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Abstract: Ischemic Stroke precedes depression. Post-stroke depression (PSD) is a major driver for
poor recovery, negative quality of life, poor rehabilitation outcomes and poor functional ability. In
this systematic review, we analysed the inflammatory basis of post-stroke depression, which involves
bioenergetic failure, deranged iron homeostasis (calcium influx, Na influx, potassium efflux etc),
excitotoxicity, acidotoxicity, disruption of the blood brain barrier, cytokine-mediated cytotoxicity,
reactive oxygen mediated toxicity, activation of cyclooxygenase pathway and generation of toxic
products. This process subsequently results in cell death, maladapted, persistent neuro-inflammation
and deranged neuronal networks in mood-related brain regions. Furthermore, an in-depth review
likewise reveals that anatomic structures related to post-stroke depression may be localized to
complex circuitries involving the cortical and subcortical regions.
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1. Introduction

Stroke is one of the leading causes of death and disability globally. There are 16 million
strokes annually, with 6 million deaths and another 5.5 million left with significant disability
with enormous health, social and economic impact worldwide [1]. The direct cost per
person over a year post stroke is approximately US$58,200 [2]. Given the high global
prevalence and disability of stroke and associated costs for the global community, it is
important to explore the factors that may impact on outcome, in order to get the best
possible outcomes for the affected patents [1,3,4].

Depression is responsible for heavy global societal burden with more than 258 million
people worldwide with rising rates globally [5–8]. Both stroke and depression have been
associated with increased inflammatory activation of the immune system causing negative
health impacts in both conditions.

In this review, we explored the relationship between stroke, inflammation and depres-
sion, based on systematic review as described below. Furthermore, an extensive review of
the anatomical correlates of PSD was also undertaken.

Information about acute ischemic stroke (AIS), depression and inflammation was
electronically searched. Only articles in English, involving human subjects and published
between 2005 and 2020 were considered (several key pre-2005 publications from first
author’s personal collection were also considered).

The following databases were searched with the following keywords: stroke; de-
pression; inflammation and neuroanatomy. The following databases were looked into:
MEDLINE; Cochrane and CINAHL. The bibliographies of individual studies were further
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hand-searched. Articles were screened and evaluated independently by the two investi-
gators. Publications were reviewed in terms of the sample size, design and reliability of
data collection.

1.1. Poststroke Depression

Depression after stroke is a prevalent yet under recognized complication of stroke.
The Secondary Prevention of Small Subcortical Strokes (SPS3) trial revealed that 19%
of stroke patients suffered from post-stroke depression (PSD), while a meta-analysis of
51 observational studies estimates that one out of every three stroke survivors suffer from
the PSD [9,10]. Patients with PSD have been shown to have poorer neurological outcomes,
and its economic costs are staggering, affecting health systems at a global scale [11–25].

Prognostic outcome of stroke is dependent on several factors such as age, gender,
initial severity of the stroke, functional status at admission to hospital, urinary incontinence,
impairment in cognitive function, unilateral neglect syndrome and most importantly the
development of PSD. Depression occurs in roughly one-third of stroke survivors at any
one time [10]. PSD is associated with higher mortality and poor functional outcomes [20].
In a comprehensive review performed by the American Heart Association/American
Stroke Association (AHA/ASA), it was stressed that several gaps in knowledge of the
epidemiology, pathophysiology, outcomes, management and prevention of PSD exist [26].
The consensus statement confirmed the need to further elucidate pathophysiology of PSD
as well as the need to further explore the biological factors such as genetic susceptibility,
inflammation, alterations in neurotrophic factors, disruption of neural network and alter-
ations in neurotransmitters and psychosocial factors as a matter of priority. This work aims
at addressing the biological underpinning behind depression, stroke and inflammation.

1.2. Poor Neurological Outcomes in Patients with Post-Stroke Depression

Research has shown that patients with PSD are more likely to be dependent in terms
of activities of daily living compared to their non-depressed counterparts [12]. This is
confirmed in a meta-analysis of longitudinal studies performed by Blochl et al., which
concluded that PSD is linked to poor functional outcomes despite rehabilitation [13]. As
a result, there is marked compromise in their quality of life, most especially in domains
related to cognitive, emotional, economic and social functioning [15,18]. It is in this regard
that van de Weg and colleagues highlight the importance of early recognition of depressive
symptoms among stroke patients and initiation of antidepressant therapy if necessary for
optimization of rehabilitation therapy [19].

In addition to its negative impact on the quality of life and functional recovery, PSD
is also associated with an increased risk of stroke recurrence and mortality [20–22,27]. A
prospective study including patients with concomitant stroke and depression revealed that
PSD doubled the risk for stroke recurrence at the end of one year and resulted in a shorter
time period for its occurrence [20]. A similar conclusion was drawn in a meta-analysis of
six studies performed by Wu et al. and further adds that ischemic stroke, in particular,
augmented the risk for re-stroke [21]. On the other hand, the association of PSD is also
related to increased risk of death from all causes. Various studies concluded that depression
diagnosed after a neurovascular event increases the risk of mortality at 15 months up to
five years after the acute event [22,23,27]. Furthermore, when compared to patients who
are depressed and without a history of stroke, the risk of mortality is significantly higher
among patients with PSD [24]. This is corroborated by a meta-analysis of observational
studies including more than 17,000 patients that concludes PSD has a significant impact on
short-term mortality [25,28].

Various mechanisms have been proposed linking PSD and poor neurologic outcomes.
Inflammation from stroke and depression has been shown to impact neuroplasticity, as
evidenced by the decreased availability of brain-derived neurotrophic factor (BDNF) in
synapses [29]. A disproportionate increase in stress also translates to physiological changes
predisposing patients to hypertension and cardiac dysrhythmias [30]. Another proposed
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mechanism is the social signal transduction theory of depression, which highlights the
activation of various components of the immune and inflammatory pathways triggered
by every individual’s emotional and social experiences [31,32]. Core to this is the role of
cytokines, which has also been identified as a mediator in chronic inflammatory processes
linked to stroke-related complications [33].

1.3. Depression and Inflammation

Inflammation is closely associated with depression [34]. Previous meta-analysis noted
an increase in proinflammatory cytokines (TNFα and IL-6) in people with depression [35].
Another meta-analysis of 82 studies found a greater range of changes in cytokines and
higher levels of TNFα, IL-6, IL-13, IL-18, IL-12, IL-1RA and sTNFR2 along with a reduced
level of pro inflammatory cytokine IFNδ [36]. Eyre et al. noted a wide variety of chemokine
levels to be affected with raised levels of CCL2 (MCP-1), CXCL4 and CXCL7, while CCL4
levels were significantly lower in the blood [37,38]. A number of studies reported people
with depression to have higher levels of circulating proinflammatory cytokines, interleukin-
1β (IL1β) and TNFα and interleukin-6 (IL-6) [39–44].

Evidence suggests that antidepressant therapies may reduce depressive symptoms
through mediating immune markers with mood effects. Serotonin reuptake inhibitor (SSRI)
and serotonin norepinephrine reuptake inhibitor (SNRI) administration was associated
with reduced serum levels of TNFα and increased levels of IL-10 [45,46]. In vitro studies
using animal macrophages revealed reduction in IL-6 and elevation in IL-10 follows
treatment with tricyclic anti-depressant (TCA) drugs such as amitriptyline, and SSRIs
such as fluoxetine, suggesting that such effects may be mediated through the inhibition of
the nuclear factor kappa light chain enhancer of activated B cells (NF-kB) system [47].

Studies have illustrated the changes in cytokines with antidepressants in humans with
lowered levels of IL-1β, IL-4, IL-6 and IL-10 with no definite agreement on specific an-
tidepressant class [48]. Antidepressant-induced immunomodulatory effects were reported
with SNRI (venlafaxine) with greater anti-inflammatory effect over SSRI (paroxetine) [49].

1.4. Ischaemic Cascade and Inflammation

Ischaemic cascade is a complex event with a series of interconnected cellular and molec-
ular mechanisms with cell death by programmed cell death, swelling or necrosis. Under
normal physiological conditions, brain tissue requires a blood flow of 50mL/100g/min to
sustain the supply of nutrients and oxygen [50,51]. When an AIS occur, if the cerebral blood
flow reduces to less than 10 mL/100 g/min, an ischaemic core will be developed [51,52].
When the blood supply is cut off, a series of complex neurochemical events evolve in time
and space. These events are characterised by focal cerebral hypoperfusion, bioenergetic
failure, excitotoxicity, acidotoxicity, oxidative stress, microvascular injury, post-ischemic
inflammation, blood brain barrier disruption and finally death of neurons, endothelial cells,
and neuroglia [53,54].

Microglial cells are thought to be the prime players of the CNS in its own immune
and inflammatory responses, while pro-apoptotic pathways are activated as a result of
the inflammation [55]. While these processes are usually localized to the CNS, a systemic
immune response is also manifested as evidenced by peripheral inflammatory biomarkers
such as the neutrophil-to-lymphocyte ratio (NLR) [56–61]. Using various depression scales
such as HAM-D and Quick Inventory for Depression Symptomatology (QIDS), it has been
demonstrated that a high NLR ratio on admission predicted PSD after one month [59,62].
Furthermore, Hu et al. reported in a retrospective study of more than 300 patients that,
in conjunction with the platelet-to-lymphocyte ratio, admission NLR is associated with
depression at six months after stroke [56].

An important mechanism which leads to the occurrence of depression is low-grade
inflammation, which may have an impact in dopaminergic systems [63,64]. A study by Tang
et al. illustrated that among patients with ischemic stroke, high-sensitivity CRP (hsCRP)
obtained during admission has been shown to correlate with depression at six months post
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stroke [65]. In a similar manner, homocysteine independently predicted the risk of PSD
with an OR of 1.07 (95% CI 1.01–1.22; p = 0.013) and that a level of more than ≥ 16.5 mmol/L
was linked to a much higher risk of PSD (adjusted OR 6.13, 95% CI 3.32–14.16; p < 0.001)
three months after the onset of stroke [66]. There is also available evidence that combining
both parameters resulted in a greater predictive value in PSD [65,67,68].

Acute phase reactants such as ferritin and leptin have also been shown to have
correlation with the occurrence of PSD. Zhu et al. highlights that high serum ferritin
obtained during admission correlates with PSD, with levels more than ≥130.15 µg/L
associated with an odds ratio of 5.388 (95%CI: 1.725–16.829; p = 0.004) [69]. This trend,
however, was not replicated in depressed patients without a history of stroke [70,71].
Whether ferritin is implicated in the neuroinflammatory cascade of PSD remains debatable;
however, a possible mechanism in which this could be attributed to is that elevated iron
levels, as reflected in the elevated ferritin level, is a marker of oxidative stress, which is
central to the occurrence of major depressive disorder [72]. Leptin is another acute phase
reactant, which has spun interest in the research on PSD. It is a hormone that acts on the
receptors in the hypothalamus to signify energy homeostasis [73–75]. Among patients who
suffered from PSD, there is a trend that leptin levels were positively correlated with the
incidence of PSD after one month [75] and at three months [73]. A retrospective study by
Lee et al. involving more than 100 patients also provided evidence that elevated serum
leptin was associated with depression with an odds ratio of 1.21 (95% confidence interval,
1.01–1.45; p = 0.021) [74].

Neopterin is another biomarker that has been shown, in a prospective cohort study, to
correlate with a high score using the Hamilton Depression scale [76]. A marker of activation
of T-cell and cell-mediated immunity, Neopterin has been shown to be a predictor of PSD
among Chinese patients after six months from stroke onset with OR of 1.952 (95% CI,
1.358–2.805, p < 0.0001) [77]. Serum BDNF has also been extensively studied as a predictor
of mood disorders after cerebrovascular events. Yang et al. describes that low serum BDNF
on admission correlates with the occurrence of PSD as early as 14 days post stroke [78].
The same trend was observed in a prospective study at three to six months from the
neurovascular event and was further supported by a meta-analysis of four studies including
171 patients with PSD [79–81]. The utility of BDNF has been further strengthened with
its use as a marker of determining response after antidepressant therapy. Liang and
colleagues looked at this laboratory parameter pre- and post-treatment with Venlafaxine
and Gingko, and it was concluded that serum BDNF predicted therapeutic response [82].
Lastly, morning serum cortisol, a chemical mediator of the hypothalamic–pituitary–adrenal
(HPA) axis, which is central to the pathology of PSD, is also shown to be elevated in patients
compared to non-PSD and healthy controls [83] Clearly, these inflammatory biomarkers
further provide a backbone to the neuroinflammatory model of post-stroke depression.

Neurochemicals that have protective effects post-stroke have also been proven to
have utility as a biomarker in PSD. Adiponectin, which is known for its anti-inflammatory
and anti-atherogenic properties, shows inverse correlation with PSD after three months
of stroke diagnosis [84]. Similarly, retinoic acid, a metabolite of vitamin A, also possesses
anti-inflammatory properties by ameliorating oxidative stress and thereby improving
behaviour in animal studies. Correlating with depression diagnostic scales, evidence
proves that the development of PSD three months after stroke is likely associated with lower
retinoic acid levels at baseline [85,86]. Vitamin D, another neurotrophic factor that provides
neuroprotective function by reducing oxidative stress and the burden of inflammation,
has also been shown to be a predictor of PSD [87]. A prospective study involving more
than 180 stroke patients has shown that low serum vitamin D levels were associated with
a diagnosis of PSD at one month post stroke (odds ratio 8.824, 95% confidence interval
2.011–38.720, p = 0.004) [88]. This is further complemented by another study which also
suggests its predictive value at six months [89]. While vitamin supplementation has been
shown to have a potential in decreasing symptoms in patients with depression [90], its role
in the treatment of PSD is still unclear.
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The inflammatory cascade of events that are well described in both stroke and depres-
sion highlights the significance of proinflammatory cytokines, which act as biochemical
mediators of this phenomenon [29,54,91–97]. In the past decade, research has centred on
the cytokine hypothesis of depression after stroke. Yang’s publication in 2010 was the first
prospective study to evaluate inflammatory cytokines and PSD [98]. Authors concluded
that IL-18 is predictive of PSD in the first 2 weeks after stroke [98]. This was corroborated
by literature publishing that TNF-α, IL-1B, IL-6 and IL-18 also independently predicted the
occurrence of PSD in the acute to subacute period [99,100], and elevated IL-6, IL-10 and
TNF-α correlates with PSD at one to three months post stroke [91,98,101–108]. Interestingly,
patients who were also diagnosed with PSD at 6 to 12 months still had elevated inflam-
matory markers, most notably IL6 and IL-18 [98,101,109]. Table 1 summarizes the utility
of various cytokines in PSD. Indeed, the presence of these pro-inflammatory cytokines
provides a framework that alters the neural milieu to affect neurohormonal metabolism
and function.

1.5. Neuroanatomical Correlates of PSD

Factors which contribute to the occurrence of PSD are multifactorial, with inflamma-
tion, neurohormonal mechanisms and anatomical location thought to be key contribu-
tors [12].

Based on the reviewed studies, neuroanatomical correlates of PSD can be categorized
into lesion volume, lateralization of lesion, as well as specific lesion locations. Other than
the identification of specific site or structure, this review will also discuss additional vari-
ables, such as lesion proximity to the frontal pole and the association between subcortical
or cortical lesions with PSD.

1.6. Lesion Volume

Fifteen studies that discussed the relationship between lesion volume and PSD were
identified. Four concluded no significant association [109,115–118], whilst seven suggested
larger volumes to be related to PSD [119–124]. Interestingly, two studies showed that larger
lesion volumes are only associated with PSD three months and beyond, and not in an
acute setting [119,121–123,125]. These associations between incidence of PSD and lesion
volume might be based on the postulated direct relationship between lesion volume and
depression severity [126].

Douven at al reported that PSD in the post- acute phase was associated with frontal
lobe lesions with the odds ratio of 1.72, 95% CI 1.34–2.19 and basal ganglia lesions with
the odds ratio of 2.25,95% CI 1.33–3.84 [127]. Shi et al. noted that decreased grey matter
volume was observed in the prefrontal cortex, motor cortex and limbic system in a cohort
of patients with PSD [128]. A functional MRI study explored the involvement of functional
networks in three different lesion locations confirming the mechanisms of integrity, locality,
compensatory mechanisms as the important factors in emotional networks [128]

It has been postulated that greater lesion volume can be correlated with greater
resulting disability post-stroke, which can be associated with the incidence and/or severity
of depressive symptoms [129,130]. However, the relationship between lesion volume and
depression can also be explained by the greater release of pro-inflammatory cytokines in
both strokes and depression [99,131]. It has been established that both PSD and stroke
involve an increase in pro-inflammatory cytokines, in particular IL-1β, IL-6, IFN-γ and TNF-
α [99]. This was evident from a study by Spalletta, which demonstrated that depression
severity, especially in an acute setting, could be correlated to an increase in the levels of
IL-6 [100]. Moreover, particular cytokines have also been shown to be highly depressogenic,
with one example being the IFN-γ [131], especially based on its influence on serotonin
metabolism, the hypothalamus–pituitary–adrenal (HPA) axis as well as its positive feedback
on the inflammatory state.
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Table 1. Inflammatory biomarkers in post-stroke depression.

Author, Year Design,
Sample Size Biomarker

Biomarker
Extraction

(With Respect
to Stroke)

PSD
Scale Used

PSD
Assessment

(With Respect
to Stroke)

Findings

Yang et al.,
2010 [98]

Prospective
N = 100

IL-6, IL-18
and TNF- α D1 and D7 HAM-D,

MADRS 6 months
Serum IL-18 on day 7 after admission may predict
the risk of post-stroke depression both at the acute

stage of stroke and at 6 months post-stroke.

Su et al.,
2012 [103]

Prospective
N = 104

IL-6/IL-10
and TNF-
α/IL-10

1st, 3rd, 6th,
9th and 12th

month
after stroke.

HAM-D

1st, 3rd, 6th,
9th and 12th
month after

stroke.

There were significant increases in the cytokine’s
interleukin-6 (IL-6), interleukin-10 (IL-10), tumour

necrosis factor α (TNF-α) and interferon-γ, and the
ratios of IL-6/IL-10 and TNF-α/IL-10 were

also elevated.

Spalletta et al.,
2013 [100]

Prospective
N = 48 IL-6 D3 HAM-D D3, 6, 14

Increased IL−6 plays a key role in the onset of
depressive disorders, apathy/amotivation, somatic

symptoms of depression, and
neurological/functional symptoms, resulting in

higher disability and poor outcome of
stroke patients.

Kang et al.,
2016 [101]

Prospective
N = 286

IL-6 and
IL-18 1 week DSM IV,

HAM-D 2 weeks
Higher IL-6 and IL-18 levels were independently

associated with depressive disorders within 2 weeks
and at 1 year after stroke.

Jiao et al.,
2016 [105]

Prospective
N = 355

CRP, IL-1β,
IL-2, IL-6

and TNF-α
D2 BDI 12 months

The risk of PSD elevated with increased interleukin
(IL)-6 expression levels [hazard ratio (HR) = 3.18;

95% confidence interval (CI), 1.37–7.36].

Kim et al.,
2017 [102]

Prospective
N = 286

TNF-α,
IL-1B 2 weeks DSM IV 2 weeks and

1 year

Higher TNF-α levels were associated with PSD at
2 weeks in the presence of the -850T allele with a

significant interaction term; higher IL-1β levels were
associated with PSD at 2 weeks in the presence of the
-511T allele with a borderline significant interaction

term and with any +3953C/T polymorphism
without a significant interaction term.

Li et al.,
2017 [110]

Prospective
N = 280

hSCRP,
TNF-α, IL-6 - HAM D 3 months

TNF-α, IL-6 and Barthel index are the independent
risk factors of PSD in acute phase, so do NIHSS score

and Barthel index in recovery period.

Meng et al.,
2017 [111]

Prospective
N = 83 TNF-α D1 HAM-D 1 week

High HAMD scores (OR: 2.38, 95% CI: 1.61–3.50,
p < 0.001) were independent risk predictors for PSD
and so were lower dopamine levels (OR: 0.64, 95%

CI: 0.45–0.91, p = 0.014), lower 5-hydroxytryptamine
levels (OR: 0.99, 95% CI: 0.98–1.00, p = 0.046), higher

tumour necrosis factor-α levels (OR: 1.05, 95% CI:
1.00–1.09, p = 0.044), and lower nerve growth factor

levels (OR: 0.06, 95% CI: 0.01–0.67, p = 0.022).

Wang et al.,
2018 [108]

Prospective
N = 152

IL-6, hsCRP,
vitamin D D0 HAM-D 1 month

Serum levels of vitamin D and interleukin-6 were
associated with the development of PSD after

adjusted possible variables (OR = 0.976, 95% CI:
0.958-0.994, p = 0.009; OR = 1.029, 95% CI:

1.003-1.055, p = 0.027).

Xu et al.,
2018 [112]

Prospective
N = 333

MIF, HCY,
CRP

and (IL-6)
D1 BDI 3 months

In the patients with major depression, plasma levels
of MIF were higher compared with those in patients
free from depression [27.3(IQR, 23.5-34.9) ng/mL vs.
20.9(IQR, 17.0–24.8) ng/mL; Z = 8.369, p < 0.001]. For

each 1 unit increase in MIF, the unadjusted and
adjusted risk of PSD increased by 18% (odds ratios
[OR]: 1.18; 95% confidence interval [CI], 1.13–1.23,

p < 0.001) and 11% (1.11; 1.02–1.16,
p = 0.001), respectively.

Kozak et al.,
2019 [113]

Cross-
sectional

TNF-α, IL-1
β, IL-18,
BDNF,

and NSE

D0 DSM IV -
There is no significant relationship between major
depression and basal proinflammatory cytokines

(TNF-α, IL-1 β, IL-18), BDNF and NSE.

Hu et al.,
2019 [114]

Prospective
N = 376

IL-17
and IL-6 2 weeks DSM IV

HAM-D 17 3 months
IL-17 and IL-6 at 2 weeks after admission are all

independent predictors of the occurrence of PSD at
3 months after stroke.

Chen, 2020 [104] Metanalysis
N = 889 IL-6 - DSM IV

HAM D -

The serum concentrations of interleukin-6 (IL-6) and
tumour necrosis factor-alpha (TNF-α) were higher in

the PSD group, compared with the non-PSD group
(IL-6: SMD = 1.26, 95% CI = [0.55, 1.97], p < 0.001;

TNF-α: SMD = 0.61, 95% CI = [0.13, 1.10], p = 0.010).
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First, IFN-γ may alter serotonin metabolism based on its ability to stimulate the
activity of indoleamine 2,3-dioxygenase (IDO), which can degrade tryptophan, a biological
precursor of serotonin, into toxic metabolites [132]. Secondly, IFN-γ can influence the HPA
axis causing continuous stimulation of adrenocorticotrophic hormone (ACTH) and cortisol.
A study has shown that administration of IFN-γ increases the levels of both hormones,
which subsequently lead to the occurrence of depressive symptoms [133]. The elevated
level of glucocorticoids can also affect mitochondria, causing respiratory chain dysfunction
and increase in reactive oxygen species, which may further perpetuate neuronal injury
and cellular death from the original lesion [134,135]. Third, IFN-γ is a potent inducer of
other pro-inflammatory cytokines, such as IL-6, IL-1β and TNF-α, which may further the
inflammatory response following the original stroke insult [131].

1.7. Lesion Laterality

With regards to lateralization of PSD, 14 out of 25 studies showed no association
between the hemispheric lesion locations and PSD, whilst 6 reported significant association
with left-sided lesions [22,27,115,118,136–151]. The inconsistent outcomes from the studies
might be due to the currently poor understanding of the different hemispheric roles in
moods and behaviour. Older theories simplified the roles of the right hemisphere as having
a negative perception of the world and the left with a positive view [152]. This theory
was later developed to include the roles of dominance and contralateral release, stating
the possibility that lesions in the dominant hemisphere might dampen the inhibitory role
against the non-dominant hemisphere, which manifests as depression [153,154].

Of the 40 studies that reviewed the possible relationship between lesion location(s) and
PSD, as presented in Table 2, nearly one-third (N = 15) reported no significant association.
However, amongst those that did, PSD appeared to be associated more with lesions located
in the anterior part of the brain (N = 14), which included the frontal lobe (N = 10), anterior
cerebral artery territory (N = 3) and prefrontal cortex N= 1). In addition, two studies also
highlighted the significant correlation between PSD and the proximity of the lesion to the
frontal pole [137,148].

Table 2. Different lesion locations associated with PSD based on the reviewed studies.

Lesion Locations Studies (N = 42)

No significant associations (N = 14) [117–119,133,138,142,146,152–156]
Anterior/ACA vascular territory (N = 5) [121,125,127,157,158]

Left anterior (N = 1) [157]
Posterior (N = 1) [109,159]

Proximity to the frontal pole (N = 2) [121,145]
Frontal lobe (N= 10) [137,140,141,155,160–165]

Left frontal lobe (N = 3) [141,161,162]
Inferior frontal lobe (N = 1) [163]
Left prefrontal cortex (N= 2) [22,27]

Temporal lobe (N= 4) [141,160,165,166]
Left temporal lobe (N = 1) [141]

Basal ganglia (N = 8) [22,115,147,161,164,165,167,168]
Left basal ganglia (N = 3) [115,141,161]

Caudate (N = 2) [147,168]
Putamen (N = 1) [168]
Pallidum (N = 2) [167,168]

Left posterior pallidum (N = 1) [167]
Lentiform (N = 2) [115,147]

Internal capsule N = 4) [120,147,165,169]
Left internal capsule (N= 1) [123,169]

Anterior limb of internal capsule (N = 1) [147]
Posterior corona radiata (N = 1) [168]

Brainstem (N = 1) [161]
Occipital lobe (N = 1) [123]
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Other locations reported to be involved in PSD are those within the subcortical struc-
tures of the brain (N = 13). More specifically, these include the basal ganglia (N = 8), internal
capsule (N = 4), and corona radiata (N = 1). Interestingly, despite the lacking support for
hemispheric association with PSD, as discussed previously, more than one-third of the stud-
ies demonstrating associations between frontal (N = 5) and subcortical lesions (N = 5) with
PSD highlighted statistical significance between PSD and lesions in the left hemisphere.

With these relative inconsistencies in the neuroanatomical localization of PSD, im-
proved understanding on specific lesion location or neurocircuitries associated with PSD
is essential. This can be based on current knowledge of known areas affected in PSD, the
vascular depression hypothesis, as well as previous lesion localization studies for PSD.

The theories relating to PSD have been based on the monoamine theory of depression,
which stipulates that downregulation of both pre- and post-synaptic receptors associ-
ated with serotonin, noradrenaline and dopamine neurotransmitters may explain for the
manifestation of depressive symptoms [170,171] Neuroimaging studies have also shown
associations between PSD and reduced volumes in the caudate, putamen and frontal
cortex [172].

In 1977, Robinson and Bloom built on this hypothesis by delineating significant
associations between reduced mood and reduced serotonin and noradrenaline levels in
the limbic structures, arguably due to interruptions of ascending neurons from brainstem
nuclei to the cerebral cortex, particularly to the prefrontal cortex. Another study also
highlighted disruptions in the dopaminergic pathway, affecting the mesolimbic reward
circuitry, leading to the symptom of anhedonia.

One of the more targeted studies for neuroanatomical localization of PSD was con-
ducted by Mayberg [172], which supported the likelihood for the involvement of limbic
structures, reward circuitry and anterior temporal cortex, with more specific regions being
the hypothalamus, hippocampus, amygdala, insula and the cingulate cortex [172]. This
hypothesis is further supported by work showing that structures such as the anterior
cingulate cortex (ACC), amygdala and anterior insula are involved in mood and emotional
regulation [172]. Additionally, the presence of WMH in the frontal cortex and basal ganglia
have also been postulated to be associated with depressive symptoms [173] These were
evident in light of (positron emission tomography)PET studies by Mayberg [172–174]
indicating the association between sadness with changes in regional cerebral blood flow
in the cingulate cortex and insula, as well as the correlation between glucose uptake as
a proxy of cingulate metabolism in predicting depressive symptom remission [172,174].
However, in contrast to earlier findings, more recent studies have shown that PSD indeed
involves a more diverse area implicating both cortical and subcortical structures [175,176].

In addition, functional studies in the likes of PET and single photon emission com-
puted tomography (SPECT)have shown that reduced metabolism in the dorsolateral pre-
frontal cortex, medial prefrontal cortex, basal ganglia and the cingulate cortex was associ-
ated with a paradoxical increased activity in the amygdala [177]. The latter is seemingly
consistent with the finding of more pronounced amygdala activation in the presence of
5-HTTLPR s/s genotype, which along with the STin2 VNTR polymorphisms of the sero-
tonin transporter gene (SERT) have been known to increased predisposition to psychiatric
comorbidities, including PSD [178–180]. More novel studies, such as ones using Voxel-
based analysis, have also supported the role of ACC and the dorsomedial prefrontal cortex
in PSD, as critical components of the frontal-subcortical circuitry (FCC) [181]. Further
to this, Bora (2012) also found a significant association between decreased grey matter
volume in the ACC and in the dorsomedial prefrontal cortex with patients presenting with
multiple episodes [179]. In contrast, firstly presenting cases corresponds more with reduced
volumes in the amygdala and parahippocampal area. In addition, individuals diagnosed
only with PSD without other psychiatric comorbidities exhibited reduced activity in the
right pre-central or dorsolateral frontal grey matter [63,180]. Accordingly, loss of grey
matter volumes in these areas may be a result of lower glial density and neuronal cell
reductions [182], and likely perpetuated by the cascade of pro-inflammatory processes,
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neuronal insults and reduced neuroplasticity. This was consistently demonstrated by a PET
study highlighting the role of IFN-γ in dampening the metabolic activities in structures
such as the basal ganglia and dorsal ACC [164,183].

Another concept that may contribute to improved understanding of lesion localiza-
tion of PSD is the vascular depression hypothesis, as initially drawn by Alexopoulos in
1997 [182,183]. Vascular depression is considered as one subtype of late-life depression,
occurring in the elderly aged 65 and beyond. This hypothesis can be defined both clin-
ically, in accordance to the age of onset and presence of vascular risk factors, as well as
on the basis of neuroimaging [184,185]. Looking at the latter, many consider vascular
depression as a small-vessel disease, characterized by the presence of white matter hyper-
intensities (WMH), lacunar infarcts and cerebral microbleeds [182–185]. The mechanism
whereby these small vessel pathologies contribute to vascular depression can be further
distinguished based on the degree of vascular burden and strategic lesion locations [186].
Not many studies have concluded the associations between lacunar infarcts and cerebral
microbleeds with depression, but a few have shown significant associations between WMH
and lesion volumes, as directly correlated with the severity of depressive symptoms [186].

With respect to the specific areas for depression, Krishnan concluded the involvement
of the striato-pallido-thalamo-cortical pathway [187]. Meanwhile, studies have also demon-
strated the involvements of the dorsolateral prefrontal cortex (DLPFC) [186,188]. This is in
agreement with established theories of PSD with presence of neuroinflammatory state and
the demonstrated treatment efficacy of transcranial magnetic stimulation targeted to the
DLPFC [186,188].

As Robinson considered PSD to be a subset of vascular depression [188], few similari-
ties between PSD and vascular depression can be appreciated. One of the similarities is
the involvement of subcortical structures in their pathologies [189,190]. This was evident
through this review, with PSD being associated with subcortical lesions in four out of six
studies, with the other two showing no significant association [101,121,147,150,168,191].
Few studies also showed statistically significant associations between markers of vascular
burdens, such as presence of multiple infarcts and cerebral microbleeds, with incidence of
PSD in three months [168,178]. Some of the clinical features of the two are also identical
with greater prevalence of apathy and social isolations, in conjunction with both of their
relationships with cognitive impairment and interruptions in activities of daily living [189].
However, unlike PSD, the concept of vascular depression to date is still leaning towards
neuroimaging-based diagnosis instead of clinical. Additionally, some studies concluded
that vascular depression is more of a consequence of small-vessel pathologies, whilst PSD
affects larger vessels [173,186]

An MRI-based study by Tang in 2011 concluded that the presence of infarct in the
frontal subcortical circuit (FSC) bears statistically significant association with the occurrence
of PSD [160]. FSC consists of five circuits with three of them being DLPFC, the anterior
cingulate circuit and the orbitofrontal circuit [192]. These are critical circuitries for execu-
tive functioning, motivation and emotional regulations [192,193]. In this review, despite
14 studies showing no significant association between PSD and lesion location, most of
the studies that do provided some support for the involvement of FSC in PSD. Neurons in
the caudate nucleus and pallidum, for example, have also been known to be part of both
the dorsolateral prefrontal circuit and anterior cingulate circuit [194]. Moreover, these are
also two areas long-known to be involved in the pathogenesis of PSD. Aside from the con-
nection within the basal ganglia [171,195,196] Singh has shown involvement of the lateral
division of the orbitofrontal circuit, as one responsible for emotional regulation [137,168].
This is also evident through the significant correlation between inferior frontal lesion and
PSD [194].

Other than its purpose as potential predictor for PSD, lesion location can also be used
to explain the severity of depressive symptoms. Despite lacking adequate evidence, one
example of this is the proximity of the anterior border of the lesion to the frontal pole,
which was shown by Sinyor to be related to the severity of PSD [146].
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Robinson and colleagues were the first to correlate anatomy and behavioural manifes-
tation in animal models [193]. Subsequently, various studies have linked PSD with brain
laterality, specific neuroanatomical location and stroke subtype. A cross-sectional study
involving 28 patients with PSD concluded that left hemispheric cortical and subcortical
infarcts were associated with the development of the former [146]. This was further alluded
by another study which proved that left hemispheric lesions, particularly in the frontal
lobe, were independently associated with severe depression [194]. A systematic review
involving more than 5500 patients refuted this claim, which was further corroborated by
another meta-analysis two years later [127]. However, there is evidence to suggest that
left-sided lesions are usually associated with PSD in the acute phase [194], while right
hemispheric lesions resulted in the later during the subacute phase [127].

State-of-the-art technology that has emerged over the years has allowed researchers to
correlate neuroanatomy and functional changes with respect to mood-related conditions
post stroke. Shi et al. performed voxel-based morphometry and functional magnetic
resonance imaging (fMRI) in 30 patients with PSD [128,197]. In their analysis, it has been
demonstrated that decreased grey matter, particularly at the prefrontal cortex, limbic
system and the motor cortex, were the main culprits to PSD [128,197]. This was further
supported by another study which showed that disruption of the functional connectivity
of the insular cortex, left putamen and right superior longitudinal fasciculus correlated
with worse Hamilton Depression (HAM-D) Rating Scale score for depression [198]. Known
collectively as the limbic-cortical-striatal-pallidal-thalamic (LCSPT) circuit, it has been
demonstrated that patients with post-stroke depression have distinct white matter mi-
crostructural changes as typified by fractional anisotropy (FA) and mean kurtosis (MK)
levels [198,199]. In particular, Shen and colleagues have provided evidence that FA of the
left frontal lobe and MK levels of bilateral frontal lobes were substantially smaller when
compared to their non-PSD counterparts [198]. The same trend was observed in the bilat-
eral anterior limbs of the internal capsule; however, Yasuno showed a negative correlation
between depressive symptoms and FA values 6 months after acute ischemia [199].

1.8. Inflammation-Related Genetic Polymorphisms Associated with PSD

There is compelling evidence that genetic mechanisms lead to the activation of various
cell lineages and inflammatory factors that play a key role in the pathology of PSD. It has
been substantiated in the literature that serotonin is core to the pathogenesis of PSD. In
particular, the role of the serotonin transporter gene and the tryptophan hydroxylase 2
(TPH2) gene, both of which are essential in serotonin synthesis, have been evaluated in
human and animal studies to correlate with PSD [200,201]. In a study involving 199 Chi-
nese patients with PSD, it has been demonstrated that the serotonin transporter-linked
polymorphic region (5-HTTLPR) polymorphism was linked to patients’ susceptibility to
PSD [200]. Moreover, a case control study comparing stroke survivors with and without
depression has also provided evidence that the presence of mutations in the 5-HTTLPR
gene resulted in a three-fold odds of acquiring PSD [201,202]. The significance of this ge-
netic mutation was also replicated in a meta-analysis of seven trials, which has shown that
homozygosity to 5-HTTLPR (5-HTTLPR) polymorphism was significantly associated with
PSD, while the heterozygous and the recessive models were shown to be protective [177].
On the other hand, genetic abnormalities involving the TPH2 have also been evaluated in
PSD. Genotypic studies of more than 300 Korean patients have shown that the presence of
TPH2 rs4641528 C was predominant among these patients and suggests that homozygosity
to this allele makes patients susceptible to PSD [203]. This finding is further strengthened
in a study published by Tsai et al., which showed that patients who responded to selective
serotonin reuptake inhibitors had a higher proportion of heterozygous carriers of this gene
compared to non-responders [204]. In addition to TPH2, there is also evidence that methy-
lation of the brain-derived neurotrophic factor (BDNF) gene, which is key in neuronal
maturation and synaptic plasticity, increases susceptibility to PSD and predicts response
to treatment [205,206]. A study by Kim and colleagues looked into the relationship of
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BDNF methylation status and PSD and has shown that increased burden of the former
is associated with higher incidence of PSD and worse symptoms [207]. Similarly, animal
models have also shown that BDNF expression in the hippocampus and cerebellum of
rats was significantly lower in patients with depression post stroke compared to normal
controls [79,208,209]. This genetic biomarker has also proven its utility in assessing a
patient’s response to treatment. Fluoxetine, an SSRI which is used in the treatment of PSD,
has been shown to upregulate the expression of BDNF synthesis in mice hippocampus,
which improved depressive signs [210].

Another identified receptor that has been shown to play an important role in PSD
is the expression of the P2X4 (P2X4Rs) [211]. These receptors, which are ubiquitous in
CNS cell lineages, particularly in microglia and monocytes, have been shown to reduce the
burden of depression and improve stroke recovery in mice models [211]. Animal studies
have provided evidence that myeloid-specific (MS) P2X4R knock-out (KO) mice exhibited
depressive phenotype regardless of the size of stroke [211]. This is likely explained by the
alteration in the concentration of tyrosine hydroxylase and dopamine receptors pre and
post-synaptically, which is central to the pathogenesis of depression [212]. These receptor
alterations have also resulted in depression-related behaviours such as increased ethanol
intake in transgenic mouse models [213]. On the other hand, activation of P2X2 receptors
in the medial prefrontal cortex has been shown to have antidepressant effects [214]. Mouse
models have provided evidence that modulation of P2X2 receptors by inducing ATP release
from astrocytes has resulted in the alleviation of depression [214]. While the clinical utility
of P2XR modulation has been explored in neuropsychiatric conditions such as alcohol
addiction [213], its role in PSD has not been fully elucidated. Another genetic biomarker
that has been looked into is apolipoprotein E (APOE) expression, which is another genetic
biomarker for neurodegenerative conditions. It is an apoprotein that is known to regulate
lipid homeostasis and also plays a critical role in neuronal repair [215]. A study of Chinese
patients with PSD has shown that the presence of APOE polymorphism is linked to an
increased risk of PSD with an odds ratio of 3.17 for the rs429358-TC allele and 11.24 for the
rs429358-CC allele [216].

2. Anti-Inflammatory Treatment in PSD

There is substantial evidence to suggest agents that target inflammation may have a
putative role in the treatment of PSD. Both human and animal studies show amelioration
of depressive symptoms using various regimens among post-stroke patients.

2.1. Anti-Inflammatory Properties of Herbal Medications for PSD

Herbal medications have been extensively investigated for PSD in various popula-
tions. An experimental study on the herbal medication paeoniflorin improved depressive
-like behaviour among rat models, similar to the effects of fluoxetine [217]. A mechanism
proposed for its benefit is the increased BDNF and p-CREB expression in the hippocam-
pus [217]. Another animal study confirms the utility of Yi-nao-jie-yu prescription for PSD
in rat models [209]. Its potential beneficial effects is attributed to the upregulation of Notch
signalling genes, which is key to its neurogenesis [209]. Studies in human subjects have
also provided substantial proof on the utility of traditional herbal medicines for PSD. A
meta-analysis of randomized clinical trials demonstrates that Chai Hu Shu Gan San, a
Chinese herbal medication composed of three subcomponents with anti-inflammatory and
antioxidant properties, has benefits for post-stroke depression [218]. The Korean traditional
medicine Sihogayonggolmoryeo-tang has also shown to have antidepressant effects in
a meta-analysis performed by Kwon and colleagues [219]. The anti-inflammatory effect
of one of its components, Bupleuri Radix, is attributed to the increased levels of nerve
growth factor and brain-derived neurotrophic factor [220]. Curcumin is another traditional
medication, which exerts its antidepressant effects among stroke patients by inhibiting
P2X7R and subsequently deactivating calcium-mediated inflammatory effects related to
PSD [221] While the beneficial effects of traditional medicine may be convincing, a sys-
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tematic review of randomized control trials comparing various Chinese herbal medicines
and fluoxetine shows otherwise [222]. This study concludes that most of the clinical trials
had a high risk of bias and therefore draws no firm conclusion to ascertain safety and
efficacy [218,219,222]. To date, there are no existing guidelines that recommend herbal
medications for poststroke depression.

2.2. Anti-Inflammatory Properties of Antidepressants

Various antidepressants are known for their pleiotropic properties including their
anti-inflammatory mechanism. As shown in post-ischemic rat models, it has been demon-
strated that fluoxetine exhibits a dose-dependent reduction in the activation of cellular
inflammatory mediators such as microglia and neutrophils and suppresses the activity of
NF-kappaB [223]. Fluoxetine also reduced the levels of inflammatory cytokines such as
TNF-α, IL-1β and IL-6 in experimental studies [224]. Furthermore, fluoxetine injections
in rat models enhanced neurogenesis and prevented a pathological increase in stem cell
recruitment in the hippocampus [224]. Similarly, citalopram demonstrates neuroprotective
effects by decreasing oxidative stress, inflammation and apoptosis [225]. Additionally, the
natural antidepressant hyperforin also improves post-stroke depression and post-stroke
isolation in rat models by inhibiting TGF-β, resulting in the promotion of hippocampal
neurogenesis [226,227]. While there is a growing number of animal studies looking into
the anti-inflammatory effects of various antidepressants, these benefits have not been
established in human studies to date.

2.3. Antioxidants and Other Anti-Inflammatory Medications for PSD

The production of reactive oxygen species as a result of oxidative stress and lipid, pro-
tein and DNA damage has also shown to be key in the pathophysiology of PSD [228,229].
It is in this regard that antioxidants such as polyphenols might play a key role as a thera-
peutic agent [229]. The antioxidant components of green tea such as polyphenol, theanine,
glutamine and caffeine have also been shown to be beneficial for PSD [230]. Minocycline,
on the other hand, has also been studied for the treatment of depression in mice with global
cerebral ischemia [231]. This is likely secondary to the upregulation of neuroprotective
cytokines and the reduction in hippocampal degeneration [231,232]. These observations
and theoretical implications have yet to be replicated in human studies.

3. Conclusions

Depression is not an uncommon post-stroke complication, and it impacts every pa-
tient’s functional recovery, quality of life and predisposes to a higher risk of stroke recur-
rence and mortality. One of the key factors contributing to the occurrence of post-stroke de-
pression is the heightened state inflammation, which affects neural and systemic pathways
as evidenced by various biomarkers. Furthermore, neuroanatomical correlates primarily
involving the frontal cortical and subcortical structures also play a critical role for this
post-stroke complication. Various studies support the potential role of therapy aimed at
decreasing inflammation in post-stroke depression, but clinical trials are limited to validate
its use. More studies are necessary to look at treatment strategies that potentially target the
neuroinflammatory basis of this growing public health concern.
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