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Simple Summary: Molecular tissue-based prognostic biomarkers are anticipated to complement
the current risk stratification systems in prostate cancer, but their manual assessment is subjective
and time-consuming. Objective assessment of such biomarkers by machine learning-based methods
could advance their adoption in a clinical workflow. PTEN and DNA ploidy status are well-studied
biomarkers, which can provide clinically relevant information in prostate cancer at a low cost. Using
a cohort of 253 patients who received radical prostatectomy, we developed a novel, fully-automated
PTEN scoring in immunohistochemically-stained tissue slides, which could be used to assess PTEN
status in a reliable and reproducible manner. In an independent validation cohort of 259 patients,
automatically assessed PTEN status was significantly associated with time to biochemical recurrence
after radical prostatectomy, and the combination of PTEN and DNA ploidy status further improved
risk stratification. These results demonstrate the utility of machine learning in biomarker assessment.

Abstract: Machine learning (ML) is expected to improve biomarker assessment. Using convolution
neural networks, we developed a fully-automated method for assessing PTEN protein status in
immunohistochemically-stained slides using a radical prostatectomy (RP) cohort (n = 253). It was
validated according to a predefined protocol in an independent RP cohort (n = 259), alone and by
measuring its prognostic value in combination with DNA ploidy status determined by ML-based
image cytometry. In the primary analysis, automatically assessed dichotomized PTEN status was
associated with time to biochemical recurrence (TTBCR) (hazard ratio (HR) = 3.32, 95% CI 2.05 to
5.38). Patients with both non-diploid tumors and PTEN-low had an HR of 4.63 (95% CI 2.50 to 8.57),
while patients with one of these characteristics had an HR of 1.94 (95% CI 1.15 to 3.30), compared
to patients with diploid tumors and PTEN-high, in univariable analysis of TTBCR in the validation
cohort. Automatic PTEN scoring was strongly predictive of the PTEN status assessed by human
experts (area under the curve 0.987 (95% CI 0.968 to 0.994)). This suggests that PTEN status can be
accurately assessed using ML, and that the combined marker of automatically assessed PTEN and
DNA ploidy status may provide an objective supplement to the existing risk stratification factors in
prostate cancer.

Keywords: machine learning; prostate cancer; PTEN; DNA ploidy; tumor heterogeneity

1. Introduction

Machine learning, and in particular deep learning, is expected to transform many areas of
medicine due to its unmatched capability to make accurate and objective predictions [1]. These
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methods have proven particularly useful in medical image analysis and have great potential
to improve the assessment of diagnostic and prognostic biomarkers in terms of efficiency
and reproducibility [2]. Convolution neural networks (CNNs) are a fundamental class of
deep learning networks that can be trained to detect, segment, and classify objects using
large learning data sets [1,3]. CNNs are well-suited to perform complex visual recognition
tasks, such as tumor detection, Gleason grading [4,5], scoring of tissue stains [6,7], as well as
determining prognosis [8], and are emerging as a core method in medical image analysis.

Localized prostate cancer (PCa) is a heterogeneous disease with a highly variable
clinical outcome [9]. Although several useful prognostic tools combining clinicopatho-
logical parameters are available, additional objective biomarkers are needed to further
improve risk stratification [10]. Currently, no molecular tissue-based PCa biomarker is
recommended for routine clinical use [11].

Chromosomal instability (CIN)—a high rate of loss or gain of whole or parts of chromoso
mes—is a form of genomic instability observed in most human cancers. It is associated with
intratumor heterogeneity and a more aggressive cancer phenotype [12,13]. CIN status can be
inferred from measurements of DNA ploidy (cellular DNA content), which is a prognostic
biomarker in PCa (reviewed in [14]). DNA ploidy status is best assessed using DNA image
cytometry, where the correct and reproducible subclassification of nuclei can be provided
by a machine learning-based method. However, the resolution of DNA image cytometry
is insufficient to detect additions or deletions of small chromosomal fragments. Loss of the
phosphatase and tensin homolog (PTEN) tumor suppressor gene is one of the most common
genomic alteration in PCa, and it has been consistently reported to be associated with adverse
clinical outcomes (reviewed in [15]). Lennartz et al. demonstrated that combining assessment
of DNA ploidy by flow cytometry and deletions of PTEN and 6q15 by fluorescence in situ
hybridization (FISH) provided an independent prognostic biomarker in a large cohort of PCa
patients. Since PTEN protein loss is highly concordant with gene deletion, PTEN status can
be readily obtained by immunohistochemistry (IHC), which is more feasible to adapt to the
pathology workflow compared to FISH [16]. However, manual scoring of IHC-stained slides
is very time consuming and subjective, and the published computer-aided PTEN scoring
methods [17,18] are inadequate to mitigate these issues.

The aim of this study was to develop a fully automated method for PTEN scoring of
IHC-stained slides using CNNs and to determine its prognostic value in patients treated
with radical prostatectomy (RP). The method was trained and internally tested using a
discovery cohort and validated in an independent cohort according to a predefined protocol
that precisely described the primary analysis. As a secondary analysis, we investigated
whether combining the automatic PTEN assessment with automatically assessed DNA
ploidy status would improve prognostication.

2. Materials and Methods
2.1. Patients

The discovery and validation cohorts were both comprised of patients with PCa who
underwent RP at the Norwegian Radium Hospital, Oslo, a tertiary comprehensive cancer
center in Norway. The patients in the two cohorts were operated on by different surgeons
at largely disjointed time periods (46 out of the 512 (9%) patients were operated on during
the overlapping time period) and in general using different surgical techniques. According
to the convention in the medical statistics community, such an approach represents a type
of external validation called narrow validation, which may be considered intermediate
between broad and internal validation [19]. Each prostate gland was processed into a
series of 3–5 mm thick formalin-fixed, paraffin-embedded tissue blocks. Both cohorts are
described in detail in the study protocol (File S1 page 1–5). The study was approved by
the Norwegian Regional Committees for Medical Research Ethics South-East region (REK
numbers S-07443a and 2013/476). Gleason scores (GSs) of the tumors were assessed in
the clinical routine for all patients in the validation cohort. All study specimens were
centrally reviewed, at different time points, by an experienced uropathologist (LV) using
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the updated 2005 International Society of Urological Pathology (ISUP) guidelines [20,21]
in the discovery cohort and the 2014 ISUP guidelines [22] in the validation cohort. The
definitions of Gleason grade patterns in the updated 2005 and 2014 ISUP consensus are
similar. The only difference is the recommendations on grading of glomeruloid glands,
which are an extremely rare feature in prostate tumors [23]. Gleason scores were classified
into Gleason grade groups (GGGs) [22].

2.2. Discovery Cohort and Test Subset

Of the 317 patients operated on with open retropubic prostatectomy between 1987 and
2005 by one surgeon (HW), 10 were excluded due to preoperative therapy (n = 1), death
from postoperative complications (n = 1), loss to follow-up (n = 1), or no tumor material
available (n = 7).

A subset of 185 blocks from 93 non-excluded patients was used to develop a CNN to
detect the tumor region in which the PTEN score was assessed. This subset was randomly
split on the patient level into a train subset containing 70% of the patients and a tune subset
containing the other 30%. The train subset contained 129 blocks from 65 patients and was
used to train the tumor detector. The tune subset contained 56 blocks from 28 patients and
was used to select model hyperparameters, in particular to determine when to cease training.

Another CNN was developed to detect and segment tumor cells and classify them
as PTEN-positive or PTEN-negative. This development used a subset of 34 blocks from
34 patients, which were randomly split into a train and a tune subset, again targeting a
70:30 split. The resulting train subset contained 24 blocks, and the tune subset contained
the remaining 10 blocks.

A test subset of 253 non-excluded patients with three available tumor-containing
blocks was used to evaluate the performance of the automatic PTEN scoring method
(protocol page 30–34). None of the 34 patients used for developing the PTEN classifier
were included in the test subset, whereas 50 patients were included in both the dataset
used for developing the tumor detector (i.e., the 93 patients) and the test subset. Different
thresholds for dichotomizing the automatic PTEN scores were evaluated in the test subset
(i.e., the 253 patients), and the decision to use 50% as the threshold in the validation was
based on these results (protocol page 33–34).

2.3. Validation Cohort

Of the 287 patients operated on with open retropubic prostatectomy (n = 75) or robot-
assisted prostatectomy (n = 182) between 2001 and 2006 by one surgeon (BB), 28 were
excluded due to missing patient consent (n = 21), missing or less than six weeks of follow-
up (n = 4), and no tumor material available (n = 3). Three tumor-containing blocks were
analyzed for each of the 259 eligible patients.

2.4. Immunohistochemistry, Scanning of Tissue Slides, and Manual PTEN Scoring

Monoclonal PTEN antibody (1:400, 138G6, Cell Signaling Technology, Danvers, MA,
USA) was applied on 3 µm tissue sections after heat-induced epitope retrieval, as pre-
viously described [24]. IHC-stained slides were scanned on a NanoZoomer XR slide
scanner (Hamamatsu Photonics, Hamamatsu, Japan) at the highest resolution available
(termed 40x). The resulting whole-slide images (WSIs) typically contained an order of
100.000 × 100.000 pixels, each representing a physical size of 0.227 × 0.227 µm. All the
WSIs were quality controlled, and slides were rescanned if they were out of focus. PTEN
expression was manually scored at 10% intervals by two observes (Karolina Cyll (KC) and
Elin Ersvær), blinded to clinicopathological data. Cells were considered PTEN-negative
if the cytoplasmic and nuclear staining was absent or decreased compared with internal
positive controls (benign glands and/or stroma), as previously described [16,25]. PTEN
expression was not scored when the intensity of the staining was weak or absent in the
internal positive controls or when ≥95% of the tumor area had fallen off during sample
preparation. The correlation between the manual scores obtained by the two observers
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was strong (Pearson’s r = 0.916, 95% CI 0.903 to 0.927). Survival analysis of each observer’s
PTEN scores is presented in Figure S1. A consensus score was used in further analyses.

2.5. DNA Image Cytometry

Preparation of nuclear monolayers was performed according to a modified Hedley
method [26]. Identification of representative epithelial and stromal (reference) nuclei
and DNA ploidy histogram classification into diploid, tetraploid, or aneuploid was done
automatically using PWS Classifier software (Room4 Ltd., Sussex, UK). The software makes
use of support vector machines, a machine learning technique, trained with manual cell
classifications as references to discard non-intact nuclei (i.e., cut, folded, and connected)
and to classify cell types based on morphological features and pixel-based image metrics
extracted from the cell images [27,28] (see File S1 page 9–10 for details).

2.6. Automatic PTEN Scoring

The automatic scoring method consisted of three steps. First, each WSI was partitioned
into smaller, non-overlapping regions, called tiles, measuring 800 × 800 pixels. Next, each
tile was classified as tumor or non-tumor by the tumor detector. Finally, the PTEN classifier
detected and segmented tumor cells in the remaining tumor tiles and classified them as
PTEN-positive or PTEN-negative. The entire system thus provided a count of PTEN-
positive and PTEN-negative tumor cells without any human interaction (Figure 1). The
PTEN score for a WSI was calculated as the ratio between the number of positive cells and
the total number of positive and negative cells. The score for a patient was calculated as
the average score of all its WSIs.
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Figure 1. Pipeline for fully-automatic PTEN scoring. Each whole slide image (WSI) of an IHC-stained slide is partitioned
into smaller, non-overlapping regions called tiles with 800 × 800 pixels (40x lens). The tiles are classified as tumor or
non-tumor by the tumor detector. Tumor tiles are processed by the PTEN classifier which detects and quantifies tumor
PTEN-positive, non-tumor PTEN-positive, tumor PTEN-negative and non-tumor PTEN-positive cells. PTEN score for a WSI
is calculated as the ratio between the number of tumor PTEN-positive cells and the total number of tumor PTEN-positive
and PTEN-negative cells. Abbreviations: PTEN = phosphatase and tensin homologue.
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The training and tuning of the tumor detector and PTEN classifier are described
in detail in the File S1 (page 12–29). Briefly, the tumor detector was developed using
the Inception v3 classification CNN [29]. The train subset of 129 WSIs from 65 patients
contained 881,418 tiles, whereas the tune subset of 56 WSIs from 28 patients contained
332,211 tiles. A tile was classified as a tumor tile if its center position was inside the
manual tumor annotations performed in the WSI; otherwise, it was classified as a non-
tumor tile. This resulted in 241,170 (27%) tumor tiles and 640,248 (73%) non-tumor tiles
in the train subset, and 97,587 (29%) tumor tiles and 234,624 (71%) non-tumor tiles in
the tune subset. In order to represent cases with technical failures, 10 of the 185 WSIs
were IHC-stained with lower PTEN antibody concentration (1:1200), and another 10 were
IHC-stained without PTEN antibody. Tumor areas in these 20 WSIs were not annotated
in order to allow the network to learn to exclude them. The proportion of tiles correctly
classified as tumor/non-tumor was 0.957 in the train subset and 0.938 in the tune subset.

The PTEN classifier was developed using the Mask R-CNN instance segmentation
network [30]. The train subset of 24 WSIs from 24 patients consisted of 2160 tiles, and the
tune subset of 10 WSIs from 10 patients consisted of 900 tiles. Contours of 77,777 tumor
nuclei from the 3060 tiles were manually drawn to learn the network to identify cells.
Each cell was labeled as PTEN-positive (cytoplasmic and/or nuclear staining present) or
PTEN-negative (cytoplasmic and nuclear staining absent) by a trained cell biologist (KC).
The train subset consisted of 46,434 (81%) PTEN-positive and 11,146 (19%) PTEN-negative
cells, whereas the tune subset consisted of 17,396 (86%) PTEN-positive and 2801 (14%)
PTEN-negative cells.

The development of the PTEN classifier was an iterative process. First, a model was
trained and tuned using the 3060 manually annotated tiles from the 34 WSIs, resulting in a
mean average precision [31] of 0.856 in the train subset and 0.687 in the tune subset (File S1
page 19–20). To improve the model’s ability to discriminate tumor and non-tumor cells, we
applied the initial model to the 3060 tiles, and the detections that did not overlap with the
manual annotations were reclassified (KC) into four classes: tumor PTEN-positive, tumor
PTEN-negative, non-tumor PTEN-positive, or non-tumor PTEN-negative. This refinement of
the annotations in the tiles from the 34 WSIs allowed for the inclusion of tumor cells that were
missed during the initial manual annotation. In addition, this allowed for the inclusion of
non-tumor PTEN-positive and PTEN-negative cells that were not annotated manually but
rather incorrectly identified as tumor cells by the first model to improve the network’s ability
to differentiate between tumor and non-tumor cells. The tiles from the 34 WSIs were coupled
with the updated annotations, including the four classes and a background class, and used to
train a second (and final) model. The mean average precision of this final model was 0.835 in
the train subset and 0.705 in the tune subset (File S1 page 22–23).

2.7. Statistical Analyses

The study was performed in compliance with the Reporting Recommendations for
Tumor Marker Prognostic Studies (REMARK) [32]. A study protocol describing the in-
dependent validation was predefined in accordance with the Protocol Items for External
Cohort Evaluation of a deep learning System (PIECES) [33]. The primary and secondary
analyses were planned prior to the evaluations of the independent validation cohort and
are described in the protocol (File S1 page 35–37). The primary analysis was the assessment
of the prognostic value of the automatically assessed dichotomous biomarker of PTEN
status in the validation cohort by computing its hazard ratio (HR) with a 95% confidence
interval (CI) in univariable Cox proportional hazard regression analysis and the p-value of
the Mantel–Cox log-rank test. The endpoint was biochemical recurrence (BCR), defined as
a single PSA ≥ 0.4 ng/mL. Time to BCR (TTBCR) was calculated from primary surgery to
BCR or to the date of the final PSA registration (24 June 2020). In the analysis of the test
subset of the discovery cohort, the endpoint was time to recurrence defined in accordance
with Punt et al. [34], calculated from primary surgery to recurrence or to non-related death
or the last date of follow-up (31 December 2008). Survival curves were depicted with the
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Kaplan–Meier method and compared using the Mantel–Cox log-rank test. The marker of
interest and established prognostic markers were included in the multivariable model and
evaluated using the Wald χ2 test with the Cox proportional hazards model. The CI of the
area under the receiver operating characteristic curve (AUC) and Harrell’s concordance
index (c-index) were computed as the bias-corrected and accelerated (BCa) percentile
interval over 10,000 bootstraps. PTEN and DNA ploidy status were integrated with the
Cancer of the Prostate Risk Assessment Post-Surgical (CAPRA-S) score by adding 1 point if
PTEN-low and 1 point if non-diploid. In order to test the difference in c-index between the
standard and the updated CAPRA-S score, a two-sided p-value was calculated as 1 minus
the confidence level of the largest BCa CI that did not contain 0. Correlations between
the automatic and the manual PTEN scores were evaluated using Pearson’s correlation
coefficient. The AUC was used to measure the performance of the automatic PTEN scoring
method, using manual PTEN scores dichotomized using the 50% threshold as the ground
truth. Fisher’s exact test, Kruskal–Wallis H, and Mann–Whitney U tests were used to
evaluate associations. Two-sided p-values <0.05 were considered statistically significant.
Statistical calculations were performed using Stata/MP 16.1 (StataCorp, College Station,
TX, USA).

3. Results
3.1. Test Subset

Clinicopathological characteristics of patients included in the test subset are summa-
rized in Table S1. Approximately half of the patients (46%) were in the CAPRA-S low-
or intermediate-risk group. Patients with PTEN-low (<50%) had a significantly shorter
time to recurrence compared to patients with PTEN-high (≥50%) in univariable analysis
(HR = 1.96, 95% CI 1.27 to 3.02, p < 0.001 and c-index = 0.578, 95% CI 0.527 to 0.634).

3.2. Validation Cohort

The patients in the validation cohort had a median age of 62 (interquartile range (IQR)
59–66) years, and the majority (77%) were in the CAPRA-S low- or intermediate-risk group
(Table 1). BCR occurred in 71 patients after a median of 2.4 (IQR 0.3–5.3) years. The median
follow-up time for patients that did not experience BCR was 9.2 (IQR 7.9–11.1) years.

Table 1. Clinicopathological characteristics for all patients in the validation cohort stratified by the combined DNA ploidy
and PTEN status.

Characteristic All PTEN-High and
Diploid

PTEN-Low or
Non-Diploid

PTEN-Low and
Non-Diploid p Value *

Patients 259 164 (63%) 73 (28%) 22 (8%)
Age at surgery, years 62 (59–66) 61 (58–65) 65 (60–69) 64 (60–66) 0.002
Preoperative PSA, ng/mL 8.3 (6.5–11.4) 8.0 (6.4–11.0) 9.0 (6.9–12.7) 7.8 (6.4–10.0) 0.18
Missing 1 (0%) 0 1 (1%) 0

Preoperative PSA 0.44
≤6 ng/mL 54 (21%) 37 (23%) 12 (17%) 5 (23%)
>6 ng/mL and ≤10 ng/mL 123 (47%) 78 (48%) 32 (44%) 13 (59%)
>10 ng/mL and ≤20 ng/mL 73 (28%) 45 (27%) 25 (35%) 3 (14%)
>20 ng/mL 8 (3%) 4 (2%) 3 (4%) 1 (5%)
Missing 1 (0%) 0 1 (0%) 0
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Table 1. Cont.

Characteristic All PTEN-High and
Diploid

PTEN-Low or
Non-Diploid

PTEN-Low and
Non-Diploid p Value *

Gleason grade group † <0.001
1 (GS 6) 3 (1%) 1 (1%) 2 (3%) 0
2 (GS 3 + 4) 153 (59%) 117 (71%) 31 (42%) 5 (23%)
3 (GS 4 + 3) 54 (21%) 31 (19%) 19 (26%) 4 (18%)
4 (GS 8) 12 (5%) 5 (3%) 4 (6%) 3 (14%)
5 (GS 9–10) 37 (14%) 10 (6%) 17 (23%) 10 (45%)
Gleason grade group ‡ <0.001
1 (GS 6) 77 (30%) 64 (39%) 12 (16%) 1 (5%)
2 (GS 3 + 4) 98 (38%) 63 (39%) 28 (38%) 7 (32%)
3 (GS 4 + 3) 54 (21%) 26 (16%) 20 (27%) 8 (36%)
4 (GS 8) 19 (7%) 7 (4%) 8 (11%) 4 (18%)
5 (GS 9–10) 10 (4%) 3 (2%) 5 (7%) 2 (9%)
Extraprostatic extension <0.001
Absent 166 (64%) 125 (77%) 37 (51%) 4 (19%)
Present 89 (34%) 37 (22%) 35 (48%) 17 (81%)
Missing 4 (2%) 2 (1%) 1 (1%) 0

Surgical margins 0.032
Negative 165 (64%) 113 (69%) 38 (52%) 14 (64%)
Positive 92 (36%) 49 (30%) 35 (48%) 8 (36%)
Missing 2 (1%) 2 (1%) 0 0

Seminal vesicle invasion <0.001
Absent 228 (88%) 157 (96%) 60 (83%) 11 (50%)
Present 30 (12%) 7 (4%) 12 (16%) 11 (50%)
Missing 1 (0%) 0 1 (1%) 0

Lymph node involvement 0.001
Absent 252 (97%) 164 (100%) 68 (93%) 20 (91%)
Present 7 (3%) 0 5 (7%) 2 (9%)
CAPRA-S risk group † <0.001
Low 78 (30%) 62 (38%) 13 (18%) 3 (14%)
Intermediate 113 (44%) 79 (48%) 29 (40%) 5 (23%)
High 60 (23%) 19 (12%) 28 (38%) 13 (62%)
Missing 8 (3%) 4 (2%) 3 (4%) 1 (1%)

CAPRA-S risk group ‡ <0.001
Low 100 (39%) 77 (47%) 18 (25%) 5 (23%)
Intermediate 93 (36%) 66 (40%) 23 (32%) 4 (18%)
High 58 (22%) 17 (10%) 29 (40%) 12 (55%)
Missing 8 (3%) 4 (2%) 3 (4%) 1 (5%)

Data are median (Interquartile range (IQR)) or n (%). CAPRA-S = Cancer of the Prostate Risk Assessment Postsurgical; GS = Gleason
score; PSA = prostate-specific antigen; PTEN = phosphatase and tensin homolog. * Fisher’s exact (categorical variables) or Kruskal–Wallis
H (continuous variables) test were used to evaluate associations. † Assessed using centrally reviewed Gleason scores. ‡ Assessed using
routine Gleason scores.

Of the 777 IHC-stained slides from 259 patients, automatic PTEN scores were obtained
for 735 WSIs from 259 patients and manual PTEN scores for 704 WSIs from 256 patients. Fewer
WSIs were scored manually due exclusion of cases with technical failures following quality
control of the staining, which was not performed for automatic scoring (Figure S2). The
correlation between the automatic and manual scores of the same WSIs was strong (Pearson’s
r = 0.931, 95% CI 0.921 to 0.940) (Figure 2). The AUC was 0.987 (95% CI 0.968 to 0.994).
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Figure 2. Scatterplot with correlation coefficient between the automatic PTEN score and the manual PTEN scores for
694 whole slide images with valid scores obtained by both scoring methods. Abbreviations: CI = confidence interval,
PTEN = phosphatase and tensin homologue, SD = standard deviation.

The continuous PTEN scores for patients were associated with TTBCR, with an esti-
mated HR for a 10 percentage point decrease in the PTEN fraction of 1.21 (95% CI 1.12 to
1.29, p < 0.001) for the automatic PTEN scores and 1.19 (95% CI 1.12 to 1.27, p < 0.001) for the
manual PTEN scores. These associations remained statistically significant in multivariable
analyses (HR = 1.08, 95% CI 1.00 to 1.16, p = 0.045 and HR = 1.09, 95% CI 1.01 to 1.19,
p = 0.035, respectively).

In the primary analysis, patients automatically assessed as PTEN-low had a signif-
icantly higher risk of BCR compared to patients automatically assessed as PTEN-high
(HR = 3.32, 95% CI 2.05 to 5.38 and c-index = 0.614, 95% CI 0.560 to 0.671, Figure 3A). A sim-
ilar prognostic value was observed for the manually assessed PTEN status (HR = 3.17, 95%
CI 1.94 to 5.16, Figure 3B). Automatically assessed PTEN status was associated with TTBCR
in CAPRA-S high-risk patients and in those with GGG ≤ 3 tumors in the analyses including
routine GSs (Figure S3), and additionally in CAPRA-S low-risk patients and in those with
GGG > 3 tumors in the analyses including centrally reviewed GSs (Figure S4). It was
also significantly associated with TTBCR in multivariable analysis including routine GSs
(HR = 2.24, 95% CI 1.24 to 4.07, p = 0.008) and centrally reviewed GSs (HR = 1.86, 95% CI
1.01 to 3.40, p = 0.045). The c-index for the standard CAPRA-S score including routine GSs
was 0.807 (95% CI 0.750 to 0.851) and 0.812 (95% CI 0.755 to 0.855) for the CAPRA-S score
integrated with PTEN status. The difference between these c-indices was 0.005 (95% CI
−0.003 to 0.016).

Non-diploid tumors were observed in 70 (27%) of the 259 patients. Patients with non-
diploid tumors had a significantly shorter TTCBR compared to those with diploid tumors in
univariable analysis (HR = 1.98, 95% CI 1.23 to 3.19, p = 0.004 and c-index = 0.581, 95% CI
0.525 to 0.641) but not in multivariable analysis including routine GSs (HR = 1.26, 95% CI 0.75
to 2.11, p = 0.37) or centrally reviewed GSs (HR = 1.23, 95% CI 0.73 to 2.11, p = 0.43).
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Combining the PTEN and DNA ploidy status, a high-risk of BCR was observed for
patients with both PTEN-low and non-diploid tumors (HR = 4.63, 95% CI 2.50 to 8.57)
and intermediate-risk for patients with either PTEN-low or non-diploid tumors (HR = 1.94,
95% CI 1.15 to 3.30), when compared to patients that had PTEN-high and diploid tumors
(Figure 4A). The c-index of the combined marker was 0.639 (95% CI 0.579 to 0.698). The
combined marker was associated with TTBCR in CAPRA-S intermediate- and high-risk
patients and in those with GGG ≤ 3 tumors in the analyses including routine GSs (Figure 4),
and only in CAPRA-S high-risk patients in the analyses including centrally reviewed GSs
(Figure S5). The association of the combined marker with TTBCR was statistically significant
in multivariable analysis including routine GSs (HR = 2.82, 95% CI 1.34 to 5.94 in high-risk
and HR = 1.11, 95% CI 0.62 to 1.99 in intermediate-risk when compared to low-risk, p = 0.017)
(Table 2) and not significant in multivariable analysis including centrally reviewed GSs (HR =
2.22, 95% CI 1.04 to 4.74 in high-risk and HR = 1.12, 95% CI 0.61 to 2.04 in intermediate-risk
when compared to low-risk, p = 0.10) (Table S2A). The combined marker was associated with
TTBCR after adjusting for the CAPRA-S risk groups computed using routine GSs (p = 0.011,
Table 2) and centrally reviewed GSs (p = 0.017, Table S2B). The difference in c-index between
the standard CAPRA-S score including routine GSs and the CAPRA-S score integrated with
the combined marker was −0.004 (95% CI −0.016 to 0.009).



Cancers 2021, 13, 4291 10 of 16Cancers 2021, 13, x  11 of 16 
 

 

 
Figure 4. Kaplan–Meier analysis of time to biochemical recurrence after radical prostatectomy stratified by the combined 
automatically assessed PTEN and DNA ploidy status in the validation cohort. (A) All patients. (B) Patients with low risk 
as given by CAPRA-S score. (C) Patients with intermediate risk as given by CAPRA-S score. (D) Patients with high risk as 
given by CAPRA-S score. (E) Patients with GGG ≤ 3 tumors. (F) Patients with GGG > 3 tumors. Routine Gleason scores 
were used in the analyses. Abbreviations: CAPRA-S = Cancer of the Prostate Risk Assessment Post-Surgical 
score; C-index = concordance index; CI = confidence interval; GGG = Gleason grade group; HR = hazard ratio; 
PTEN = phosphatase and tensin homolog. 

4. Discussion 
To our knowledge, this is the first study reporting the development of a fully auto-

mated method for scoring PTEN using IHC-stained slides, and the first study of the prog-
nostic value of PTEN status in PCa that mitigates the challenges posed by intratumor het-
erogeneity. The method correlated strongly with manual scoring and was applied in three 
tumor-containing blocks for each patient. Using a reliable validation setup with prede-
fined analyses, we have shown that patients with automatically assessed PTEN-low had 

Figure 4. Kaplan–Meier analysis of time to biochemical recurrence after radical prostatectomy stratified by the combined
automatically assessed PTEN and DNA ploidy status in the validation cohort. (A) All patients. (B) Patients with low risk as
given by CAPRA-S score. (C) Patients with intermediate risk as given by CAPRA-S score. (D) Patients with high risk as
given by CAPRA-S score. (E) Patients with GGG ≤ 3 tumors. (F) Patients with GGG > 3 tumors. Routine Gleason scores
were used in the analyses. Abbreviations: CAPRA-S = Cancer of the Prostate Risk Assessment Post-Surgical score; C-index
= concordance index; CI = confidence interval; GGG = Gleason grade group; HR = hazard ratio; PTEN = phosphatase and
tensin homolog.
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Table 2. Uni- and multivariable analyses of time to biochemical recurrence including Gleason grade groups assessed using
routine Gleason scores.

Variable Group
Univariable Analysis Multivariable Analysis *

HR (95% CI) p Value HR (95% CI) p Value

(A) Standard clinicopathologic parameters
Ploidy and PTEN status <0.0001 0.017

Diploid and PTEN-high ref. ref.
Non-diploid or PTEN-low 1.94 (1.15–3.30) 1.11 (0.62–1.99)

Non-diploid and PTEN-low 4.63 (2.50–8.57) 2.82 (1.34–5.94)
Age at surgery 10-year increment 1.51 (1.00–2.26) 0.048 0.98 (0.94–1.03) 0.51

Preoperative PSA log2(1 + ng/mL) increment 2.39 (1.74–3.28) <0.0001 2.44 (1.52–3.91) <0.0001
Gleason grade group <0.0001 0.017

1 (GS 6) ref. ref.
2 (GS 3 + 4) 8.27 (2.52–27.17) 3.97 (1.17–13.48)
3 (GS 4 + 3) 10.25 (3.02–34.79) 3.86 (1.07–13.88)

4 (GS 8) 22.91 (6.38–82.24) 6.51 (1.65–25.72)

5 (GS 9–10) 57.17
(15.64–208.92) 10.08 (2.43–41.79)

Extracapsular
extension Present vs. Absent 3.97 (2.45–6.44) <0.0001 1.52 (0.84–2.75) 0.17

Surgical margins Positive vs. Negative 2.90 (1.80–4.67) <0.0001 2.09 (1.21–3.59) 0.008
Seminal vesicle

invasion Present vs. Absent 5.39 (3.22–9.02) <0.0001 1.64 (0.88–3.06) 0.12

Lymph node
involvement Present vs. Absent 6.25 (2.67–14.60) <0.0001 2.33 (0.89–6.14) 0.09

(B) CAPRA-S risk groups
Ploidy and PTEN

status <0.0001 0.011

Diploid and PTEN-high ref. ref.
Non-diploid or PTEN-low 1.94 (1.15–3.30) 1.19 (0.68–2.07)

Non-diploid and PTEN-low 4.63 (2.50–8.57) 2.69 (1.39–5.21)
CAPRA-S risk group

Low (score 0–2) ref <0.0001 ref. <0.0001
Intermediate (score 3–5) 4.52 (1.85–11.01) 4.63 (1.89–11.31)

High (score ≥ 6) 17.44 (7.36–41.35) 14.68 (6.07–35.52)

CAPRA-S = Cancer of the Prostate Risk Assessment Postsurgical; CI = confidence interval; GS = Gleason score; HR = hazard ratio;
PSA = prostate-specific antigen; PTEN = phosphatase and tensin homolog. * Of the 259 patients included in univariable analyses (71 with
event and 188 without event), 251 (69 with event and 182 without event) had complete data and were included in the multivariable analysis.

4. Discussion

To our knowledge, this is the first study reporting the development of a fully automated
method for scoring PTEN using IHC-stained slides, and the first study of the prognostic value
of PTEN status in PCa that mitigates the challenges posed by intratumor heterogeneity. The
method correlated strongly with manual scoring and was applied in three tumor-containing
blocks for each patient. Using a reliable validation setup with predefined analyses, we have
shown that patients with automatically assessed PTEN-low had a three-fold increased risk
of BCR after RP compared to those with PTEN-high. This association remained statistically
significant in multivariable analysis with established prognostic markers. Furthermore, we
observed improved risk stratification when PTEN status was combined with DNA ploidy
status assessed with another machine learning-based method.

We have shown that machine learning-based methods can automatically detect and
quantify individual PTEN-positive and PTEN-negative tumor cells, providing a robust
and accurate assessment of PTEN score. While it is difficult to explain how many modern
machine learning approaches obtain their predictions [35,36], the proposed approach for
assessment of PTEN score is inherently more easily explained, as it is directly analogous
to manual scoring. The basis of the automatic PTEN scores can be easily verified since
the method provides a visual presentation of the tumor tiles as well as a localization and
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classification of the detected cells. Our approach could be used to develop scoring methods
for scoring of other biomarkers in IHC-stained slides.

A recent study presented a method using CNNs to detect areas with PTEN-negative
cells in tissue microarray (TMA) slides [17]. However, the method could not be used to
predict PTEN scores, as it did not detect areas with PTEN-positive cells nor the individual
PTEN-negative cells. The method required fine-tuning to improve the correlation with
manual annotations in the external TMA validation cohort, even though these slides were
IHC-stained using the same conditions as the training cohort. In general, a challenge
using TMAs is that they are not directly comparable to RP or biopsy specimens where the
proportion of tumor to non-tumor tissue is more variable. As our method was developed
in WSIs from RP specimens, which represent tumors better than TMAs, we consider it to
be more feasible to implement in the clinical setting.

Unlike the published computer-aided PTEN scoring methods [17,18], our method is
fully automated; hence, it does not require any input from skilled personnel to manually
annotate tumor areas or to ensure the quality of IHC-stained slides. Such requirements
do not only entail time-consuming manual labor but can also introduce substantial inter-
and intra-observer variation. Tumor areas in PCa WSIs need to be carefully annotated
to exclude non-tumor cells, which are often intermixed with the tumor cells and may
confound the PTEN score. Our method includes multiple steps to ensure that only tumor
cells are used to calculate the PTEN score, both by excluding non-tumor regions as well as
benign epithelial or stromal cells within the tumor regions.

Areas in which IHC staining appeared to be absent in tumor cells and weak in internal
controls were the main source of discrepancies between the manual and automatic PTEN
scores. Such areas were considered to represent technical failures and therefore omitted
when scoring manually, whereas some were scored by the automatic method, resulting
in lower automatic PTEN scores for some WSIs (Figure 2). Our method could perhaps
be further improved by using a larger set of WSIs representing true technical failures,
where the presence of PTEN protein had been confirmed by other assays. However, the
interpretation of staining intensity is subjective, and some of these tumor areas might have
been wrongly considered as technical failures when scoring manually. Overall, the manual
and automatic PTEN scores were strongly correlated and provided similar prognostic
information when analyzed as continuous as well as dichotomous markers.

As far as we know, all previous studies on the prognostic value of PTEN status in
RP specimens were performed using TMAs [16,18,25,37] or a single tumor-containing
block per patient [38]. As PTEN protein expression displays considerable intratumor
heterogeneity [24], such sparse sampling may lead to a misclassification of PTEN status.
To better represent intratumor heterogeneity in prostate tumors, we assessed PTEN status
in WSIs from three different tumor-containing tissue blocks for each patient.

There is currently no consensus on how to dichotomize PTEN scores in IHC studies,
and thresholds of 90% [37,38], 50% [39], and 10% [16,25] PTEN-negative cells have previ-
ously been used for manual PTEN scores. The study by Jamaspishvili et al. [18] assessed
PTEN scores semi-automatically and defined the threshold in a discovery cohort and vali-
dated it in an independent validation cohort. This study was performed using TMAs, and
the threshold of 65% PTEN-negative cells was selected using maximally log-rank statistics,
and BCR defined as two PSA values ≥ 0.2 ng/mL as an endpoint. We selected the 50%
threshold to dichotomize PTEN status because this threshold provided relatively large
HRs and c-indices across several clinically relevant endpoints in the test subset and was
considered to be suited for contemporary cohorts where fewer patients have advanced
disease at the time of surgery compared to those in the test subset (File S1 page 33–34).

The automatic PTEN scoring method was validated in the independent cohort using
BCR as the endpoint, which is a limitation of our study. BCR is an intermediate endpoint,
which does not always translate into clinical recurrence or PCa death [40]. However, we
defined BCR as a single PSA ≥ 0.4 ng/mL, which is suggested to exclude most patients
with detectable PSA who are unlikely to progress [41–43]. We observed larger HR and



Cancers 2021, 13, 4291 13 of 16

c-indices of PTEN status in the validation cohort than in the test subset. This could be due
to the use of BCR as an endpoint and the fact that tumors in the test subset were more
advanced compared to those in the validation cohort, and PTEN status is suggested to
provide stronger prognostic information in patients with less advanced tumors [15,18].

The combination of automatically assessed PTEN and DNA ploidy status provided
stronger prognostic information than either marker alone when comparing the HRs and
c-indices. Patients with both PTEN-low and non-diploid tumors had a 4.63 times increased
risk of BCR compared to those with PTEN-high and diploid tumors, suggesting that these
two alterations together may result in a more aggressive tumor phenotype. However,
the addition of the combined marker to CAPRA-S score did not provide a significant
increase in prognostic discrimination in terms of the c-index. The CAPRA-S score includes
GS and factors used to determine tumor stage, which are strong prognostic parameters
in the postoperative setting [22,44], but their assessment is subjective and is best when
performed by experts [45]. Importantly, our cohorts comprised patients operated on at the
tertiary comprehensive cancer center, where the routine pathological examination of RP
specimens is likely better than in the community hospitals [46], and central review of GSs
was performed by a highly experienced uropathologist.

Automatic measurements of PTEN and DNA ploidy status may be particularly use-
ful in the preoperative setting, where the complete GS and tumor staging information is
not available. Therefore, prediction of patient outcomes by pathological assessment is
less accurate in the preoperative setting compared to the postoperative setting [47–49].
Assessment of cribriform morphology and/or intraductal carcinoma on diagnostic biop-
sies is suggested to refine the current GGGs and aid in selection of patients for active
surveillance [50]. These morphological characteristics were shown to be associated with
increased genomic instability and PTEN loss [51,52], but still their assessment suffers
from inter-observer variation [53,54]. A limitation of our PTEN scoring method is that it
was developed in RP specimens and, thus, it may not be directly applicable for use on
biopsies, where tumor areas are smaller. On the other hand, RP specimens provide a large
amount of data, which is beneficial when training CNNs and which would be challenging
to obtain from biopsies. However, we hypothesize that our PTEN scoring method could
be optimized for use in a biopsy setting by applying transfer learning [55,56] and a small
discovery dataset of biopsy samples.

5. Conclusions

In conclusion, we have developed a fully automated method for robust and accurate
assessment of PTEN score in IHC-stained slides, which could replace manual scoring by
human experts. Patients with PTEN-low had significantly shorter TTBCR compared to
those with PTEN-high. The combination of PTEN and DNA ploidy status, both assessed
using machine learning-based methods, further improved risk stratification.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13174291/s1, Table S1: Clinicopathological characteristics and follow-up for all patients
in the test subset and separately for patients with PTEN-high and PTEN-low. Table S2: Uni- and
multivariable analyses of time to biochemical recurrence including centrally reviewed Gleason scores.
Figure S1: Kaplan–Meier analysis of time to biochemical recurrence after radical prostatectomy in the
validation cohort stratified by PTEN status. Figure S2: Overview of analyzed patient material and
applied methods in the validation cohort. Figure S3: Kaplan–Meier analysis of time to biochemical
recurrence after radical prostatectomy stratified by the automatically assessed PTEN status in the
validation cohort. Figure S4: Kaplan–Meier analysis of time to biochemical recurrence after radical
prostatectomy stratified by the automatically assessed PTEN status in the validation cohort. Figure
S5: Kaplan–Meier analysis of time to biochemical recurrence after radical prostatectomy stratified by
the combined automatically assessed PTEN and DNA ploidy status in the validation cohort. File
S1: Independent validation in prostate cancer of the prognostic value of a deep learning system for
assessment of phosphatase and tensin homologue (PTEN) status in immunohistochemically stained
tissue slides.
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