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Abstract

protein design to protein folding in silico.

Background: Evolutionary information contained in the amino acid sequences of proteins specifies the biological
function and fold, but exactly what information contained in the protein sequence drives both of these processes?
Considerable progress has been made to answer this fundamental question, but it remains challenging to explore the
potential space of cooperative interactions between amino acids. Statistical analysis plays a significant role in studying
such interactions and its use has expanded in recent years to studies ranging from coevolution-guided rational

Results: Here we describe a computational tool named Sibe for use in studies of protein sequence, folding, and
design using evolutionary coupling between amino acids as a driving factor. In this study, Sibe is used to identify
positionally conserved couplings between pairwise amino acids and aid rational protein design. In this process,
pairwise couplings are filtered according to the relative entropy computed from the positional conservations and
grouped into several ‘blocks’, which could contribute to driving protein folding and design. A human ;-adrenergic
receptor (B,AR) was used to demonstrate that those 'blocks’ contribute the rational design for specifying functional
residues. Sibe also provides folding modules based on both the positionally conserved couplings and well-established
statistical potentials for simulating protein folding in silico and predicting tertiary structure. Our results show that
statistically inferences of basic evolutionary principles, such as conservations and coupled-mutations, can be used to
rapidly design a diverse set of proteins and study protein folding.

Conclusions: The developed software Sibe provides a computational tool for systematical analysis from protein
primary to its tertiary structure using the evolutionary couplings as a driving factor. Sibe, written in C++, accounts for
compatibility with the 'big data’ era in biological science, and it primarily focuses on protein sequence analysis, but it
is also applicable to extend to other modeling and predictions of experimental measurements
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Background

A protein’s biological function and structure are evolved
properties and are stabilized by thousands of weak inter-
actions [1]. That interaction network is the foundation
of how a protein works and is critical to understanding
a protein’s origin via evolutionary processes and impor-
tant for engineering new proteins and drugs. One such
evolutionary process is coevolution, which refers to the
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coordinated changes that occur in pairs of biomolecules
or residues to maintain or refine functional interactions
between those interacting partners. Coevolution is a clas-
sic topic in biology for understanding the relationships
between biomolecules or residues [2]. Although numer-
ous coevolution-inspired computational methods have
been developed for inferring these interaction networks,
full descriptions of network coevolution that can fully
describe functional and physical relationships remains
challenging.

To better understand what coevolutionary information
encoded in protein sequences is necessary and sufficient
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for protein folding or design, computational and statistical
approaches have been applied to study effects of muta-
tions, especially co-variations that may result in altered
protein function and conformational changes [3—10]. Two
striking representatives of such approaches are statisti-
cal coupling analysis (SCA) and direct couplings analysis
(DCA). SCA measures the conservation-weighted corre-
lation of positions in aligned homologous sequences of a
protein family and detects physically connected networks
of amino acids that link the main functional site to dis-
tantly positioned allosteric sites [4, 11, 12]. DCA (7, 9, 13]
is an approach to predict direct tertiary contacts in protein
structures using the top couplings [14].

Protein design has been a long-standing challenge to
test computational approaches used in protein sequence
analysis, folding, and structure prediction [15-21], Also
referred to as an inverse folding problem, protein design
seeks to create idealized proteins composed of canon-
ical structural elements [22], including the design of
coiled coils, repeat proteins, TIM barrels, and Rossman
folds [15-20]. Consequently, statistical approaches aim
to bridge the gap between protein sequence and design,
which may be achieved if the approaches can predict
protein stability and foldability. However, it is expensive
and challenging to design functional assays to experi-
mentally test such statistical approaches [23], although a
designed WW-domain proteins have been created based
on the SCA method and experimental demonstration [12].
Moreover, until recently, although SCA-based and DCA-
based approaches have been applied to protein design,
most of the statistical methods have focused on evolu-
tionary sequence conservation analysis and predictions of
residue-residue contacts [24], which usually are used as
constraints for protein structure prediction [13, 25].

Our ability to reliably detect coevolutionary informa-
tion will benefit from the development of additional sys-
tematic and well-packed tools that can efficiently and
rapidly extract evolutionary information from protein
sequences. Accordingly, we developed an end-to-end plat-
form, termed Sibe, to investigate how positionally con-
served couplings inferred from sufficiently large and
diverse multiple sequence alignments (MSAs) can be used
for specifying a protein’s structure and function and to
build an improved version of the protein. As a general
framework, Sibe aims to reduce the gap between sequence
analysis and protein folding and design. Sibe provides
an easy and rapid method for protein design and fold-
ing in silico using analytical and computational inferences
based on protein sequences and estimated ‘residue blocks’
identified from highly correlated coevolution.

Sibe utilizes a combination of mathematical principles
underlying SCA- and DCA-based methods for detecting
patterns of structural contacts and functional couplings
within sequence alignments to identify functional and
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physical interactions between amino acids [26]. In addi-
tion, positionally conserved couplings estimated by evo-
lutionary coupling analysis (ECA) from a protein MSA to
define rules for in silico prediction of the folding pathways
and tertiary structure of a given sequence.

In this report, we provide two instructive examples to
show the capabilities of Sibe for protein sequence anal-
ysis, protein design, and folding predictions. In the first
example, we use Sibe to statistically analyze an MSA
of a eukaryotic signal transduction protein, a G-protein
coupled receptor (GPCR) [27], for detection of 'residue
blocks” and design in silico. We then use Sibe to build a
mutated GPCR protein based on inferred coevolutionary
information and compare the functional residues iden-
tified to those in ref. [27]. In the second example, Sibe
is used to simulate the folding of a group of three pro-
teins based on statistical potentials [28] and positionally
conserved couplings.

Implementation

The general procedure for launching Sibe is to define a
set of protein sequences and then align them in order to
estimate variation frequencies in the sequence alignment.
Before the initial statistical analysis, we must obtain the
sequences of a given protein we are interested in, and then
analyze the multiple sequence alignment for capturing
the coevolution. Generally, the sequences are the out-
put of searching the query against the UniRef90 database
[29]. In this study, the multiple sequence alignment of
each analyzed protein (target sequence) was obtained by
searching the UniRef90 database of non-redundant pro-
tein sequences using the default five search iterations of
the profile HMM homology search tool jackhmmer. The
alignments generated by the jackhmmer tool were directly
processed by Sibe and converted into FASTA format, then
the aligned sequences in each MSA were extracted and
trimmed to remove poor quality sequences and improve
efficiency in capturing the evolutionary information. In
the trimming step, gaps were filtered according to both the
column positions (amino acids in the query sequences)
and rows (each protein sequence) in the MSA. As a result,
the MSAs were post-processed to exclude sites of each
sequence with more than 30% of gaps and to exclude
sequences with less than 50% alignment to the target
sequence. In our instructive example, we show in detail
the process from sequence alignment to identifying posi-
tionally conserved couplings and applying those results to
protein design and folding prediction.

Sibe incorporates statistical potentials derived from
protein sequences (energy-like coevolution) and struc-
ture information (energetic potentials [28]) for protein
design and folding, respectively. All of the calculations
described in this work were carried out within the Sibe
software suite and followed the same basic method. In
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computational protein design, within Sibe, large-scale
protein sequences were generated by the dead-end elim-
ination (DEE) algorithm [30] according to the statistical
(energy-like) potentials inferred from MSA. Mutations
occurred in a wild type protein sequence with the guid-
ance of sequence energy-like potentials and were assessed
by a metropolis criterion. Inferences of residue-contacts
were also estimated from the MSA as a constraint to aid
Sibe in protein folding and structure predictions. Com-
bining such analysis with predicted constraints of torsion
angles (¢, ¥) by a convolution neural network model
[31], we performed iterative folding predictions using a
Markov Chain Monte Carlo protocol [32] on a set of three
representative proteins.

Statistical analysis on sequences

In this study, the use of Sibe was focused on coevolution
at the residue level including positionally conserved cou-
plings and statistical potentials derived from the site bias
of residues and the pairwise couplings of residues. We per-
form sequence statistics on a multiple sequence alignment
and apply Sibe to capture the amino acid covariances and
conservation for evolutionary inferences, then compute
residue blocks. Given an MSA of N sequences by L posi-
tions, denoted as M = (Mff ), we can obtain an amino acid
frequency at an individual position is f;(A) = % D8 AN
where § = 1 if sequence k has amino acid A at posli—
tion i, otherwise § = 0. Similarly, a joint frequency of
amino acid between a pair of positions is formulated as
Ji(A,B) = % 2k SA,Mff ‘SB,M]’f'

Here, the example of the human S, AR protein is used to
show how Sibe can capture the couplings among residues
and generate an energy-like potential derived from site
bias of residues and pairwise couplings of residues. First,
we compared the sequence of the target protein with the
UniRef90 database [29] and obtained 221,306 sequences.
Then we launched Sibe to analyze the MSA of the human
B2AR protein sequences, and demonstrated how the sta-
tistical energetic potentials derived from the MSA can be
used as evolutionary constraints for protein design.

To capture couplings between pairs of residues, we
employ the Kullback-Leibler relative entropy [33] to mea-
sure how different the observed amino acid A at position
i would be if A randomly occurred with an expected
probability distribution [5]. The definition of the relative
entropy is presented as follows,

fi(A)
Di(A) = fi(A)1
(A) =fi( )n(p(A)

)+(1 —fA)n (l_f(A))

1=pA)
(1)
where p(-) is the background probability.

To capture partial interactions, a global statistical model
(DCA-based [6, 7,9, 13]) is used to infer direct interaction
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information between pairwise residues. Here, we describe
how to use Sibe to capture direct couplings from a given
MSA using the model and create an energy-like poten-
tial for designing a variant of the human AR protein.
Given the MSA, we can easily compute the single site fre-
quency f;(A;) and joint frequency f;;(A;, A;). To maximize
the entropy of the observed probabilities, we can calculate
the effective pair couplings and single site bias to meet the
maximal agreement between the distribution of expected
frequencies and the probability model of actually observed
frequencies.

Pi(Ai) - Z P(AerZ" . 1AL) :_fl(Al)

Aglk=i
Pj(Aj,A)) = ). P(A1, Ay, -, AL) =fij(Ai, A))

Axlk=ij
(2)

Maximizing the entropy of the probability model, we
can get the following statistical model,

1
P(A1, Ay, AL) = — exp ;e,y(Ai,Aj>+;hi<Ai> ,

3)

where Z is a normalization constant, e;i(+,+) is a pairwise
coupling, and %;(-) is a single site bias.

Evolutionary information based methods have been
reported to be correlated with protein stability and can
help design targeted single-point mutations [23, 34, 35].
For example, Best et al. [35] demonstrated that the DCA
method can be used to build a sequence fitness landscape
that can be an effective guide for protein rational design.
As reported, most of the predicted high-fitness sequences
of three proteins stably folded to the target structures
in experiments. Ranganathan et al. [12] used coevolu-
tion between residues to create a stable and functional
WW domain using the SCA approach by swapping pair-
wise coupled residues between sequences to maximize
the similarity between designs and the natural alignment.
However, it still remains challenging to completely disen-
tangle direct and indirect couplings between residues, so
they are not always reliable resources for guiding ratio-
nal protein design. Here, we suggest that positionally
conserved couplings between pairwise residues preserve
large amounts of coevolutionary information resulting in
higher reliability of rational protein design. Sibe provides
an end-to-end platform for protein folding simulations
and design in silico from protein primary sequence using
conserved epistasis among amino acids. The main differ-
ence between our method and previous methods is that
the conserved epistasis is estimated in order to capture
potential amino acids that could contribute to function,
since proteins evolve for function but not necessarily sta-
bility. In silico, Sibe allows us to detect mutations that
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may significantly guide protein engineering starting from
a given sequence and then driving its folding by providing
detailed pathway.

Site biases /; and couplings e; can be estimated from
the same MSA used for inferences of the positional con-
servation. Accordingly, positionally conserved couplings
are computed from a combination of relative entropy from
Eq. (1) with the site biases and pairwise couplings from
Eq. (3) by using a sufficiently large and diverse MSA of a
given target protein 7, as defined in the Eq. (4).

E(r) =) ej(ti, )| Dy > 0) + Y _ hi(1)|(D; > o),

i<j i

(4)

where o is a constant threshold for filtering amino acids
at specific positions that are not conserved.

Rooting in Eq. (4), Sibe captures the positionally con-
served couplings among residues from the MSA, which
contribute to evolutionary constraints for both protein
folding and design. In the following paragraphs, we
demonstrate that statistically inferred information for
basic evolutionary principles, such as positional conser-
vations and coupled-evolution, can be used to predict
protein structures and rationally design a diverse set of
more efficient proteins.

Results

Written in C++, Sibe allows for the rapid analysis of
long protein sequences and captures the evolution-based
information for protein folding, design, and structure pre-
diction (as illustrated in Fig. 1). In this section, we will
describe how evolutionary coupling analysis in Sibe (as
shown in Fig. 1) functions for a human B-adrenergic
receptor (B2AR) protein, which is a critical eukaryotic
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signal transduction protein that communicates across the
lipid bilayer via recognition and binding of diffusible lig-
ands for significant biological activities [27]. Understand-
ing its sequence evolution can provide insight into its
function and help in the design of better drugs and thera-
peutics. We use Sibe to study the human B AR protein and
demonstrate that Sibe can identify significant positionally
conserved couplings and important structural features
that have been linked to ligand binding activities.

Protein sequence design

A great testing ground for the sequence to structure
paradigm is protein design [36]. However, it is challeng-
ing to computationally assay for function in the large
sequence space of an amino acid sequence [23] (e.g. a
protein of 25 amino acids has a space of 20%°). This chal-
lenge creates two major questions we approached using
Sibe. First, how can we explore the large sequence space
to capture key mutations that relate to the functional roles
of a protein? Second, how can evolutionary information
contained within amino acid sequences contribute to pro-
tein evolution (e.g. via establishing kinetic and thermody-
namic stability [37]) and how can we use that information
to design proteins with novel functions?

To address these questions, we used Sibe to facilitate
protein design and attempted to uncover the biophysical
rules governing protein folding. In this section, we will
use the human By AR protein [27] to illustrate how Sibe
functions for protein design in silico from sequence anal-
ysis. The Kullback-Leibler relative entropy of the human
B2AR protein was computed from its MSA, as the infor-
mation calculated from the relative entropy can remark-
ably reduce the potential complexity of the protein-design
problem [12]. In Fig. 2 we provide an overview of the
methodology for employing evolutionary couplings as a
statistical energy-like potential (estimated from an MSA

Folding Simulation
1. Smaple (¢, Y) from Ramachandran map
2. Build tertiary comformation .
3. Evaluate structure using statitical energy potentials

Inferred Couplings
1. Compute evolutionary potentials for the family
@ 2. Spectrum analysis of the coupling matrix
3. Infer positionally conserved couplings among residues

= FASTA/MSA

(in standard format)

Coupled blocks
1. Compute the positionally conserved & coupled blocks
@ 2. Map coupled blocks to the tertiary structure
3. Analyze relationship between the blocks with functions

Sibe APIs

(existing/user-defined)

Rational Design

1.Single and coupled mutations on the WT sequence
2. Compute energy of each mutant sequence

3. Analyze and evaluate the designed sequence

®

Fig. 1 The flowchart of in silico protein folding and design in Sibe using evolutionary couplings as drivers
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Fig. 2 Analysis of evolutionary couplings. Starting from a given WT protein amino acid sequence, we apply Sibe to estimate the site bias of and
pairwise couplings between amino acids as a statistical potential for protein design in silico. and a bias energy function (residue-contact) in protein
folding. a Detection of covariations (e.g., at the ith and jth positions colored in orange) and conserved amino acids (e.g., positions colored in dark
red) from the multiple sequence alignment of N sequences by L positions obtained by searching the WT sequence against the sequence database.
b Analysis on the detected coupled and conserved amino acids results in an interaction potential. € residue blocks were achieved by independent

component analysis and highlight each of them may have a distinct functional role in the protein family

of a protein family using regularized maximum pseudo-
likelihood [38]) to constrain underlying protein sequence
design (see also Additional file 1: Methods).

First, energy (as shown in Eq. 4) is significantly corre-
lated with transition temperatures as measured by differ-
ential scanning calorimetry experiments for extant and
ancestral Trx proteins [39], as shown in Fig. 3a. Although
it does not suggest that protein function is related to tem-
perature, it does indicate that computational inferences
from multiple sequence alignment could make favorable
contributions to rational design. We probed each given
protein sequence from ref. [39] against the UniRef90
database [29] by HMMER [40] to prepare an MSA for
the Trx protein family. The obtained MSA was used
as an input to create site bias and coupling matrices.

Accordingly, we calculated site bias and residues cou-
pling energies for the sequences. To enhance the abil-
ity of the approach to distinguish proteins, we defined
an energy equation E E; + a - E;, where E, E,
and « are site bias energy (contribution of a single
amino acid to the whole sequence based on the statisti-
cal potential), coupling energy (contribution of pairwise
amino acids), and a weight factor, respectively. According
to stability analysis on the thioredoxin family (15 pro-
teins) in ref. [39], we maximized the correlation between
the total energies E and the transition temperatures by
optimizing the weight factor («). Based on the calcu-
lation, we got a maximum correlation factor approxi-
mately -0.74 when optimized o equals -0.43, as shown in
Fig. 3a.

A 150 B 5000 C 500 s
. ©  Mesophilic
4000 x Thermophilic [0
100 R =-0.74 8 ?.‘
300013 O o . s
5 5 ; 8 -500 s 'R o %
o 50 @ 2000 a o 3 o
c c .
w L >-1000
1000 S
0 i %g (& -1500 g
-50 -1000 = -2000
50 100 150 0 50 100 0 50 100
T, (PH=7.0) Protein family index Protein family index
Fig. 3 Comparisons between experimental and calculation results. a Correlation between the sequence energy and the transition temperatures for
extant and ancestral Trx proteins at pH 7.0. b The sequence energies of the mesophilic and thermophilic proteins in the different protein families. ¢
The energy difference calculated by Sibe between the mesophilic and thermophilic proteins in the same family
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Further, to demonstrate the ability of the derived poten-
tial, we applied the derived potential value to distinguish
mesophilic from thermophilic proteins within the same
family (see Additional file 1: Table S1). We obtained MSAs
of 136 different protein families that included mesophilic,
thermophilic, moderately thermophilic, and extremely
thermophilic proteins, then launched Sibe to infer the site
bias and couplings matrices for test proteins from those
136 protein families. The calculated energy E was able to
distinguish proteins from the same family for approximately
83.3% of the protein families tested. As illustrated in
Fig. 3b, red circles and blue crosses indicate the energies of
thermophilic and mesophilic proteins, respectively, calcu-
lated using potentials from Sibe. The blue circles in Fig. 3¢
show differences between the energies E of the mesophilic
and thermophilic proteins within the same families. Thus,
as demonstrated with these two experimental data sets,
Sibe is able to distinguish mesophilic proteins from
thermophilic proteins depending on sequence energy
potential.

We next investigated whether Sibe could be used in pro-
tein design using the evolutionary information inherent
in an MSA. We conducted a computational design study
of the human B,AR protein with the goal of capturing
the coevolutionary information encoded in the natural
evolutionary process in order to design a new stable
B2AR variant that is likely to be functional (with in vitro
validation). We generated an MSA using human B;AR
homologous proteins consisting of 221,306 sequences
(Additional file 1: Method), and the similarity between
pairwise amino acid sequences was computed (illus-
trated in Additional file 1: Figure S1). We calculated
the changes in energy for point mutations (Fig. 4), and
found that potential mutants are rare (i.e. high energy)
in the regions between residues Phe108-Lys149, Phe193-
Arg228, His269-Val295, and Tyr313-Leu342 (marked on
top of Fig. 4), as well as regions near the carazolol lig-
and binding sites consisting of residues Trp109, Asp113,
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Tyr199, Ser203, Trp286, Phe289, Phe290, and Tyr308 (col-
ored in blue at the bottom of Fig. 4) [27].

We also analyzed a matrix consisting of coupling terms
e;j in Eq. (3) between pairs of amino acids by independent
component (IC) analysis [41]. According to IC analysis,
just the top two eigenvalues are statistically significant.
These two top eigenmodes of the coupling matrix (as
illustrated in Fig. 5a that shows all the coupled interac-
tions between pairwise residues) are transformed into two
independent components that define independent blocks,
which are groups of amino acids that are physically con-
nected in the tertiary structure and may be functionally
correlated. Figure 5b and c show that Sibe successfully
identified two blocks for human B;AR protein, one of
which consists of 39 residues covering functional sites of
the protein [27] (red block, Fig. 5). These results suggest
that Sibe can detect coupled evolution among residues
important for protein function and may contribute to
designing stabilized proteins by suggesting residues for
mutation based on coevolutionary information.

Sibe can also be used to identify the designed pro-
tein sequence with the lowest energy. The critical fea-
tures of this protein design protocol are described in
Additional file 1: Figure S2 and the full method is described
in the supplementary materials. To assess whether this
approach can produce a more stable protein from cou-
pling constraints encoded in the MSA according to
coevolution-derived energies, we performed the DEE
minimization protocol [30] on protein sequence design.
For each starting sequence, five thousand independent
simulations, each consisting of a trial of sequence design
with maximum iterations of 100,000, were performed
to obtain the lowest energy from 500 trials (shown in
sequence logo in Additional file 1: Figure S3). In Fig. 6,
we show one such analyzed protein sequence, the ligand-
binding site in human ByAR protein, shown in green.
Within this site, extensive interactions occur between the
B2AR protein and carazolol at Phe289, Phe290 and Trp286

>0Zz000mMOT _~REno0—AS<<

Trp109 Aspl13

Fig. 4 Effects of point mutations on the human B,AR protein. Substitutions at each position with negative AFE values are predicted to be
deleterious; while those that are positive are predicted to be tolerated. Neutral substitutions are marked in 0

Phe193

Arg228 His269

Val295 Tyr313 Leu342

Tyr199 Ser203 Trp286 Tyr308
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Fig. 5 Matrix of pairwise residue-interactions for the human 8, AR protein. a Evolutionary interactions inferred by PCC between pairwise residues. b
Two interaction ‘blocks’ mapped to the tertiary structure. € Coupling matrix reordered to highlight two interaction blocks. Those blocks show that
the residues in the same block may contribute similarly functions to the protein

U

“\L;_—//“"" p

Fig. 6 Sibe computationally designed a mutant sequence of the
human B, AR protein (PDB ID: 2RH1) [27] that is mapped to it tertiary
structure. Yellow, green and red indicate mutations (made by Sibe)
occurred at common sites, ligand-binding sites, and experimentally
mutated functional sites, respectively

[27]. In the computationally designed human Sy AR pro-
tein, we obtained three ligand-binding site mutants [27],
which may have altered function compared to wild type
protein upon experimental demonstration.

Protein folding and structure prediction

The prediction of protein structures has been a long-
standing challenge and numerous advances have been
made towards determination of the three-dimensional
structure of a protein from its amino acid sequence
[28, 42-44]. However, there are remaining challenges
regarding efficient computational methods for inter-
pretation of large sequencing data for protein fami-
lies and the development of rapid structure modeling
approaches. Addressing this gap is especially impor-
tant as recently, due to efforts in metagenome sequence
projects, the number of protein sequences is growing
considerably faster than ever before [25, 45]. The gap
between a protein sequence and its unknown structure
can be largely reduced by taking advantage of progress
in statistical analysis of both protein sequences and
known structures. Moreover, known coevolution among
amino acids enhances the capacities of existing computa-
tional approaches in predicting contacts between protein
residues [6, 7, 9], and such predicted constraints can pro-
vide an accurate way to model a protein of unknown
structure [25].

To assess structure prediction by Sibe, we carried out
calculations on an instructive example consisting of three
representative proteins following the steps shown on the
left side of Fig. 1. The three proteins chosen were the
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low molecular weight protein tyrosine phosphatase YwIE
(PDB ID: 1ZGQG), a flagellar capping protein (PDB ID:
5FHY), and the E. coli MCE protein MlaD (PDB ID:
5UW?2). Positionally conserved couplings and predicted
protein torsion angle (¢, ) constraints for each pro-
tein were used for analysis [46]. We present an iterative
framework (Fig. 7) to fold a protein using statistical poten-
tials [28] and coevolution constraints derived from its
sequence alignment (as described above). The iterative
prediction uses a Markov Chain Monte Carlo protocol
(Additional file 1: Figure S4 and Method) and includes
multiple rounds in which the predicted constraints (e.g.
torsion angles, residue-contacts) can be collected from the
previous round to guide and bias the prediction.

As each potential confirmation of a protein is drawn
from the same Ramachandran map distribution accord-
ing to the given amino acid sequence, the conformations
generated by the Markov Chain Monte Carlo method
are partially correlated with each other. In each folding
simulation, starting from a query sequence, we gener-
ated five hundred initial conformations to trigger struc-
ture predictions by iteratively biasing the prediction from
constraints. For example, Sibe was used to iteratively pre-
dict the tertiary structure of the YWIE protein using the
constraints of residue-contacts inferred from its MSA
and predicted torsion angles (which are used to increase
probabilities of on the Ramachandran map distribution)
predicted by Phsior [46]. After 500 simulations were con-
verged, we chose the one hundred predicted structures
with the lowest energy (20% of all structures) and cal-
culated the averaged residue-contacts (for spatial inter-
actions among residues) and torsion angles (defined as
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the square ranges for each pair of ¢ and v located
in [¢i - ¢fmd]2 + [1// -y red]z =[25°%) (see also
Additional file 1: Methods).

We then compared the predicted models for the target
proteins in comparison to the crystal structures (shown in
Fig. 8) and we compared the predictions of Sibe to those
of the EVfold-server [9] (Additional file 1: Table S2 and
Figure S5). The predicted results of protein tertiary struc-
tures are close to the actual crystal structures and thus
show the capability of Sibe’s protein structure prediction
module. As a de novo predictor, Sibe has better perfor-
mance in folding proteins of more than 100 amino acids in
CPU hours (as illustrated in Additional file 1: Figure S6).

Discussion

Since the introduction of statistical analyses of proteins to
the biophysics community, improvements of algorithms
for inferring couplings between pairwise residues has
been the focus of intense study. Although the practical
implementation of these algorithms has produced several
historic packages that were strongly tied to the best prac-
tices in basic research on protein sequence analysis and
folding, software rewrites have been common due to the
fast-moving pace of experimental research.

The success of such statistical software depends in
part on the method for deriving positionally conserved
couplings to detect amino acid variations, and the easy
interface modules presented in Sibe lay the ground-
work for drawing interpretable conclusions from protein
sequence data about its folding for and design studies
in silico. Due to rapid advances in the software suite

Centroid

Unfolded
(extended)

Unfolded Structure

constraints to iteratively predict the tertiary structures of targets

Centroid

redicted

Folded Structure

Fig. 7 Iterative structure prediction guided by coevolution. Starting from unfolded (extended) structure, Sibe incorporates residue-contacts derived
from coupling analysis on the MSA and averaged residue-contacts from predicted structures (previous round) with lower energy (best 20%) as
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2.18A

Fig. 8 Comparison of models predicted by Sibe (green) to the crystal structures (red). The models accurately recapitulate the structural details of the
named proteins. The root-mean-square deviation (RMSD) of each protein was computed by PyMOL software [47] as shown, and the TM-scores are
as follows: a YWIE (PDB ID: 1ZGG, RMSD 2.18A, TM-score 0.76), b the flagellar capping protein (PDB ID: 5FHY, RMSD 3.1 6A, TM-score 0.64), ¢ the E. coli
MCE protein MIaD (free modeling target in CASP12, PDB ID: 5UW2, RMSD 1.50A, TM-score 0.80)

B Native
B Predicted

1.50A

Sibe, a variety of functional modules are available to
researchers for analyzing protein sequences, protein fold-
ing, and design in silico. In the second example presented
in this paper, we demonstrate how Sibe’s implementa-
tion of an iteratively biasing conformation search can be
used to predict the tertiary structures of proteins from
their amino acid sequences based on statistical poten-
tials of protein sequences and structures. Due to the
limited diversity in the MSA of a given protein family,
Sibe is imperfect in capturing significant co-variants as
coevolutionary constraints for protein design and struc-
ture prediction. Accordingly, the remaining challenges are
how to enrich the diversity of information in the MSAs
and how to efficiently detect important coevolutionary
couplings between pairwise amino acids and distinguish
those couplings from biases that arise within protein
families of lower diversity. Future work may focus on
addressing those issues by the extension and improvement
of Sibe.

Conclusions

We report here that a software suite (Sibe) provides an
analytical and computational tool for protein sequence
data analysis, in silico protein folding and design. All mod-
ules in Sibe are implemented in the C++ programming
language, and Sibe employs extensible application pro-
gramming interfaces (APIs) in both C++ and/or Python,
which allows rapid analysis of large amounts of protein
sequence data for boosting abilities in protein design
and folding predictions. Through two instructive appli-
cations, we have demonstrated the capabilities of Sibe
in extracting meaningful information hidden behind "big
data’ to infer coevolutionary information encoded in
amino acid sequences of proteins. In the first example, we
applied Sibe to analyze protein sequences for studying the

relationships between protein sequence and thermosta-
bility, with potential applications in rational design of
proteins. We highlight the statistical potential of position-
ally conserved couplings (PCCs) among residues that are
accelerated by graphics processing unit (GPU) computing.
In the second application, we demonstrate how Sibe can
simulate protein folding using PCCs as a driver and biases
that are predicted by machine learning. We account for
the overwhelming nature of simulating protein folding by
iteratively fixing the residue-contacts and constraints of
torsion angles.

Generally, Sibe’s power and simple architecture are
dependent on expressive and functional modules, which
focus on extending methods specifically designed for sci-
entific applications. Understanding the coevolutionary
process from metagenome sequence data provides ther-
modynamic insights into a protein’s evolution, which can
aid in the design of more efficient proteins. We hope that
the methodology of protein design will have future appli-
cations in chemistry, bioremediation, drug design, and
drug discovery.
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