immunology | www.frontiersin.org 5
target genes in NicheNet’s prior model, and observed patterns in a
user’s own scRNA-seq data identifies potential communication
between interacting cell types. Similar to CellChat, NicheNet also
takes advantage of DEGs to construct differential signaling
networks across conditions of interest.

The use of a priormodel with ligand-to-intracellular target gene
axes to infer cell-cell communication from scRNA-seq data
represented a departure from the interaction scoring approach
matching ligand and receptor expression adopted by most
preceding methods. Algorithmically, preceding methods follow a
commonprocedure (Table1, column1).Takingannotated scRNA-
seq data as input, they calculate interaction scores by combining
average expression of ligandand receptor across two interacting cell
populations with an elementary mathematical operation, generally
multiplication. For example, Kumar et al.(26) andNATMI (51) rely
on a simple product (Table 1, column 1, ii. A), while
ICELLNET (54) includes receptor subunits in its formula
(Table 1, column 1, ii. B). SingleCellSignalR (62) uses a
regularized product, which accounts for total expression across
cells (Table 1, column 1, ii. C). CellChat (55) technically also uses a
regularized product, although its interaction scoring equation takes
inferred protein expression as input as opposed tomRNAcounts as
competing algorithms do. Downstream analyses then generally
focus on comparing these interaction scores statistically to null
scores (to distinguish signal from noise) and across experimental
conditions. As previously described, NicheNet instead correlates
patterns in observed expression from annotated scRNA-seq data
against expected expression in its prior model (Table 1, column 2).
Expected expression of each gene in the prior model, given a
particular stimulating ligand, is mathematically derived based on
predicted propagation of signal from ligand to target gene through
possible intermediate signaling genes. Downstream analyses with
NicheNet generally further explore links betweenpredicted ligands,
receptors, and target genes in the prior model.

NicheNet has been cited over 200 times since its publication
in2020,withmanyof the citingpapers investigating theTME.Cheng
TABLE 1 | Comparison of matched ligand-receptor (L-R) expression algorithms versus correlation against a prior model (e.g., NicheNet) for inference of cell-cell
communication from scRNA-seq.

Matched L-R expression Correlation against a prior model

i. Input: preprocessed scRNA-seq data annotated by cell type i. Input: preprocessed scRNA-seq data annotated by cell type
ii. Calculate interaction score (IS) between cell types j and k, based on
known ligand-receptor pairs (reference databases listed in Table 2), which
takes on one of three general forms based on the method:

ii. Identify “target genes” in receiving cell populations (e.g., genes differentially expressed
across conditions); remaining cells considered “background”

IS L,R, j, kð Þ =

Lj*Rk ,Lj + Rk Að Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiY
z

Lj,zz

r !
*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
m

Rk,mm

r !

Að Þor Bð Þ
regularizationterm Cð Þ

Bð Þ

8>>>>>><
>>>>>>:

iii. For each possible ligand i, calculate Pearson correlation (ri) between observed
expression of target genes j and expected expression of j given i (Ei,j) from prior model; ri
is penalized for correlations with background genes. Ei,j is defined as:

where Lj = (
1
nj o

nj
i=1 li ),Rk = (

1
nk o

nk
i=1ri ), Ei,j = o

n

k=1

(PPRi,k )*(GRNk,j )

Or Lj, Rk are otherwise scaled representations of expression, e.g., z-scores,
and z and m account for ligand and receptor subunits, respectively

where, based on the prior model, PPRi,k denotes the probability of ligand i signaling
through intermediate gene k, and GRNk,j quantifies evidence that k regulates expression
of target gene j. n is the number of possible intermediate genes k

iii. Downstream analyses: compare IS to null networks and across
experimental conditions

iv. Downstream analyses: further explore ligand-target gene and ligand-receptor axes in
the prior model
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et al. (66) presented a prime example ofNicheNet’s utility in studying
myeloid signaling across tumor microenvironments. The authors
investigated conventional dendritic cells (cDCs), mast cells, and
tumor-associated macrophages (TAMs) using scRNA-seq data
from 210 patients across 15 human cancer types. Following
previous work from Maier et al. (67), cDCs were clustered across
tumor types into two classical DC subsets (cDC1s and cDC2s) and a
novel LAMP3+ mature cDC subset enriched for immunoregulatory
genes (mregDCs). Cheng et al. were keen to understand mregDC
development, as this novel DC subset has been shown to originate
from both cDC1s and cDC2s, resulting in different roles in anti-
tumor immunity. Using NicheNet, IL-4 and IL-12 were identified as
driversof the cDC1-derivedmregDCsignature,while IL-15and IFNs
were linked to the cDC2-derivedmregDCsignature (66).Modulating
these NicheNet-identified signals in the TME has the potential to
adjust the balance of cDC1- and cDC2-derived mregDCs in a way
that supports an anti-tumor immune response. The authors also
probedmast cells in the TME, as TNF+ andpro-angiogenicVEGFA+

mast cells have been thought to play dueling roles in the tumor (68).
Both NicheNet and CellPhoneDB were used to uncover potential
signaling underlying the TNF+ mast cell signature. Interestingly,
while both methods implicated IL1b+ macrophages as the drivers of
anti-tumor TNF+mast cell behavior, the full suite of their top results
offered little overlap.Whether the inclusion of intracellular signaling
information in NicheNet’s method generates more accurate or
biologically relevant hypotheses than algorithms like CellPhoneDB
requires further experimental validation.

Although NicheNet advanced cell-cell communication inference
from scRNA-seq by presenting a more mechanistic picture of
interaction though ligand-to-target gene axes, its prior model does
not include the additional prior knowledge that many signaling
pathways are specific to a given cell type or tissue. Hu et al. (65)
illustrated this heterogeneity in signaling downstream of fibroblast
growth factor receptor 2 (FGFR2) between three pairs of interacting
cell populations across mammary gland and skin. They therefore
developed CytoTalk, which similarly constructs scRNA-seq-derived
cell-cell communication networks through ligand-to-target gene
axes, but with data-driven inference of signal transduction
networks instead of a prior model. While NicheNet’s intracellular
signaling networks were derived from published databases including
OmniPath (69), CytoTalk constructs these networks de novo by
quantifying relationships between genes from the user’s own data.
CytoTalk has yet to be applied to the TME in a published study,
although the utility of this method is clear considering the roles cell
type and tissue specificity have been shown to play in signaling in
cancer (70). Altogether, much progress has been made to extract
increasingly accurate and biologically relevant information about
cell-cell communication from scRNA-seq.
UNDERLYING REFERENCE DATABASES
PLAY A KEY ROLE IN THE INFERENCE OF
CELL-CELL COMMUNICATION

It is worth mentioning that, across methods, predictions about
cell-cell communication rely heavily on the underlying reference
Frontiers in Immunology | www.frontiersin.org 6
databases summarizing known ligand-receptor pairs and
intracellular signaling pathways. Many of the aforementioned
methods source interaction information from a similar pool of
databases (Table 2, “Referenced databases”). The FANTOM5
database (27) specifically, which includes ~2,500 human ligand-
receptor pairs, is referenced by nearly all of the selected
algorithms in Table 2. Further comparison of the general
features, advantages, and limitations of FANTOM5 against
other commonly used reference databases, including those
underlying CellPhoneDB, NATMI, ICELLNET, CellChat,
iTALK, SingleCellSignalR, and NicheNet, has been reviewed
elsewhere (89, 90).

Among many attributes of reference databases, there are two
to consider when evaluating predictions from cell-cell
communication inference methods. The first is the proportion
of interactions in each database with primary literature evidence.
For example, Hou et al. (51), in the manual curation of their own
interaction database, excluded 94 ligand-receptor pairs from
CellPhoneDB and 143 from the Human Protein Reference
Database (HPRD) (86) for a lack of literature support.
Ensuring primary experimental evidence for predicted
interactions increases the accuracy and biological relevance of
hypotheses generated by these cell-cell communication inference
tools. The second consideration is the frequency with which
these databases are updated with newly discovered or otherwise
revised interactions. Whether a database of interactions reflects
the current state of the literature further impacts a user’s
interpretation of the predictions made by these methods on
their own datasets. Altogether, there are many caveats to keep in
mind when deriving cell-cell communication networks from
scRNA-seq, with the underlying reference database of ligand-
receptor and ligand-target gene axes being one of them.
SHORTCOMINGS ACROSS
EXISTING COMPUTATIONAL METHODS
DERIVE FROM CHALLENGES THAT
REMAIN WITH SCRNA-SEQ

scRNA-seq experiments require tissue dissociation (91, 92),
which prevents the preservation of critical spatial information.
Although the aforementioned computational methods
(summarized in Table 2) leverage ligand-receptor pair
databases and integrate critical information about intracellular
and other relevant signaling, it remains difficult to overcome this
key shortcoming in the method of data collection. Although
some ligands are soluble, distances traveled by diffusion are
limited; in other cases, both receptor and ligand are
membrane-bound. Thus, inference of cell-cell communication
would be greatly improved by incorporating knowledge of the
physical proximity between two cell populations in the
microenvironment. For example, tumors can disrupt successful
immune responses by limiting T cell infiltration into their bulk
(93), thus restricting the physical interaction between T cells and
other cell types. In this case, integration of spatial information is
April 2022 | Volume 13 | Article 885267
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TABLE 2 | Selected summary of computational methods for inference of cell-cell communication.

Primary advantages Primary limitations*

Laid foundation for
interaction inference

Lacks other signaling
components, statistical
framework, links to emergent
behaviors

Laid foundation for
interaction inference

Lacks other signaling
components and statistical
framework

Analysis framework links
interactions to emergent
behaviors

Lacks other signaling
components

Uses graph theory for
cross-network comparison

Lacks other signaling
components

Scalable, user-friendly
platform; includes subunits

Lacks other signaling
components

Considers L-R specificity in
interacting cell types;
underlying database

Similar to predecessors,
lacks other signaling
components

Uses differentially
expressed genes for
focused exploration

Similar to predecessors,
lacks other signaling
components and statistical
framework

Includes receptor subunits Similar to predecessors,
lacks other signaling
components

Includes signaling
cofactors, uses graph
theory for cross-network
comparison

Lacks intracellular signaling
information

Author-curated reference
interactions, built-in tools
for visualization

Lacks other signaling
components

Author-curated reference
interactions

Lacks other signaling
components

Includes intracellular
signaling components

Prior model doesn’t consider
cell type or tissue specificity

Considers cell type and
tissue specificity

Lacks extracellular signaling
components (subunits,
cofactors)

discussed in the text.
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Method Application to TME? Signaling compo-
nents considered

Underlying mathematical model Referenced databases

Zhou et al. (24) Melanoma Paired ligand and
receptor (L-R)

Matched significant upregulation of L
and R

FANTOM5, DLRP (71), IUPHAR, HPM
(72), author additions

Puram et al. (73) Head and neck cancer Paired L-R Matched significant upregulation of L
and R

FANTOM5

Kumar et al. (26) Melanoma Paired L-R Product of average L and R FANTOM5, author additions

Raredon et al. (74) No Paired L-R Sum of average L and R FANTOM5

CellPhoneDB (28, 29) ESCC, CRC, breast
cancer, among others

Paired L-R, including
subunits

Matched significant upregulation of L
and R

UniProt, Ensembl, PDB, IMEx, IUPHA

NATMI (51) PDAC Paired L-R Product of average L and R CellPhoneDB, SingleCellSignalR,
ICELLNET, STRINGDB (56), RNA-
magnet (75), author additions

CellTalker (53) Head and neck cancer Paired L-R Matched expression of L and R FANTOM5

ICELLNET (54) No Paired L-R, including
receptor subunits

Product of average L and R STRINGDB, Ingenuity, BioGRID (76),
Reactome (77), CellPhoneDB

CellChat (55) GBM, ESCC, breast
cancer, among others

Paired L-R and
signaling cofactors

Mass action-based model KEGG (78), author additions

iTALK (61) Lung adeno-carcinoma
(79)

Paired L-R Matched significant upregulation of L
and R

FANTOM5, DLRP, IUPHAR, HPMR,
author curation of cytokine and
chemokine interactions (80–82)

SingleCellSignalR (62) CRC (83), breast cancer
(84), metastatic
melanoma (85), among
others

Paired L-R Regularized product of average L and
R

FANTOM5, HPMR, IUPHAR, UniProt,
HPRD (86), GO (87), Reactome

NicheNet (64) Melanoma, CRC, breast
cancer, among others

L-R and downstream
intracellular signaling

Pearson correlation of user data with
prior model

FANTOM5, IUPHAR, KEGG, OmniPat
(69), MSigDB (88), among other PPI,
gene regulatory interaction databases

CytoTalk (65) No L-R and intracellular
signaling in both
“sender” and
“receiver”

Regularized sum of average L and R,
mutual information between genes for
inference of intracellular signaling

FANTOM5, author additions

This column highlights limitations of communication inference methods when compared to each other. Limitations across methods (e.g., lack of spatial information) are
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crucial to filtering edges in scRNA-seq-derived communication
networks describing these pathologies.

Additionally, heterogeneous signaling among broad cell types
and cell subpopulations within a single cell type often
differentially contribute to cancer progression. All cell-cell
communication inference methods depend on how cell
populations are defined. While clustering single cells into
broad cell types has been extensively explored (20–23),
subpopulation definition remains a contested topic. From
scRNA-seq, unsupervised clustering of broader cell type
lineages is often used to delineate cell subsets; this approach
has been extensively applied to understand heterogeneity in the
myeloid compartment of sarcoma (94) and non-small-cell lung
cancer (95) tumors, among other malignancies (58, 66, 96, 97).

Because mRNA is not a functional measurement of the cell,
defining cell subpopulations based on gene expression does not
always separate cells into subsets that are relevant with respect to
their functional signalingbehavior.Directlymeasuring extracellular
signaling events at the protein level partly overcomes this limitation.
Single-cell secretomic technologies in particular have shown
promise in the characterization of functional heterogeneity in the
TME. For example, Perry et al. (98) used a single-cell secretion
device to investigate myeloid heterogeneity in themelanoma TME,
which identified specific functional subgroups of tumor-associated
macrophages andmyeloid cells (TAMMs) that aid orchestration of
a pro-tumorigenic immune response. Inference of informative
interaction networks from scRNA-seq thus also requires
integration of protein-level measurements to confirm secretion of
ligand and separate large cell-type populations into functionally
relevant, context-dependent subpopulations.

Moreover, once the cell-cell communication networks are
constructed, they need to be systematically compared across
experimental conditions and interpreted with respect to
emergent biological behaviors. As these networks are directed,
weighted, and densely connected, data mining becomes an
increasingly complex task. Therefore, this review will next
discuss strategies for network validation and interpretation by
leveraging imaging, protein secretion measurements, and
network analysis and mathematical modeling tools. We
anticipate that these integrations will aid generation of more
biologically accurate and actionable hypotheses about aberrant
and altered signaling mechanisms underlying tumor progression
and as a result of immunotherapeutic intervention, respectively,
from scRNA-seq.
SPATIAL INFORMATION IS
CRITICAL TO CONFIRMING THE
POSSIBILITY OF INTERACTION
BETWEEN CELLS IN THE TME

Because scRNA-seq requires tissue dissociation, the spatial
information necessary to fully infer intercellular communication,
particularly between membrane-bound receptors and ligands, is
lost. Knowing the spatial localization of cells is especially critical to
Frontiers in Immunology | www.frontiersin.org 8
studies of the TME, as tumors can become “immune-excluded”
(99), restricting the dialog between cancer and immune cells and
rendering typical immunotherapeutic strategies useless. For
example, T cell exclusion from the tumor bulk places crucial
limits on the efficacy of T cell-targeted treatments, like ICB or
adoptive cell transfer therapies. The field of spatially resolved
transcriptomics (SRT) has begun to address the issue of a lack of
spatial information by enabling confirmation of the physical
proximity of cells expressing transcripts for a corresponding
ligand and receptor pair. The advent of SRT has been
particularly exciting for cancer research, yielding preliminary
spatial maps of the prostate (100) and melanoma (101) TMEs,
among others. With SRT, characterizing the TME in situ has
suddenly evolved from low throughput “snapshots” given by
immunohistochemistry and in situ hybridization to unbiased
molecular profiling without compromising spatial context. For
many of these reasons, SRT was named Nature Method’s “Method
of the Year” for 2020 (102).

Due to the complexity of preserving spatial information, SRT
technologies do lag behind scRNA-seq in depth of sequencing,
resolution, and accessibility. Some SRT methods require a
preselected panel of genes for profiling (103), while others have
yet to achieve single-cell resolution. As opposed to replacing
scRNA-seq, SRT methods thus present an opportunity to extract
more biologically relevant hypotheses about cell-cell
communication in the TME through integration with scRNA-seq.
This is particularly important given the opportunity to further mine
the plethora of scRNA-seq datasets available in the literature as a
result of both independent studies and collaborative efforts like the
Human Cell Atlas (104). Recently, several excellent in-depth reviews
of SRT have been published (103, 105–107). Here our goal will be to
highlight how these SRT methods have been integrated with
scRNA-seq to enhance the investigation of interactions between
cell populations in the TME. Moncada et al. (108) presented one of
the first examples of the integration of the recently developed spatial
transcriptomics (ST) method (109), capable of transcriptome-wide
sampling but at low resolution, with scRNA-seq to understand the
tissue architecture of pancreatic ductal adenocarcinoma (PDAC).
With ST, the authors were able to identify patterns in spatially
restricted enrichments and co-enrichments of tumor, myeloid, and
healthy ductal cells with other cell types in the TME. Although the
ST array cannot cover the entire tissue, nor does it achieve single-
cell resolution, integration with scRNA-seq supported a focused
exploration of the relationship between the co-localization of
specific cell types and their potential to communicate in the
PDAC TME.

Two other examples of SRT methods, multiplexed error-
robust fluorescent in situ hybridization (MERFISH) (110, 111)
and GeoMX Digital Spatial Profiling (DSP) (112), have aided
studies of spatial organization in the TME. MERFISH is an
imaging-based approach capable of generating single molecule
resolution spatial maps of thousands of preselected genes (i.e.,
not transcriptome wide, a fundamental trade-off) at high
detection efficacy. In glioblastoma (GBM), MERFISH revealed
an enrichment of macrophages in the neighborhood of a specific
subpopulation of malignant cells in both mouse models and
April 2022 | Volume 13 | Article 885267
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patient samples (113). Integration of this information with
scRNA-seq lent support for five ligand-receptor axes through
which macrophages could be inducing a mesenchymal-like state
in this GBM cell subtype. As mesenchymal-like GBM has been
associated with more aggressive, invasive, and inflammatory
features of the TME (114), the integration of MERFISH and
scRNA-seq by Hara et al. directly resulted in the identification of
targets for immunotherapeutic intervention in GBM. MERFISH
has also been used to spatially map all cell types and states
identified by scRNA-seq in CRC patient samples (115), linking
spatial organization in the tumor to previously predicted cell-cell
communication networks.

GeoMX DSP is an in situ barcoding method for multiplexed
profiling of a predefined panels of RNAs or proteins from fixed
tumor tissues (112). This method has been used to identify
spatially informed biomarkers of response and resistance to
immunotherapies such as ICB across multiple cancer types,
including melanoma (116), non-small cell lung cancer
(NSCLC) (117) and head and neck squamous cell carcinoma
(HNSCC) (118). In melanoma and NSCLC, PD-L1 expression in
the CD45+CD68+ spatial compartment (i.e., macrophages) was
found to correlate with prolonged progression-free survival and
overall survival in patients. Similar to MERFISH, GeoMX DSP
thus provides high resolution imaging of focused regions of the
TME, supporting local rather than global evaluations of ligand,
receptor, and cell type co-localization.

It is worth noting that additional spatial profiling methods
continue to be developed with potential to advance the study of
the TME. Deterministic barcoding in tissue for spatial omics
profiling (DBiT-seq) is a microfluidics-based method for 10mm-
resolution multi-omic profiling of fixed tissues (119). By
delivering barcodes to the surface of tissue slides, the authors
were able to generate two-dimensional mosaics of protein and
transcriptome-wide mRNA expression in mouse embryos.
DBiT-seq specifically capitalized on the shortcomings
associated with the technically demanding nature of in situ
hybridization methods like MERFISH and sequential
fluorescence in situ hybridization (seq-FISH+) (120) by taking
advantage of next generation sequencing (NGS) technology and
resources. Unlike GeoMX DSP and similar barcoding strategies
[e.g., Slide-seq (121)], DBiT-seq uses microfluidics for guided
delivery of barcodes to tissue, which greatly improves spatial
accuracy. As of yet, DBiT-seq has not been used to map the
spatial organization of a tumor in a published study, although it
is likely only a matter of time due to the versatility and ease of use
of this technology. The transcriptomic measurements captured
by DBiT-seq would directly support inference of intercellular
interactions at nearly (but not quite) single-cell resolution. DBiT-
seq, like many SRT technologies, is still limited by pixel size and
the total tissue area able to be mapped (119). Taken together,
SRT methods, while not yet replacing scRNA-seq due to
limitations in multiplexing and resolution, have and can
continue to advance investigations of cell-cell communication
in the TME when analyzed in conjunction with scRNA-seq.

Beyond SRT methods, an array of complementary imaging
techniques for both dynamic and static receptor-ligand and
Frontiers in Immunology | www.frontiersin.org 9
sender-receiver cell co-localization has been developed and
used in the TME. Intravital microscopy (IVM) (122) has
emerged as a leading tool to visualize in vivo dynamics and
migration in tumor models at single-cell resolution. Following
surgical implantation of an imaging window, live fluorescent
imaging of the TME can be collected, generally over a period of
hours to days. Luthria et al. (123) showcased the utility of IVM in
the identification of dynamic physical interactions between
immune and tumor cells in vivo across multiple cancer models.
TAMs were found to often neighbor and intertwine themselves
around tumor cells, confirming physical interaction between the
two cell populations. Moreover, the authors linked TAM
polarization state to microtubule dynamics in tumor cells, as
quantified by IVM, elucidating an association between the anti-
inflammatory or pro-tumorigenic macrophage state and
increased cancer cell migration and metastasis. Integration
with scRNA-seq-derived communication networks generated
hypotheses about the role that autocrine signaling (i.e., TAM-
TAM interaction) played in anti-inflammatory TAM
polarization. Using the cell-cell communication inference
strategy from Kumar et al. (26) and scRNA-seq from patient
biopsies across cancers, the authors implicated the interleukin 10
(IL10)-IL10R(A,B) axis as a critical feedback loop in TAMs that
restricts their reprogramming toward a pro-inflammatory or
anti-tumor phenotype (123). Treatment with an IL10R-
blocking antibody was further found to stunt tumor cell
motility and migration both in vitro (in a co-culture model
system) and in vivo. The cell-cell interaction networks inferred
from scRNA-seq therefore directly provided an experimentally
testable target for immunotherapeutic intervention in this study,
although the authors did primarily focus on crosstalk between
immune cell populations in these hypothetical communication
networks. Investigation of TAM-tumor cell crosstalk as inferred
from scRNA-seq was not presented in this work. The focus of
their IVM data was to demonstrate physical interactions between
TAMs and tumor cells in the TME and pinpoint these
interactions as a catalyst for downstream alterations in
microtubule dynamics. Reanalysis of the scRNA-seq data to
instead concentrate on inferring extracellular signaling events
between TAMs and tumor cells has the potential to identify
additional mechanisms of cancer cell migration and anti-
inflammatory TAM polarization for therapeutic targeting with
direct support from the IVM work.

Further, IVMhas helped to elucidate the mechanism of anti-PD-
1 checkpoint inhibition underlying effective anti-tumor responses
(124). IVM revealed co-localization of CD8+ cytotoxic T cells and
dendritic cells (DCs), producing IFNg and IL-12 signals,
respectively, upon treatment with anti-PD-1. This T cell-DC
crosstalk was thus found to form a positive feedback loop
resulting in stimulation of anti-tumor T cell immunity that was
indirectly downstream of anti-PD-1 binding. Garris et al. (124)
collected paired scRNA-seq from the MC38 colon carcinoma TME
to support their claim that IL-12 production was exclusive to DCs,
although inference of cell-cell communication from this data was
not reported. Reanalyzing this scRNA-seq data to predict differential
signaling between immune and tumor cells upon checkpoint
April 2022 | Volume 13 | Article 885267
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inhibition could further the conclusions of this work by
contextualizing the IFNg/IL-12-mediated signaling in the greater
network of cell-cell communication at play in the tumor, with
support for communication between certain cell type populations
coming from their IVM co-localization data. Other studies, which
characterized crosstalk between immune cell populations (125) and
between tumor cells and healthy tissue (126) in the TME with IVM,
similarly collected paired scRNA-seq but did not present scRNA-
seq-derived interaction network analysis. These works highlight
existing opportunities in the field for reanalysis of publicly available
transcriptomic data to infer and validate specific mechanisms and
global signaling underlying emergent behaviors. IVM has also
shown promise in studying the targeting (127, 128), dynamics,
and effects on angiogenesis (129) of nanoparticle-based therapies for
immunomodulation in the TME. This information would aid both
validation and interpretation of therapy-altered communication
networks inferred from scRNA-seq.

While IVM affords in vivo measurement of interacting cell co-
localization and dynamics in the TME, this method is limited by the
number of fluorophores that can be measured simultaneously. The
need for an imaging window also makes IVM more suitable for
collecting spatial information from animal models than humans,
restricting the validation of cell-cell communication networks
inferred from patient-derived scRNA-seq, although human
intravital microscopy (HIVM) is under development (130). Albeit
from fixed tumor slices, imagingmethods such as tissue-based cyclic
immunofluorescence (t-CyCIF) (131) can visualize a greater
multiplicity of fluorophores simultaneously, permitting spatial
mapping of cell type lineage markers, signaling proteins, drug
targets, and immune cell antigens concurrently in the TME.
Jerby-Arnon et al. (132) leveraged t-CyCIF in addition to scRNA-
seq to define a relationship between T cell exclusion and therapy
resistance in ICB-treated melanomas. Malignant cells expressing a
resistance-associated gene programwere often found to localize to T
cell-depleted niches in the TME. As T cell exclusion has been
recognized as a main player in the mixed patient responses to ICB,
t-CyCIF can shed light on whether the spatial organization of a
TME might support or hinder certain immunotherapeutic
strategies. t-CyCIF has also aided studies of myeloid-targeted
immunotherapies in breast cancer (133). Characterization of
BRCA1-associated triple negative breast cancer (TNBC) tumors
as highly infiltrated by immunosuppressive macrophages with t-
CyCIF directly led the authors to explore therapies intended to
reprogram these cells toward a more pro-inflammatory state in this
TME. Integration with scRNA-seq-derived interaction networks
would help to identify mechanisms by which macrophages
orchestrate immunosuppression and provide auxiliary targets
for immunotherapy.

Altogether, many strategies for spatial mapping of the TME
exist, offering dynamic and static measurements of receptor-ligand
and sender-receiver cell co-localization, in vivo and ex vivo. All
have merit in the confirmation of physically possible interactions
in scRNA-seq-derived communication networks, depending on
the context-specific parameters of the TME being studied. Further,
updating the aforementioned cell-cell communication inference
methods to directly take spatial profiling information as input will
Frontiers in Immunology | www.frontiersin.org 10
enhance the integration of imaging with transcriptomics
technologies. For example, as shown in their documentation2,
CellPhoneDB v.3.0 (63) now allows the user to input additional
information describing the localization of each cell type to different
spatial niches in the microenvironment, as derived from prior
knowledge, SRT, or imaging. Their algorithm then places
restrictions on predicted interactions between cell types in
different niches.
FUNCTIONAL SIGNALING IN THE TUMOR
MICROENVIRONMENT CAN BE
VALIDATED BY DIRECT MEASUREMENT
OF PROTEIN SECRETION

mRNA expression does not provide a functional cellular
measurement, nor does it generally correlate with protein levels
(134), which fundamentally limits inference of protein signaling
activity from scRNA-seq. Direct measurement of protein secretion
is particularly critical when characterizing signaling in the tumor
microenvironment, as many cytokine and chemokine networks
modulated by immune cells are responsible for orchestrating pro-
or anti-tumor effects. There aremanycommonlyusedplatforms for
protein measurement in the TME. Two of the most popular,
fluorescence-activated cell sorting (FACS) and enzyme-linked
immunosorbent assays (ELISA), maintain inherent limitations.
Both are limited in their multiplexing capabilities, and FACS in
particular measures surface markers and intracellular proteins as
opposed to the secreted proteins of interest to signaling studies.
Measuring protein secretion in the tumor microenvironment to
complement scRNA-seq-derived communication networks
requires immunophenotyping technology capable of higher
throughput and multiplexing and that is tuned to capture
secreted signals only.

The advent of microfabricated single-cell secretomic analysis
devices has begun to clear some of the aforementioned hurdles
(135–137). The assay platform presented in Lu et al. (138, 139) in
particular has laid the foundation for investigating macrophage
secretion in vitro and ex vivo. Their device, referred to as the
single-cell barcode chip (SCBC), integrates subnanoliter
microchambers with high-density antibody barcode
microarrays for simultaneous detection of up to 15 cytokines
from over a thousand single cells in parallel. Beyond
fundamental studies of macrophage proinflammatory
dynamics in vitro (140, 141), the SCBC has been leveraged to
measure secretion directly ex vivo in tumor-associated myeloid
cells and macrophages (i.e., TAMMs, which includes dendritic
cells) isolated from 8-week-old murine melanoma tumors (98).
Upon combinatorial treatment with two myeloid-targeted
immunotherapies, CD40 agonist (CD40ag) and CSF1R
blockade, a subset of TAMMs were found to upregulate their
co-secretion of proinflammatory cytokines TNF, IL-6, IL-12, and
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chemokine CCL3, along with anti-inflammatory factor Chi3l3.
Other TAMM subsets decreased their secret ion of
immunosuppressive proteins MMP9, CCL17, and CCL22 after
treatment relative to control. Many of these cytokines and
chemokines are known to modulate the behavior of other cell
types in the TME through cell-cell communication. For example,
IL-12 represents a key link between innate and adaptive
immunity, as it has a potent effect on T cell activation and
Th1-type responses through induction of IFNg production (142).
Further, defining cell subpopulations based on differences in
functional signaling is a key component of disentangling
biologically relevant interaction networks in the TME.
Regarding scRNA-seq-derived cell-cell communication
networks, integration with multiplexed measurement of
cytokine and chemokine secretion, particularly of key
inflammatory mediators like IL-12, from paired experimental
conditions would help to validate hypothesized sender-
population signaling at single-cell resolution.

While the SCBC has proven its utility in measuring secretion
from tumor-associated myeloid cells (namely macrophages and
DCs), an up-to-42-plex version of this device has been
commercialized with IsoPlexis (www.isoplexis.com), and it has
been primarily tuned to investigate T cell secretion.
Commercialization has facilitated access to this technology by
over 100 pharmaceutical companies and medical centers
worldwide3. In particular, this T cell-tuned SCBC has been used
to examine the relationship between T cell polyfunctionality and
resistance to anti-PD-1 therapy in human patients across multiple
cancer types (143, 144). Polyfunctionality in this context was
defined as co-secretion of two or more cytokines. Co-secretion of
effector proteins Granzyme B and IFNg by CD4+ and CD8+ T cell
subsets, as measured by the SCBC, was identified as a distinguishing
factor between response and resistance to anti-PD-1. The
commercialized device has also been used to understand the
functional response to other T cell-targeted treatments, including
chimeric antigen receptor (CAR) T cell therapy (145, 146).
Altogether, microwell assay platforms like the SCBC have
advanced functional measurement of immune cell signaling in the
TME, which can greatly aid the validation of functional cell subsets
and cell-cell communication inferred from scRNA-seq.

While these microwell devices provided marked advances
regarding multiplexed measurement of protein secretion by
single cells from the TME, they maintain two shortcomings. As
with scRNA-seq, the aforementioned assays offer static,
“snapshot” measurements of protein secretion, although
multiple experiments could be conducted over a series of
timepoints. Further, platforms like the SCBC require cells to be
sorted from the tumor prior to measurement of secretion, which
could alter their functional behavior. Real time in vivo
measurement of protein secretion would address both of these
limitations, as well as provide a more dynamic picture of
functional signaling for validation of scRNA-seq-derived cell-
cell communication networks. As of yet, no real time in vivo
methods have been demonstrated in the TME.
3https://investors.isoplexis.com/news-releases/news-release-details/isoplexis-
reports-preliminary-full-year-2021-revenue-releases
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“PRUNING” CELL-CELL
COMMUNICATION NETWORKS
COMPUTATIONALLY NARROWS THE
SEARCH FOR EXPERIMENTALLY
TESTABLE TARGETS

Another significant challenge when trying to reconstruct cell-cell
communication networks from scRNA-seq data is to manage the
inherent scale and complexity that these networks can attain. One
approach is to use the aforementioned experimental approaches to
collect spatial andprotein-level information inorder to restrict scRNA-
seq-derived connections to those that can be experimentally
confirmed. However, this can limit the potential of these
computational inference methods to discover novel interactions.
Because interaction networks are directed (i.e., unidirectional along
each individual axis of communication),weighted (i.e., eachaxishas an
associated score indicatingwhether thedata supports theoccurrenceof
that interaction), and densely connected, data mining and biological
interpretation are complicated. However, they also present an
opportunity to use concepts from graph theory and mathematical
modeling to identify the most central, influential, or biologically
relevant signaling axes for experimental validation.

Graph theory is a field of mathematics that views networks as a
collectionofnodes, or vertices, connectedby edges. In the context of
scRNA-seq-derived interaction networks, cell types or subtypes
would be considered nodes, with ligand-receptor or ligand-target
gene axes comprising the edges between them. Centrality is a graph
theory concept concerned with identifying “important” nodes in a
graph, where the definition of importance changes depending on
the “angle” at which the graph is analyzed. Measures of centrality
include degree, betweenness, closeness, pagerank, and eigenvalues.
Degree is the simplest measure of centrality, counting the absolute
number of edges pointing toward (i.e., in-degree) and away from
(i.e., out-degree) a node. Betweenness quantifies a node’s influence
on the flow of information in the network, which can identify
“bottlenecks” or nodes that serve as “ambassadors” between
modules of signaling. Similarly, closeness indicates how directly
or indirectly each node in a graph can communicate with one
another. Pagerank is a measure of “popularity,” as it answers the
question of how often a particular node is communicated through
during a randomwalk on the graph. Finally, eigenvalue centrality is
similar to degree centrality in that it quantifies a node’s influence
through its connections with others. However, this metric is better
suited to aweighted network, as it takes strength of communication
and influence of other nodes into account.

While centralitymetrics areoften reserved for analyzing scRNA-
seq-derived gene regulatory networks (3, 147), they are becoming a
useful tool to evaluate cell-cell communication. Raredon et al. (74)
leveraged degree and eigenvector centralities, in addition to
Kleinberg hub and authority scores, to quantitatively compare
scRNA-seq-derived interaction networks from adult mammalian
lungs across species. The Kleinberg hub and authority scores (148)
were developed as extensions of eigenvector centrality for directed
networks, where a “hub” is a node that communicates to other
importantnodes, andan “authority” is a node that is communicated
to by other important nodes. With these measures of node
April 2022 | Volume 13 | Article 885267
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centrality, Raredon et al. were able to confirm conserved patterns in
signaling topologies in lung tissue across species. For example,
alveolar type I (ATI) cells were unexpectedly characterized as a
major signalinghub inmouse, rat, pig, andhuman lung, particularly
for growth factor-related signaling families including vascular
endothelial growth factor (VEGF) and semaphorins (SEMA).
This work will lay the foundation for recapitulating homeostatic
cell-cell communication in engineered lung tissue. A similar
approach has yet to be applied to scRNA-seq from the TME,
although this analysis is nearly directly transferable. Instead of
revealing conserved mechanisms of signaling, comparing network
centralities across homeostatic and cancerous conditions could
identify changes in signaling topologies that give rise to aberrant
communicationunderlying tumorgrowth,metastasis, and immune
evasion. User-friendly tools for the interpretation of scRNA-seq-
derived interaction networks from the perspective of graph theory
are starting to becomemore popular in the literature, including the
aforementioned CellChat (55).

Outside of graph theory, regression modeling presents an
opportunity to interpret scRNA-seq-derived cell-cell communication
networkswithrespect to relevantquantitativeandqualitativebiological
behaviors, including tumor outcome, tumor growth rate, and immune
cell infiltration.Elasticnet regularization (149) is a regressionmodeling
method that estimates the relationship between one or more features,
or predictors, and a dependent outcome of interest, while accounting
for overfitting and the instability imposed by high-dimensional data
with few examples. Features are assigned coefficients representative of
their relevancewith respect to the outcomeof interest, with coefficients
for less predictive features shrinking to zero. Elastic net regularization
has been previously applied to scRNA-seq to generate predictive gene
signatures of immune cell identity (150), with the features in the
regression problem being each gene in the transcriptome. Similarly,
with features as ligand-receptoror ligand-target gene axis edges instead
of genes, elastic net regularization could be used to select signatures of
signaling predictive of aberrant or immunotherapy-altered tumor
behaviors. This analysis would further filter network edges
considered irrelevant in the context of the biological outcome of
interest. Similar regression modeling approaches like Partial Least
Squares Discriminant Analysis (PLS-DA) (151, 152) could further
disentangle the directionality of the relationship between predictive
signaling axes and emergent behaviors in the tumor. Overall,
computational “pruning” strategies from graph theory and
mathematical modeling are underappreciated and under-utilized
resources for the distillation and interpretation of hypothesized
interaction networks of the TME.
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scRNA-seq has proven to be a powerful tool for high throughput
prediction of cell-cell communication. Transcriptome-wide
profiling of genes encoding for ligands, receptors, intermediary
signaling proteins, and signaling targets, in conjunction with novel
algorithms like CellPhoneDB, CellChat, NicheNet, and CytoTalk,
has characterized signaling mechanisms underlying homeostasis
and disease across biological systems. In particular, scRNA-seq-
derived interaction networks have facilitated identification of
immunosuppressive and immunotherapy-altered cell-cell
signaling in the TME, which contribute to the design and
development of more effective immunotherapeutic interventions
in the clinic. Validation of these networks will only serve to strengthen
the hypotheses that they generate. Integration with SRT and other
imaging technologies will help to define which interactions are
physically possible in the microenvironment through co-localization
of both communicating cell types and paired ligand, receptor, and
signaling intermediaries. Functionalmeasurement of protein secretion
will confirm outgoing communication from “sender” cells and
organize broader cell populations into relevant subsets based on
patterns in secreted signaling. Further computational analysis of
interaction networks by borrowing from the fields of mathematics
and statistics will focus the search for experimentally targetable
signaling mechanisms underlying aberrant behaviors. Together,
integration of scRNA-seq-derived communication networks with
powerful experimental and computational tools will expand our
understanding of the role that cell-cell communication plays in
emergent biological behaviors in the TME and beyond, improving
outcomes for patients across malignancies.
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