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Background
Accurate identification of the mortality risk of patients plays an important role in assist-
ing doctors in decision-making, improving diagnosis efficiency, rationally allocating 
medical resources and saving patients’ medical expenses. Conventional mortality risk 
prediction methods such as APACHE (Acute Physiology and Chronic Health Evalu-
ation) [1] and SAPS (Simplified Acute Physiology Score) [2] usually utilize vital signs 
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measurements of monitoring data, e.g., heart rate, systolic blood pressure and body 
temperature of patient, along with the demographic information to identify the mor-
tality risk of ICU patients. Alternatively, machine learning approaches such as Support 
Vector Machine  (SVM) [3] and Recurrent Neural Networks  (RNN) [4] regard mortal-
ity risk prediction as a classification task, and usually provide more accurate prediction 
models. However, these models also rely on measurements of monitoring data or hand-
crafted risk factors, while other rich information available in EHR, e.g., the diagnosis 
and prescription, are ignored, which always results in unsatisfactory performance in risk 
prediction.

Recently, the availability of EHR has demonstrated great potential in improving the 
performance of various kinds of medical applications including clinical risk prediction 
[5–8]. EHRs usually contain abundant patient information by recording various disease 
and treatment information, e.g., diagnoses, demographic information, laboratory tests 
and measurements and prescriptions of patients during their hospitalization, which 
provide a great opportunity to develop more accurate mortality risk prediction models. 
Traditional models are not suitable for EHR data analysis because they simply aggregate 
the heterogeneous variables in EHRs, ignoring the complex relationship and interac-
tions between variables and the time dependence in longitudinal records. In this con-
text, deep learning has been applied to capture the characteristics in heterogeneous EHR 
data, which makes up for the shortcomings of statistical and traditional machine learn-
ing methods.

Traditional methods for mortality prediction

In the 1980s and 1990s, researchers have constructed several professional scoring sys-
tems for the prognosis of ICU patients and describing the severity of disease and organ 
dysfunction, which have been widely used in clinical practice. Common scoring sys-
tems include APACHE [1], SAPS [2], MPM (Mortality Probability Model) [9] and their 
upgraded versions [10–12]. These scoring systems often intercept the vital signs moni-
toring data and demographic information (such as age and gender) of the patient in a 
certain window period (such as 24 h or 48 h) after the patient entering ICU as input, 
discretize the continuous variables, and finally output a risk score with a reference range. 
Since the beginning of this century, machine learning approaches have been used in 
mortality risk prediction, including logistic regression [13], support vector machine [3], 
decision tree [14], etc. These models also mostly use the short-term monitoring data of 
ICU patients, sometimes combined with APACHE or SAPS scores. However, the shal-
low structure of the above methods is difficult to fully utilize the potential information in 
EHR, which contains varying-length sequence with a long-term dependence as shown in 
Fig. 1. In short, the traditional risk-scoring tools are based on a small set of hand-crafted 
monitoring data or risk factors, while the traditional machine learning models such as 
SVM and LR also cannot well handle heterogeneous EHR data.

Deep learning for EHR data analysis

Compared with traditional methods, deep learning can achieve complex function 
approximation through deep nonlinear network structure, and learn the internal rela-
tionship between data from varying-length longitudinal medical records.
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Representation learning for EHR data

Representation learning of patient information is an important feature of EHR data 
research based on deep learning. It makes up for the defect that one-hot encoding 
[15, 16] cannot capture the semantic between features. Inspired by natural language 
processing, researchers applied skip-gram model [17–21] to EHR data to obtain high-
quality distributed vector representation. In a recent study, Xiao et al. used the BERT-
based deep learning model to obtain the Natural Language Representation of the EHR 
data to predict chronic cough patients [22]. With the development of GNNs in recent 
years, Rocheteau et  al. proposed to combine GNN with LSTM to obtain relational 
information between similar patients in a graph [23]. Furthermore, to utilize the het-
erogeneity in EHRs, Liu et  al. used preprocessing method to split the heterogenous 
EHR graph into multiple homogeneous graphs, and then used an end-to-end GNN to 
make prediction [24].

However, EHR data analysis must consider the time relationship between medical 
records. Phuoc Nguyen et al. proposed the Deep model [7] which used Convolutional 
Neural Networks (CNN) to extract features of long sequences in EHR, but CNNs can 
only capture local feature information. Yu Cheng et. al. represent the long-term EHR 
data of every patient as a temporal matrix with time on one dimension and event on 
the other dimension, and then build a CNN structure for extracting phenotypes and 
perform risk prediction for Congestive Heart Failure (CHF) and Chronic Obstructive 
Pulmonary Disease (COPD) respectively [25]. Edward Choi et  al. proposed Doctor 
AI [26], which was applied to the task of disease diagnosis and prescription recom-
mendation. Doctor AI was a RNN based temporal model for longitudinal EHRs which 
maps diagnosis codes, medication codes or procedure codes together into a low 
dimensional space through multi-hot encoding.

Fig. 1  Three diagnostic records of a patient: HADM_ID refers to the record ID. Each record contains multiple 
variables, such as gender, age, admission time, discharge time, diagnosis codes, and prescription codes
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Similarly, for the multi-label classification task of desease diagnoses, Lipton et al. [27] 
applied RNNs with LSTM hidden units to model varying-length sequences and cap-
ture long range dependencies in multivariate time series of clinical measurements in 
EHR. Further, Choi et  al.  [28] proposed Med2Vec for the representation learning of 
medical codes and visits from EHRs, simply using the structure of Multi-Layer Percep-
tron (MLP). The multiple medical concepts in EHRs such as diagnosis, medication, pro-
cedure codes and visits were effectively learned through Med2Vec.

For multi-modal EHR data, Double Core Memory Networks (DCMN) was proposed 
to integrate information from different modalities of the longitudinal patient data and 
learn a joint patient representation [29]. In DCMN, two external memory cores com-
press and store two modalities of sequential data, which interact with each other. In 
addition to supervised learning, eNRBM (electronic medical records-driven nonnega-
tive restricted Boltzmann machines) [30], Deep Patient [8], Grouped Correlational GAN 
[31] and other unsupervised representation learning methods also achieved good per-
formances in reconstructing EHRs.

Attention in EHR data analysis

Attention mechanism has attracted extensive attentions in deep learning [32]. When 
human beings observe the environment, it is difficult for them to achieve all aspects, but 
only pay attention to a few parts of interest to obtain relevant information to construct 
their own cognition of the environment. The classical attention structure is applied to 
machine translation tasks, which shows the alignment effect between source language 
and target language. In 2017, Google proposed Transformer, a translator involving self-
attention and multi-head attention, which makes long-distance semantic dependencies 
and expressions more accurate [33]. A variety of extensions of the attention mechanism 
have been designed.

In medical research, attention mechanism can simulate the doctor’s inquiry on the 
patient’s past medical history, by paying more attention to the more closely-related 
records and attributing higher weights to them. For example, Choi et al. proposed the 
RETAIN model [34], which designed a Two-level Attention mechanism to learn the 
weight vectors of the development of the disease and the interaction between diseases 
respectively. Finally, the patient health status representation is obtained by dot product 
of these two vectors. In RETAIN, the term ’RET’ refers to REverse Time training, which 
means that the more recent hospitalization records should get higher attention. Li et al. 
[20] proposed a Gated Recurrent Unit Networks framework integrating attention mech-
anism for extracting biomedical events between biotope and bacteria from biomedical 
literature. Jose et al. [35] conducted heart disease prediction tasks on the CPRD (Clinical 
Practice Research Datalink) dataset, which once again verified the excellent performance 
of RETAIN compared with eNRBM, Deep Patient and Deepr [7]. Attention mechanisms 
are usually closely associated with RNN and its variants, including GRU, LSTM, Bi-
LSTM, etc. [36, 37]. HealthATM extracts multifaceted patient information with attentive 
and time-aware modulars based on a hybrid network composed of both RNN and CNN 
[38]. The learned representations are then fed into a prediction layer for the risk predic-
tion task.
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Clinical risk prediction with EHR data

For clinical risk prediction, deep learning approaches also showed competitive perfor-
mance compared to traditional approaches, e.g. HealthATM was applied in the task of 
risk prediction of CHF [38]. Zeng et al. [39] designed a concept-based filter and a pre-
diction model to detect breast cancer local recurrence using EHRs. Huang et al. pro-
posed a regularized Stacked Denoising Autoencoder (SDAE) model to stratify clinical 
risks of Acute coronary syndrome (ACS) patients from a real clinical EHR dataset of 
3464 patient samples, and obtained robust and accurate performance [40]. In a recent 
study, Stephanie L. Hyland et al. used LSTM to develop an early-warning system that 
provided early identification of patients at risk for circulatory failure by integrat-
ing measurements from multiple organ systems [41]. Wanyan et  al. introduced the 
contrastive learning framework with two novel positive sampling strategies (feature-
based and attribute-based) and proposed a novel contrastive regularized clinical clas-
sification model to predict the mortality risk in real-world COVID-19 EHR data [42].

However, most of previous approaches were proposed for the risk prediction of a 
single disease, e.g., CHF, COPD, and ACS. For a more general risk prediction task, 
i.e., hospital mortality of ICU patients, Yu et  al.  [4] proposed a Multi-Task Recur-
rent Neural Network based on attention mechanism, which achieved much better 
recall rate (0.503 vs 0.365) compared with SAPS-II. Nevertheless, the model used only 
time series measurements of monitoring data based on 24-h observation period, like 
heart rate, systolic blood pressure and body temperature, while other rich informa-
tion available in EHR, i.e., the disease and treatment, are still ignored. In this paper, 
our study shows that AUC (Area Under ROC Curve) and recall rate of mortality risk 
prediction can be improved by using disease and treatment information in EHR.

In this paper we develop an accurate and clinically interpretable model that predicts 
hospital mortality for ICU patients using disease and treatment information available 
in longitudinal EHR. Generally speaking, patient information extracted from EHRs 
often presents a multi-nested structure, i.e., a patient has multiple longitudinal medi-
cal records while each record is composed of multiple diagnoses and prescriptions, as 
shown in Fig. 1. To fully mine the deep information in EHRs, the following challenges 
need be addressed:

•	 The heterogeneity in EHRs hinders from effective extraction of information from 
EHRs. Heterogeneous data such as diagnoses, prescriptions and other treatments 
contained in patient records are usually regarded as discrete variables and often 
have different scales. They should be processed reasonably first, which is the 
premise of exploring the relationship between them.

•	 Time dependence always exists in multiple longitudinal medical records of a 
patient. For example, diabetes and prediabetes are risk factors for cardiovascular 
disease. Studies have shown that, in the case of the same age, the elderly patients 
with new onset diabetes have fewer microvascular complications than those with 
long-term diabetes, that is, the impact of hyperglycemia on human body is time-
dependent. Therefore, the model should take into account how to establish time 
dependence between the longitudinal records of a patient.
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•	 Complex interaction exists not only between diseases, but also between diseases, 
interventions and treatments. For example, long term chronic hyperglycemia 
increases microvascular complications such as retinopathy and kidney disease, 
and lesions in these organs increase the risk of death. Besides, different medical 
intervention will affect the evolution of the disease, and there are also synergistic 
or antagonistic effects between drugs.

Aiming at the above challenges, we propose an end-to-end deep learning based mor-
tality risk prediction model for ICU patients, namely DeepMPM, which can auto-
matically extract high-quality representations from heterogeneous, multi-nested and 
longitudinal EHRs. We introduce a Two-level Attention Long-Short Term Memory 
Neural Network (LSTM) simulating doctor’s inquiry behavior to obtain information 
that assist in evaluating the current status of patients from their longitudinal medical 
records. The LSTM module generates two weight vectors, respectively focusing on 
the interactions between disease development and treatment. Finally, one full con-
nected layer with Softmax classifier is trained to output the mortality risk probability 
of the patient. The contributions of this study are as follows:

•	 Rather than the monitoring data or risk factors, DeepMPM leverages the discrete 
ICD-9 code (International Statistical Classification of Diseases and Related Health 
Problems 9th Revision) [43] and DRGs code (Diagnosis Related Groups) [44] in 
EHR which contain more rich information. Experiment results on MIMIC III 
database [45] demonstrates that with the disease and treatment information deep 
learning approaches can achieve significantly better accuracy than conventional 
approaches of mortality risk prediction.

•	 In contrast to mortality risk prediction methods for a single disease, we show the 
benefits of using EHR from patients with multiple diseases and different condi-
tions to predict the mortality risk. A comparison experiment indicates that Deep-
MPM can successfully model the complex correlation between diseases to achieve 
better representation learning of disease and treatment, so as to improve the accu-
racy of mortality prediction.

•	 A case study shows that the framework of DeepMPM offers the potential to pro-
vide users with insights into EHR data and model behavior in mortality prediction 
task, respectively. First, the encoder can provide a global view of the feature corre-
lation in EHR. Second, for each mortality risk prediction of one patient, the two-
level attention LSTM module generates the corresponding weight vectors which 
reflect the visit-level importance of the longitudinal records and variable-level 
importance of features respectively.

The rest of the paper is organized as follow. In “Methods” section we describe the 
proposed framework. In “Results” section we present the experiments under different 
settings, and demonstrate the merits of the new framework. In “Discussion” section 
we give a case study to discuss the model interpretability. “Conclusions” section sum-
marizes the work.
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Methods
Overview of the framework

DeepMPM is an end-to-end deep model for predicting the mortality risk of patients 
using longitudinal EHRs. Figure  2 depicts the overall framework of DeepMPM. The 
EHRs used in the model can include diagnoses codes, treatment and intervention codes, 
hospitalization type and admission/discharge time, etc. In this paper, we use the MIMIC 
III database [45], and use DRGs (Diagnosis Related Groups) codes to represent the med-
ical treatment and intervention, considering that the DRGs codes also contain rich infor-
mation of diseases and are convenient to use. The detailed information of the database is 
introduced in “Data description” section. The notations used throughout this paper are 
summarized in Table 1. DeepMPM mainly consists of three steps:

•	 Step 1: An encoder model is used to map the discrete diagnoses codes and DRGs 
codes to a continuous vector space, and the corresponding representation vectors 
Xt and Pt are obtained respectively. As shown in Fig. 3, the encoder contains a sin-
gle layer structure: let D = {d1, d2, . . . , dk} denotes the diagnoses codes set, and 
L = {l1, l2, . . . , ls} denotes the DRGs codes set. The sequence of diagnoses codes or 
DRGs codes of each record can be represented by a binary vector. Then we can use 
xt ∈ {0, 1}|D|, pt ∈ {0, 1}|L|, t = 1, 2, . . . ,T  to represent T hospitalization records 
(including ICU and non-ICU hospitalization records). Here we use a simplified ver-
sion of Med2vec [28] based on Skip-gram model. Intuitively, the skip-gram model 

Fig. 2  The framework of DeepMPM: a mortality risk prediction model using two-level attention mechanism 
and integrating multiple data types
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Table 1  Table of notations

Notation Meaning

D Diagnoses codes set, D = {d1, d2, . . . , dk}

L DRGs codes set, L = {l1, l2, . . . , ls}

Xt Representation vector of diagnosis

Pt Representation vector of treatment

xt Diagnoses codes of a record, xt ∈ {0, 1}|D|

pt DRGs codes of a record, pt ∈ {0, 1}|L|

Wxemb Weight of embedding layer for diagnoses codes

Wpemb Weight of embedding layer for DRGs codes

ft Forget gate of LSTM at time step t

Wf Weight of the forget gate of LSTM

it Input gate of LSTM at time step t

Wi Weight of the input gate of LSTM

C̃t Candidate cell state of LSTM at time step t

Ct Cell state of LSTM at time step t

ot Output gate of LSTM at time step t

Wo Weight of the output gate of LSTM

ht Hidden state of LSTM at time step t

mt Type of hospitalization

qt Hospital stay vector

Ui Weight of ht−1 in the input gate of Care-LSTM

Uf Weight of ht−1 in the forget gate of Care-LSTM

Pf Weight of Pt−1

Qf Weight of q�t−1:t

q�t−1:t Hospital stay during �t−1:t

�t−1:t Adjacent hospital stay intervals

Uo Weight of ht−1 in the output gate of Care-LSTM

Po Weight of Pt
gt Output of the hidden layer of Care-LSTM at time step t

αt Variable-level weight vector, αt ∈ [0, 1]

WT
α

Weight matrix in attention module

et Output of the hidden layer of Care-LSTM at time step t

βt Visit-level weight vector, βt ∈ [−1, 1]

Wβ Weight matrix in attention module

rt Harmonic weight coefficient

wt Final weight vector of the two-level attention module

h̄ Patient health status vector

Fig. 3  The encoder in DeepMPM: the varying-length sequence of diagnoses and DRGs codes are 
represented as equal-length vectors in a specific vector space
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predicts other codes that appear in the context by giving the input code, and can 
learn the co-occurrence between different codes, so that the representation vectors 
of related codes are similar, and the representation vectors of unrelated codes are 
different. Finally, the two binary vectors are respectively embedded into high dimen-
sional space by the encoder as follows, 

 where Wxemb ∈ Rd×|D|,Wpemb ∈ Rd×|L|, bx ∈ Rd , bp ∈ Rd . Here the adoption of 
multi-hot encoding avoids the sparsity of one-hot encoding, and improves the com-
putational efficiency. An illustration example of the process is shown in Fig. 4.

•	 Step 2: A two-level attention mechanism combined with LSTM is designed to realize 
the representation learning of patient health status. The visit-level attention mech-
anism focuses on the development and evolution of the disease, and explores the 
relationship between diagnosis and treatment at multiple time points, because the 
current health status of patients is closely related to the past medical history. The 
variable-level attention mechanism focuses on the interaction of multiple diseases 
or treatment within the same record, because there are often concurrent relations 
between multiple diseases and synergistic effects of drugs or therapeutic interven-
tions. The two weight vectors of two-level attention module, namely αt and βt , are 

(1)Xt =ReLU(Wxembxt + bx)

(2)Pt =ReLU Wpembpt + bp

Fig. 4  DeepMPM’s representation learning on disease codes: HAMD_ID represents the ID of diagnosis record, 
and each record has corresponding varying-length coding sequence. Firstly, all sequences are represented as 
a binary matrix, and then mapped to a specific vector space, and the varying-length sequence is transformed 
into multi-dimensional equal-length non-negative vector
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respectively obtained using modified Care-LSTM [46] which combined diagnoses, 
medications, hospitalization type, time interval and other variables. Finally, the total 
weight coefficient wt is obtained by adjusting a harmonic weight coefficient rt , and 
the final state vector h̄ is obtained after weighted averaging with the diagnosis repre-
sentation vector of each record.

•	 Step 3: Predict the risk probability by using the full connected layer and softmax 
function. Here we use cross entropy to calculate the classification loss as follows: 

 where N is the total number of samples, n refers to the nth patient sample, 
n = 1, 2, . . . ,N  . T (n) refers to the total number of hospital records for the n-th patient 
sample. yi ∈ {0, 1} is the value of the death variable in the ith hospitalization record 
of the nth sample, where 0 means discharged and 1 means death.

Modified care‑LSTM

RNN allows the internal circulation of information, which can ensure that the previous 
information is used in each step of calculation, so as to connect the previous information 
with the current task, which is suitable for sequence data. However, RNN has difficul-
ties in learning long-term dependencies from data, while LSTM, a special kind of RNN, 
capable of learning long-term dependencies. Instead of having a single neural network 
layer, each neuron in LSTM has four interacting layers, i.e., a memory cell and three 
gates. Equation 4 - Eq. 9 describe the operation principle of LSTM. The core is the cell 
state Ct , which runs straight down the entire chain as shown in Fig. 5. Attributed to cell 
state, even information from a long time ago can flow through the whole network. The 
cell state is controlled by three gates: forget gate ft , input gate it and output gate ot . The 
forget gate is a sigmoid layer which specifies how much information in Ct−1 to preserve 
by looking at a vector determined by xt and ht−1 . Another sigmoid layer called the input 
gate determines the information to be updated by combining the candidate cell states C̃t . 
Then, the forget gate and input gate are used together to update the cell state of the cur-
rent time step. Finally, a vector ranging in [−1, 1] is obtained by passing the cell state Ct 
through a tanh layer, which is then multiplied by the output gate to determine the final 
output of the neuron.

(3)Loss = −
1

N

N
∑

n=1

1

T (n)

T (n)
∑

i=1

(yTi log(ŷi)+ (1− yi)
T log(1− ŷi))

Fig. 5  Modified Care-LSTM: the input units marked in red are the parts different from the standard LSTM
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In DeepMPM, we design a modified version of Care-LSTM which was first proposed in 
the DeepCare model [46]. Compared with the standard LSTM, in addition to Xt , we also 
include the treatment vector Pt , the type of hospitalization mt , and the hospital stay vec-
tor qt composed of adjacent hospital stay intervals �t−1:t . Figure 5 shows the structure 
of modified Care-LSTM obtained by adding new variables (shown in red) on the basis of 
the standard LSTM, which enables the attention mechanism to measure more informa-
tion when assigning weights. Specifically, Eqs.  10–13 describe the operation principle 
of modified Care-LSTM. Each time step refers to a record of the patient. The output 
gate is intervened by Pt at the current time, while the forget gate is intervened by Pt−1 
of the previous time step. The hospital stay vector qt is also added into the forget gate, 
where the adjacent time interval �t−1:t = current admission time – last hospitalization 
discharge time (days). The adjacent time intervals of patients’ visits have a large span. 
Inspired by parameter settings of the original Care-LSTM, we adopted three different 
time scales (60, 180, and 360  days) to obtain three levels of time interval representa-
tions, which tries to represent richer semantic information of time interval from differ-
ent scales. The weight coefficient of hospitalization type 1/mt is included in the input 
gate. If it is emergency hospitalization, the weight is heavy, otherwise the weight is small.

The two‑level attention mechanism

When applied to the field of medical data research, the attention mechanism can 
simulate doctors’ comprehensive analysis of longitudinal EHR of the patient. In 

(4)ft = sigmoid
(

Wf · [xt , ht−1]+ bf
)

(5)it = sigmoid(Wi · [xt , ht−1]+ bi)

(6)C̃t = tanh(Wc · [xt , ht−1]+ bc)

(7)Ct = ft ∗ Ct−1 + it ∗ C̃t

(8)ot = sigmoid(Wo · [xt , ht−1]+ bo)

(9)ht = ot ∗ tanh(Ct)

(10)it =
1

mt
· sigmoid(Wi · Xt + Ui · ht−1 + bi)

(11)ft = sigmoid(Wf · Xt + Uf · ht−1 + Pf · Pt−1 + Qf · q�t−1:t + bf )

(12)qt =

[

�t−1:t

60
,
�t−1:t

180
,
�t−1:t

365

]

(13)ot = sigmoid(Wo · Xt +Uo · ht−1 + Po · Pt + bo).
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DeepMPM, we design a two-level attention mechanism that are different from 
RETAIN [34]. In RETAIN, a standard GRU network was used and the model only 
considered the diagnosis and the length of hospital stay. Moreover, the weight vector 
is obtained by reverse time training, which assumes that more attention should be 
paid to recent records.

Unlike RETAIN, DeepMPM takes into account the influence of time interval 
between visits, which makes the time interval parameterized in the expression of 
forget gate, and participates in the weighting of the longitudinal records. Further, 
DeepMPM does not adopt the reverse time training strategy, since we find that the it 
reduced the accuracy in preliminary experiment, and the assumption behind RETAIN 
does not always hold. The reason may lies in the fact that for patients with chronic 
diseases, a certain disease may follow the patient for many years, which has poten-
tial threat to the patient’s health, and becomes an important factor causing the dete-
rioration of the health status. Instead, we reduce the impact of non-emergency and 
long-term records with a harmonic weight coefficient, as a supplement to the weight 
vectors learned from the two-level attention mechanism which tries to discover the 
complex relationships. .

In DeepMPM, the visit-level weight vector αt measures the relevance of longitudinal 
records at different time points, which actually reflects the development and evolution 
of the diseases. The scalars α1, . . . ,αt are the visit-level attention weights that measure 
the importance of each visit embedding v1, . . . , vt . Specifically, Eqs. 14–15 show the cal-
culation of αt using modified Care-LSTM and softmax function.

where gt ∈ Rp denotes the output of the hidden layer of Care-LSTM at time step t, the 
parameters Wα ∈ Rp, bα ∈ R,αt ∈ [0, 1].

The variable-level weight vector βt ∈ Rd measures the internal relationship within the 
same record, which actually reflects the interaction of different diseases and different 
treatments. The vectors β1, . . . ,βt are the variable-level attention weights that measure 
each variable’s importance of the visit embedding v1,1, v1,2, . . . , v1,d , . . . , vt,1, vt,2, . . . , vt,d . 
Specifically, Eqs. 16 and 17 show the calculation of βt using Care-LSTM and the tanh 
function. Note that βt,d ∈ [−1, 1] , and a negative value indicates a suppression relation 
between diseases and treatments while a positive value indicates the synergistic effect 
between them.

where et ∈ Rq denotes the output of the hidden layer of Care-LSTM at time step t, and 
Wβ ∈ Rd×q , bβ ∈ Rd . Taking into account the time dependence, Eq.  18 defines a har-
monic weight coefficient rt ∈ Rd as a supplement to the weight vectors αt and βt as 
follows,

(14)gt =Care-LSTM([Xt;Pt;mt;�t−1:t ])

(15)αt =softmax
(

WT
α gt + bα

)

(16)et = Care-LSTM([Xt;Pt;mt;�t−1:t ])

(17)βt = tanh(Wβet + bβ)
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where �t:T is the length of days between the t-th admission and the last discharge. We 
use this weight to reduce the impact of long-term and non-emergency hospitalization 
records, hence we get the final weight vector wt ∈ Rd as follows,

where ⊙ represents the Hadamard product or element-wise product. Extend the sca-
lar αt to a vector of length d. Then the patient health status representation vector h̄ is 
obtained by weighted averaging of Xt as follows,

Finally, the mortality risk of patient is derived using Eq. 21, with FCN representing the 
full connected layer.

Dataset

The experimental data used in this paper are from the MIMIC III (Medical Informa-
tion Mart for Intensive Care) database, which is a large and freely accessible database 
comprising medical records relating to patients admitted to critical care units at a ter-
tiary care hospital [45]. The records includes vital signs, medications, laboratory meas-
urements, observations and notes, procedure codes, diagnostic codes, hospital length of 
stay, survival data, etc.

In data cleaning, patients with a single record or more than 10 medical records were 
excluded. DeepMPM takes time into account as a training factor, so training data with 
only one hospitalization record cannot provide effective information on time to disease 
treatment. On the other hand, the records of patients with more than 10 hospitalizations 
often span decades, and disease evolution over decades is complex and may not be cor-
related, and it is likely to cause matrix sparseness, affecting model training results. After 
statistical analysis of the original patient’s medical records, we observed that 10 is an 
appropriate threshold. Moreover, excluding the patient samples with more than 10 hos-
pitalization records will not affect the proportion of positive and negative samples. After 
data cleaning, the positive-to-negative ratio of samples is 1.074:1.

After data cleaning, a total of 7491 patients were selected from MIMIC III, with a total 
of 19,265 valid records. In our study, multiple records of each patient include diagnostic 
code, DRGs (Diagnosis Related Groups) code, hospitalization type, admission/discharge 
time, DOD (date of death. If the patient is alive, it is indicated by null value).

In MIMIC III, the diagnostic code is represented with ICD-9 code (International Sta-
tistical Classification of Diseases and Related Health Problems 9th Revision). In order 
to avoid overfitting, the first three bits of all ICD-9 codes are intercepted to represent 
the disease. The DRGs is a kind of patient classification scheme. It comprehensively 

(18)rt = [mt + log(1+�t:T )]
−1

(19)wt = rt ⊙
(αt + βt)

2

(20)h̄ =

(

T
∑

t=t1

wt · Xt

)

/

T
∑

t=t1

wt

(21)P(ŷ|[Xt;Pt;mt;�t]) =softmax(FCN (h̄))
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considers the main diagnosis and treatment methods of patients according to the dis-
charged medical records, and divides the medical records with similar disease complex-
ity and cost into the same group according to the individual signs, age, complications 
and accompanying diseases, and distinguishes them by different digital codes. Consider-
ing that DRGs is a comprehensive summary of the patient’s symptoms, conditions and 
treatment, it is used to represent the medical treatments and intervention. Our prelimi-
nary experiments also showed that using DRGs codes could improve the performance.

There are four admission types in MIMIC III data, i.e., elective, urgent, newborn 
and emergency. We regrouped them into “emergency  (including emergency and 
urgent)” and “non-emergency  (including elective and newborn)”. Since the time of 
admission/discharge has been desensitized in MIMIC III data, we obtain the length 
of hospital stay from these two items. DOD represents the time of hospital death and 
is transformed to the binary classification label of mortality risk. The hospital death is 
marked as positive (“1”) while the survivors is marked as negative (“0”).

Table  2 displays the data statistics. A total of 931 ICD-9 codes and 1406 DRGs 
codes are included in the data. The ratio of positive to negative samples (P/N ratio) 
is 1.074:1, indicating that the experimental data is balanced. The average number of 
records per patient is 2.57. There are 12.97 diagnosis codes and 2.23 DRGs codes per 
record. The data distribution is shown in Fig. 6.

Fig. 6  a The distribution of ICD-9 codes in a single record. The average value is 12.97. b The distribution of 
DRGs codes in a single record. The average value is 23. c The distribution of visit numbers of each patient. The 
average value is 2.57

Table 2  EHR data description

Item Value

The number of patients – 7491

The number of visits – 19,265

positive samples/negative samples ratio – 1.074:1

Avg. number of visits per patient – 2.57

Diagnoses code The number of code groups 931

Avg. number of codes per visit 12.97

Max. number of codes per visit 39

DRGs code The number of code groups 1406

Avg. number of codes per visit 2.23

Max. number of codes per visit 3
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Baseline methods

In order to test the effectiveness of DeepMPM, we use the following five deep learning 
models for comparison:

•	 RNN: a standard GRU without attention mechanism. The learning rate is 0.05, the 
size of the disease representation vector is 32, and the hidden layer size is 64.

•	 Multi-task learning [4]: a multi-task RNN prediction model with attention mecha-
nism. Since the data used in this paper is different from the ICU physiological moni-
toring data in [4], here we use the same encoder with DeepMPM which contains 32 
hidden units, and use a GRU which contains 32 hidden units as the decoder. The 
learning rate is set to 0.1.

•	 LSTM-NN: the classification module in [4], which uses LSTM for feature learning 
and outputs the prediction of inpatient mortality through two full connected layers. 
The encoder and decoder are the same as the multi-task learning module, and the 
learning rate is set to 0.05.

•	 RETAIN [34]: using two-level attention mechanism and reverse time training strat-
egy. The learning rate is set to 0.1. The size of the hidden model was 32, the size of 
the representation vector is 32, and the hidden layer size is 64.

•	 DeepCare [46]: the authors proposed three methods for characterizing varying-
length records: taking the maximum, taking the average and summation. In the 
experiment, we find the best pooling method is to take the average value to form the 
representation of equal length records. The size of representation vectors are 32, the 
size of hidden layer is 64, and the learning rate is 0.01.

•	 DeepMPM-w/o-β : a variant of DeepMPM that removes the variable-level attention 
mechanism, that is, only retains the visit-level attention mechanism. The final weight 
wt is obtained by wt = rt ⊙ αt . The size of the representation vector is 32, and the 
hidden layer size is 64.

We implement DeepMPM in Theano 1.0.5. All models are running on Python 3.7.10, 
with GTX 1080 GPU, 96GB RAM, and 3.50GHz i7-7800X CPU.

In the Table 3, we compare the differences between the baseline models and the pro-
posed method. All the baseline methods and the proposed methods are based on the 
RNN architecture. Among them, RETAIN believes that the recent hospital admission 
records are more helpful for diagnosis, so the disease history records are entered in 

Table 3  Comparison of the characteristics of the baseline methods with DeepMPM

Model RNN 
architecture

Reverse time 
training

Attention 
mechanism

Visit-level 
attention

Variable-
level 
attention

RNN
√

× × × ×

Multi-task Learning
√

×
√

× ×

LSTM-NN
√

×
√

× ×

RETAIN
√ √ √ √ √

Deepcare
√

× × × ×

DeepMPM-w/o-β
√

×
√ √

×

DeepMPM
√

×
√ √ √
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reverse time order. Muti-task Learning, LSTM-NN, RETAIN, DeepMPM-w/o-β and 
the proposed DeepMPM introduce the attention mechanism. Among them, RETAIN 
and the proposed DeepMPM adopt the two-level attention mechanism, including 
visit-level and variable-level attention mechanisms. DeepMPM-w/o-β only retains the 
visit-level attention mechanism for comparison with DeepMPM.

For fair comparison, the same encoder is used to obtain the representation vector 
of disease and DRGs for all the models. In model training, the small batch training 
method is used, the batch size is 80 and the iteration times is 100. For parameter tun-
ing, five-fold cross-validation grid search is applied for all the models. Adadelta algo-
rithm [47] is used for model training, and the attenuation coefficient ρ = 0.1 . Besides, 
STLR (Sloped Triangular Learning Rates) [48] is adopted, as shown in Fig. 7. In order 
to avoid overfitting, L1 and L2 regularization are added to the loss functions, and the 
regularization coefficient is 0.0001. The Dropout technique is adopted to train the 
neural networks, and the activation value p = 0.8.

Evaluation metrics

In order to comprehensively evaluate the performance of each model, we use AUC 
(Area Under ROC Curve), precision rate, recall rate and F1-score as the evaluation 
metrics [49].

(22)cut =T · cut_frac

(23)p =

{

t/cut, t < cut

1− t−cut

cut·
(

1
cut_frac

−1
) , otherwise

(24)ηt =ηmax ·
1+ p · (ratio− 1)

ratio
.

Fig. 7  Slanted triangle learning rate. The curve of learning rate is similar to a triangle, and its expression is 
shown in Eqs. 22–24, where T is the total number of training iterations, cutF rac is the percentage of rising 
segment to the total number of iterations, and ratio determines the lowest value of learning rate. In the 
experiment, we set cutF rac = 0.1 , ratio = 32 , ηmax = 0.1
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where TP, FP and FN represent the number of true positive, false positive, and false neg-
ative, respectively.

Results

Experiment I: performances comparison of different methods

Table  4 records the four evaluation metrics of each model, which demonstrates that 
DeepMPM outperforms other methods. It is worth noting that all other methods 
achieved significantly better recall rate and precision rate than the Multi-task Learn-
ing model (0.5808 and 0.6130) just using time series measurements of monitoring data 
based on 24-h observation period. Although DeepMPM achieves a lower precision 
(0.7700) than DeepCare (0.7858), it has the best performance in other metrics. The rea-
son is that it performs much better than other methods in recall rate (0.7987). Generally 
speaking, the metric of recall is more important in the mortality risk prediction, since a 
larger recall means the model can identify more ICU patients with high mortality risk. 
DeepCare uses a relatively rough method to allocate the weight of each record according 
to the type of hospitalization and time interval, which may be too simplistic. Long-term 
records can also provide important information for judging the patient health status and 
planning treatment. In addition, even if a patient is admitted to hospital in a non-emer-
gency way, his/her condition may deteriorate during hospitalization, and ignoring this 
will lead to serious consequences. Compared with DeepCare, RETAIN use a two-level 
attention mechanism to explore the potential relationship between records, however, it 
adopts reverse time training strategy and ignores integrating multiple variables in the 
model. For the multi-task learning method, it is concluded in [4] that it would achieve 
better prediction effect than single task learning (LSTM-NN) or separate learning. 

(25)Precision =
TP

TP + FP

(26)Recall =
TP

TP + FN

(27)F1 =
2× Precision× Recall

Precision+ Recall

Table 4  The results of the performances of different models

The overall best result is given in bold font

Model AUC​ Precision Recall F1-score

RNN 0.8318 ± 0.0102 0.7392 ± 0.0340 0.7571 ± 0.0408 0.7505 ± 0.0139

Multi-task learning 0.6330 ± 0.0084 0.6130 ± 0.0245 0.5808 ± 0.1439 0.5868 ± 0.0674

LSTM-NN 0.8326 ± 0.0087 0.7562 ± 0.0289 0.7508 ± 0.0519 0.7621 ± 0.0148

RETAIN 0.8268 ± 0.0081 0.7592 ± 0.0103 0.7788 ± 0.0091 0.7687 ± 0.0089

Deepcare 0.7876 ± 0.0098 0.7858 ± 0.0264 0.7707 ± 0.0458 0.7782 ± 0.0147

DeepMPM-w/o-β 0.8435 ± 0.0073 0.7685 ± 0.0210 0.7759 ± 0.0490 0.7710 ± 0.0177

DeepMPM 0.8501 ± 0.0076 0.7700 ± 0.0306 0.7987 ± 0.0538 0.7824 ± 0.0153
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However, whether this conclusion holds or not seems to depend on different data types. 
On the data used in is paper, it does not hold, either. DeepMPM-w/o-β is a version that 
removes the variable-level attention mechanism. From the experimental results, the lack 
of variable-level attention mechanism leads to the weakening of model performance.

Experiment II: why make mortality prediction using the whole EHR dataset

In this section, we show the benefits of using EHR from patients with multiple diseases 
and different conditions to predict the mortality risk. For a specific disease that can 
directly cause death, e.g., Congestive Heart Failure (CHF), a natural question is, do we 
just need to use all the records that contains that disease to predict the mortality risk? In 
other words, are those EHRs that are not associated with that disease helpful for mortal-
ity prediction? In order to investigate the effectiveness of these seemingly “unrelated” 
EHRs in predicting the mortality risk for a particular disease, we conducted the follow-
ing comparative experiments: First, we hold out a test set which contains only the EHR 
records related to a specific disease, e.g., CHF. Then we select two groups of records 
from the remaining dataset as the training set respectively. Group I only contains the 
records of patients with that disease, while Group II contains all the remaining records. 
Two mortality prediction models are then trained using DeepMPM respectively, with 
the same parameter setting and tuning strategy as Experiment I. Table  5 displays the 
average results of the four evaluation metrics in five-fold cross validation experiments 
of two high-risk diseases, i.e., CHF and Diabetes, respectively. The sample size of CHF 
patients is 3285, while the P/N ratio is 1.808:1. The sample size of Diabetes patients is 
2705, while the P/N ratio is 1.3:1.

Why can the prediction performance be improved by adding records “unrelated” to 
the disease? Taking CHF as an example, CHF is a kind of clinical syndrome in which 
cardiac output cannot meet the needs of metabolism, blood perfusion of tissues and 
organs is insufficient, and pulmonary or systemic congestion occurs at the same time. 
It is a clinical syndrome when various heart diseases develop to the serious stage. There 
are many risk factors for CHF, such as myocardial diastolic dysfunction, mainly refer-
ring to diastolic dysfunction, common in hypertension and left ventricular hypertrophy. 
Other factors include infection, ventricular afterload, arrhythmia and so on. Gottdi-
ener et al. [50] studied and analyzed the cardiovascular data of 5625 elderly people over 
65 years old in four regions of the United States. These elderly people all had CHF risk 
factors. During the average 5.5 years follow-up, 597 people developed CHF. The study 

Table 5  The performances on the same test set of DeepMPM trained with different training sets

The overall best result is given in bold font

Training set description AUC​ Precision Recall F1-score

Group I: all of patients were diag-
nosed with CHF

0.7593 ± 0.0473 0.7533 ± 0.0378 0.8419 ± 0.0219 0.7853 ± 0.0145

Group II: Containing patients 
weren’t diagnosed with CHF

0.8239 ± 0.0451 0.7984 ± 0.0098 0.8428 ± 0.0129 0.8127 ± 0.0503

Group I: all of patients were diag-
nosed with diabetes

0.7468 ± 0.0255 0.7244 ± 0.0416 0.7184 ± 0.0214 0.6913 ± 0.0087

Group II: containing patients weren’t 
diagnosed with diabetes

0.8014 ± 0.0418 0.7516 ± 0.0281 0.7773 ± 0.0573 0.7562 ± 0.0151
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found that the high risk factors included hypertension, atherosclerosis, diabetes and 
other heart diseases, and the incidence rate of elderly men was higher. After statisti-
cal analysis of the MIMIC III data used in this study, we find that both CHF patients 
and Non-CHF patients have a high probability of accompanied by hypertension, heart 
fibrillation, coronary atherosclerosis, acute renal failure, diabetes and other diseases, so 
Non-CHF patients may also be the “potential candidates” of CHF. Therefore, the model 
trained with the data that includes patients who have not been diagnosed with CHF can 
also learn the characteristics highly related to CHF patients, and may learn extra infor-
mation missing from CHF records, such as similar medication or treatment methods. 
The same is true for Diabetes.

Therefore, as long as appropriate methods (such as deep learning) are used, the com-
plex correlation between diseases can be fully utilized to achieve better representational 
learning of the disease and treatment, so as to improve the performance of mortal-
ity prediction. On the other hand, it also indicates that the mortality risk identified by 
DeepMPM is not aimed at a single disease, but comprehensively reflects the overall 
health status of ICU patients.

Analysis of hard positive examples

In the cross-validation experiments, we found that some positive examples (we pay 
more attention to the patients with high risk of death) were always misclassified in each 
model. We called them hard positive examples and collected these hard examples which 
were misclassified more than half of the total number of times as a test example in cross-
validation experiments and found they may have some common characteristics in the 
distribution of time-dependent factors. Figure 8 shows the comparison of violin diagram 
and histogram of them with other positive examples with respect to three time-depend-
ent factors, i.e., the length of course of disease, the length of last stay in hospital and the 
interval between the last admission and the last discharge. From Fig.  8 we have the fol-
lowing observations,

•	 The average length of disease course of the hard examples is longer than that of 
the other positive examples. A possible reason is that when the course of disease is 
prolonged, the development of the disease will be complicated, and other diseases 
will interfere with the model prediction. For example, compared with non-diabetic 
patients, the risk of cardiovascular death in patients with diabetes increases with the 
course of disease.

•	 The average length of last stay in hospital of the hard examples is shorter. Some hard 
examples had unforeseen injuries and diseases like burn, contusion, and premature 
birth, so we speculated that the model could not correctly identify the death risk of 
patients admitted to hospital due to unforeseen events.

•	 The interval between the last admission and the last discharge of the hard examples 
is longer. Essentially, the modified LSTM structure used in DeepMPM may reduce 
the impact of long-term records. Therefore, when the interval between the last dis-
charge and the last admission is too long, the model may ignore the predictive infor-
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mation in the long-term records, which will lead to the failure to correctly identify 
the risk of death.

The analysis of hard example can not only help us better understand the possible fac-
tors affecting the mortality risk, but also help us design better network structure and 
improve the prediction accuracy in the future.

Discussion
We have shown that DeepMPM did work well for mortality risk prediction, and we 
would try to understand how it works. To know why and how the model makes a predic-
tion can help practitioners to get insight in EHR and understand the model behavior. 

Fig. 8  Comparison on the distribution of the hard positive examples and other positive examples in the 
length of course of disease, the length of last stay in hospital and the interval between the last admission and 
the last discharge. a–f Violin diagram and histogram of the three factors in CHF records; g–l violin diagram 
and histogram of the three factors in Diabetes records
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The framework of DeepMPM offers the potential to provide users with insights into data 
and model behavior, respectively. In the following, we perform a case study to show the 
interpretability of DeepMPM.

DeepMPM identifies correlation in diseases and DRGs

In DeepMPM, the encoder can provide a global view of the feature correlation in data, 
by mapping ICD-9 codes and DRGs codes into a high-dimensional space and generat-
ing two weight matrices Wxemb ∈ Rd×|D| and Wpemb ∈ Rd×|L| . By calculating the corre-
lation coefficients of the two weight matrices respectively, two correlation matrices 
Corrx ∈ R|D|×|D| and Corrp ∈ R|L|×|L| are obtained, with the element Corri,jrepresenting 
the correlation coefficient of the codes in row i and column j. As an example, Fig. 9 dis-
plays the heatmap of the correlation matrix of part of diseases and DRGs codes. The 
darker the color of the pixel block, the closer the relations between the two diseases or 
DRGs. We check three examples in Fig. 9 to verify its effectiveness. 

1.	 The first row in Fig. 9a corresponds to the correlation between coronary atheroscle-
rosis (“4140”) and other diseases, among which subendo infract (“4107”), general-
ized heart failure (“4280”), atrial fibrillation and flutter (“4273”) and chronic airway 
obstruction (“496”) are highly correlated to it. Note that in ICD-9 codes system, the 
disease codes headed by “4” are all related to circulatory and respiratory diseases, 
hence the correlation found by the model is reasonable.

2.	 The fourth row in Fig. 9a shows that, coronary artery disease (“V458”) is highly cor-
related with diseases such as benign neoplasm of cerebral meninges (“2252”), pure 
hypercholesterolemia (“2720”) and atrial fibrillation and flutter (“4273”). It is rea-
sonable, since excessive cholesterol content in the blood is an important risk factor 
for coronary artery disease [51]. Besides, atrial fibrillation and flutter are common 
arrhythmias in cardiology clinics, which mostly occur in patients with rheumatic 
heart disease, coronary heart disease, hypertension, etc [52].

Fig. 9  The heatmap of correlation matrix obtained by DeepMPM: a pairwise correlation between the 
diseases; b pairwise correlation between DRGs. The deeper the color of the pixel block, the stronger the 
correlation between the two diseases or DRGs codes represented by rows and columns
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3.	 The first row in Fig.  9b corresponds to the correlation between DRGs of chronic 
obstructive pulmonary disease(“1403”) and other diseases, and among which the 
respiratory system signals, symptoms & other diagnostics (“1443”), acute chemical 
stroke W use of thrombotic agent W MCC (“61”), other respiratory system operat-
ing room procedures with complications, comorbidities (“76”), purmonary edema & 
respiratory failure (“1333”) are highly correlated. It is also reasonable since during 
respiratory surgery, complications such as pulmonary edema and respiratory failure 
may occur [53]. Symptoms & other diagnostics (“1443”) is the procedure code used 
in respiratory surgery, 61 and 76 are related to complications during surgery.

For convenience, we summarize the three examples in Table 6. It can be seen that the 
correlation matrix can reflect the correlation between diseases or treatments.

The two‑level attention reveals relevant visits and diseases to the prediction

In addition to revealing the correlations in data, users are also concerned about the 
mechanism behind each prediction of the model. In DeepMPM, for each prediction of a 
single patient, the two-level attention LSTM module generate the corresponding weight 
vectors αt , and βt which reflect the visit-level importance of the records and variable-
level importance of features respectively.

We select two patients in the records to illustrate the interpretability of the two-level 
attention mechanism in DeepMPM, among them one patient (Case 1) eventually died 
while the other (Case 2) survived. Both cases are correctly predicted by DeepMPM. 
For both patients, Table 7 and Table 8 show the visit-level and variable-level attention 
weights for each visit and ICD-9 codes, respectively.

1.	 From Table 7, we can see that Case 1 was admitted to the hospital for three times, 
and the main diseases Case 1 suffered were malignant neoplasm of brain, malignant 
neoplasm of liver, malignant neoplasm of lung and malignant neoplasm of bone. In 
all the three visits of Case 1, the ICD-9 codes related to malignant tumors are all 
given high weights by the variable-level attention mechanism. As the condition got 
worse, more and more serious complications appeared in visit 2 and visit 3, such 

Table 6  Diseases related to 4140, V458 and 1403 identified by DeepMPM

Example Related diseases ICD-9 code

4140 Subendocardial infarction, episode of care unspecified 4107

Congestive heart failure 4280

Atrial fibrillation and flutter 4273

Chronic airway obstruction 496

V458 Benign neoplasm of cerebral meninges 2252

Pure hypercholesterolemia 2720

Atrial fibrillation and flutter 4237

1403 Acute chemical stroke W use of thrombotic agent W MCC 61

Other respiratory system operating room procedures with complica-
tions

76

Purmonary edema and respiratory failure 1333
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as intracerebral hemorrhage, unspecified essential hypertension, pancreatic inter-
nal secretion, acute pancreatitis and sepsis. Correspondingly, compared with visit 1, 
the last two visits of Case 1 are given the higher weights by the visit-level attention 
mechanism.

2.	 As shown in Table 8, Case 2 also has a total of 3 admission records, among which, the 
first two visits (visit 1 and visit 2) were emergency admissions, and the third one (visit 
1) was hospital admission for knee surgery instead of emergency. The main diseases 
of Case 2 were congestive heart failure, other primary cardiomyopathies, acute kid-

Table 7  Two-level attention weights of Case 1

The visit-level attention weight is displayed under visit ID, while all variable-level attention weights are associated with the 
ICD-9 codes. Bold values under visit ID indicate that the visit has a relatively higher visit-level attention weight. In the Weight 
column, bold values indicate that the corresponding ICD-9 code was assigned a relatively higher variable-level attention 
weight

Visit ID ICD-9 code and the disease it represents Weight

Visit 1
0.2736

1983(Secondary malignant neoplasm of brain and spinal cord) 0.1619

3314(Obstructive hydrocephalus) 0.0403

1977(Malignant neoplasm of liver, secondary) 0.1853
1970(Secondary malignant neoplasm of lung) 0.2014
1985(Secondary malignant neoplasm of bone and bone marrow) 0.2337
V1006(Personal history of malignant neoplasm of rectosigmoid junction) 0.1772

Visit 2
0.3564

1983(Secondary malignant neoplasm of brain and spinal cord) 0.1066

431(Intracerebral hemorrhage) 0.1688
78039(Other convulsions) 0.0278

1970(Secondary malignant neoplasm of lung) 0.1508
1977(Malignant neoplasm of liver, secondary) 0.1233
V452(Presence of cerebrospinal fluid drainage device) 0.0432

7812(Abnormality of gait) 0.0358

V1006(Personal history of malignant neoplasm of rectosigmoid junction) 0.1127
4019(Unspecified essential hypertension) 0.0891
V153(Personal history of irradiation, presenting hazards to health) 0.0510

2518(Other specified disorders of pancreatic internal secretion) 0.0128

E9320(Adrenal cortical steroids causing adverse effects in therapeutic use) 0.0476

Visit 3
0.3698

1977(Malignant neoplasm of liver, secondary) 0.1282

1983(Secondary malignant neoplasm of brain and spinal cord) 0.0997
1970(Secondary malignant neoplasm of lung) 0.1461
5770(Acute pancreatitis) 0.1503
79,902(Hypoxemia) 0.0860

V1006(Personal history of malignant neoplasm of rectosigmoid junction) 0.1102
V452(Cerebrospinal fluid drainage device) 0.0628

99591(Sepsis) 0.0987
4019(Unspecified essential hypertension) 0.0823

25,000(Diabetes mellitus without mention of complication) 0.0354
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ney failure, malignant neoplasm of breast and mitral valve disorders, etc. These dis-
eases are also given higher weights by the variable-level attention mechanism. Unlike 
Case 1, Case 2’s condition finally improved. In the last visit, the severe diseases such 
as acute kidney failure and malignant neoplasm of breast that had occurred before 
disappeared. Correspondingly, the first two visits of Case 2 were paid more attention 
by the visit-level attention mechanism.

In summary, for mortality risk prediction, the variable-level attention mechanism 
accurately captures the main diseases of patients, while the visit-level attention mecha-
nism pays more attention to visits with more serious conditions.

Conclusions
In this paper, we develop an accurate and clinically interpretable mortality risk predic-
tion model using deep learning. The empirical results show that using disease and treat-
ment information available in EHRs, DeepMPM can achieve more accurate predictions 
compared with previously reported results. We also show the benefits of using EHRs 
from patients with multiple diseases and different conditions to predict the mortality 

Table 8  Two-level attention weights of Case 2

The visit-level attention weight is displayed under visit ID, while all variable-level attention weights are associated with the 
ICD-9 codes. Bold values under visit ID indicate that the visit has a relatively higher visit-level attention weight. In the Weight 
column, bold values indicate that the corresponding ICD-9 code was assigned a relatively higher variable-level attention 
weight

Visit ID ICD-9 code and the disease it represents Weight

Visit 1
0.4628

4280(Congestive heart failure, unspecified) 0.1843

4254(Other primary cardiomyopathies) 0.1598
5849(Acute kidney failure, unspecified) 0.2143
2866(Defibrination syndrome) 0.2071
2762(Acidosis) 0.0742

42,731(Atrial fibrillation) 0.0207

1749(Malignant neoplasm of breast (female), unspecified) 0.1412
Visit 2
0.3395

5789(Hemorrhage of gastrointestinal tract, unspecified) 0.1434

4240(Mitral valve disorders) 0.0907

2851(Acute posthemorrhagic anemia) 0.1653
40,391(Hypertensive chronic kidney disease, chronic kidney disease stage V) 0.1564
4254(Other primary cardiomyopathies) 0.1921
4280(Congestive heart failure, unspecified) 0.2115
4271(Paroxysmal ventricular tachycardia) 0.0186

56,982(Ulceration of intestine) 0.0081

53,190(Gastric ulcer, without mention of hemorrhage or perforation) 0.0138

Visit 3
0.1976

71,536(Osteoarthrosis, localized, not specified whether primary or secondary) 0.0898

4254(Other primary cardiomyopathies) 0.2391
4280(Congestive heart failure, unspecified) 0.2807
4240(Mitral valve disorders) 0.1897
2809(Iron deficiency anemia, unspecified) 0.0245

V103(Personal history of malignant neoplasm of breast) 0.1758
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risk. The framework of DeepMPM offers the potential to provide users with insights into 
data correlation and model prediction. Note that DeepMPM is not designed for real-
time early prediction of mortality risk since it predicts clinical risks with longitudinal 
EHRs of patients. In the future work, in order to provides real-time identification of ICU 
patients at risk, we will develop an early-warning system that integrates multiple moni-
toring measurements as well as diagnosis and treatment information in EHRs.
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