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Artificial Intelligence (AI) has recently altered the landscape of cancer research and medical oncology
using traditional Machine Learning (ML) algorithms and cutting-edge Deep Learning (DL) architectures.
In this review article we focus on the ML aspect of AI applications in cancer research and present the most
indicative studies with respect to the ML algorithms and data used. The PubMed and dblp databases were
considered to obtain the most relevant research works of the last five years. Based on a comparison of the
proposed studies and their research clinical outcomes concerning the medical ML application in cancer
research, three main clinical scenarios were identified. We give an overview of the well-known DL and
Reinforcement Learning (RL) methodologies, as well as their application in clinical practice, and we
briefly discuss Systems Biology in cancer research. We also provide a thorough examination of the clinical
scenarios with respect to disease diagnosis, patient classification and cancer prognosis and survival. The
most relevant studies identified in the preceding year are presented along with their primary findings.
Furthermore, we examine the effective implementation and the main points that need to be addressed
in the direction of robustness, explainability and transparency of predictive models. Finally, we summa-
rize the most recent advances in the field of AI/ML applications in cancer research and medical oncology,
as well as some of the challenges and open issues that need to be addressed before data-driven models
can be implemented in healthcare systems to assist physicians in their daily practice.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Artificial Intelligence (AI) has recently made eminent progress
in many areas, including medicine and biomedical research. AI, a
branch of computer science, encompasses mathematical methods
that enable the decision making or action, the rational and auton-
omous reasoning, and the effective adaptation to complex and
unseen situations [1]. AI systems regroup several different algo-
rithms originated from the subfield of Machine Learning (ML) to
advance the automation of human experts’ tasks leading to real
and tangible results in healthcare. Given the digital acquisition of
high-dimensional annotated medical data, the improvements in
ML methods, the open ML data science and the evolving computa-
tional power and storage services, we could anticipate the tremen-
dous progress of AI in the medical practice landscape [2,3].

Recently, the medical applications of AI have expanded to clin-
ical practice, translational medicine and the biomedical research of
various diseases, such as cancer [1,4]. Current AI systems, based
solely on ML methodologies, have been applied to different aspects
of clinical practice including: (i) the image-based computer-aided
detection and diagnosis within many medical specialties (i.e.
pathology, radiology, ophthalmology and dermatology), (ii) the
interpretation of genomic data for identifying genetic variants
based on high-throughput sequencing technologies, (iii) the pre-
diction of patients prognosis and monitoring, (iv) the discovery
of novel biomarkers through the integration of omics and pheno-
type data, (v) the detection of health status in terms of biological
signals collected from wearable devices, and finally (vi) the devel-
opment and application of autonomous robots in medical interven-
tions [1].

Using AI/ML technologies in precision oncology and integrating
them into clinical practice, however, raises technological chal-
lenges in model development [5,6]. Data curation and sanitization
reduce the bias in collection and management preventing subse-
quently errors during the training and testing phases. These chal-
lenges along with social, economic and legal aspects should be
considered before the deployment of AI/ML systems in medical
practice to empower clinicians for better prevention, diagnosis,
treatment and care in oncology. In addition, improving the perfor-
mance, reproducibility and reliability of the AI/ML models would
augment the work of clinicians by making better diagnostic deci-
sions and tailoring the medical treatment to the patient’s unique
phenotype.

AI today is dominated by ML techniques capable of extracting
patterns from large amounts of data as well as building reasoning
systems for patient risk stratification and better decision making.
For more accurate patient-level predictions and for modeling dis-
ease prognosis and risk prediction, data mining techniques and
adaptive ML algorithms have consistently outperformed tradi-
tional statistical approaches [7]. ML-based techniques have the
advantage of being able to automate the process of hypothesis for-
mulation and evaluation, while assigning parameter weights to
predictors based on correlates with the outcome prediction [6,8].
Despite this, the enormous promise of AI in cancer research should
be carefully addressed alongside answers to the challenges of
transparency and reproducibility [9–11]. To ensure the high poten-
tial of AI and ML in medicine and clinical trials, we need to adopt a
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framework for making the scientific research more transparent and
reproducible.

In cancer research and oncology, the successful application of
Deep Learning (DL) techniques has recently demonstrated funda-
mental improvements in image-based disease diagnosis and detec-
tion [12,13]. Generally, DL architectures correspond to artificial
neural networks of multiple non-linear layers. Over the last dec-
ade, a variety of DL designs have been developed based on the
input data types and the study aim (s). Concurrently, the evalua-
tion of the model’s performance has shown that DL application
on cancer prognosis outperforms other conventional ML tech-
niques [14]. DL frameworks have been also applied towards cancer
diagnosis, classification and treatment by exploiting genomic pro-
files and phenotype data [1,7,15].

In this review article, we focus on the ML aspect of AI-based
applications in cancer research and medical oncology and present
relevant studies that have been published the last five years
(2016–2020) concerning the development of robust ML models
towards patient diagnosis, classification and prognosis. The selec-
tion of the material was based on three clinical scenarios consider-
ing both the ML-based techniques and the heterogeneous data
sources that were employed. We provide the search criteria of
the literature review to obtain the most relevant studies, summa-
rize the successful clinical scenarios towards applying robust and
validated ML methods, discuss the state-of-the-art DL and Rein-
forcement Learning (RL) applications, present the impact of ML
models in terms of robustness and explainability, identify the
achievements and new challenges of ML-based systems in health-
care and discuss future research investigations along with the
unsolved problems of reproducibility and transparency with possi-
ble solutions in the field. Systems biology and network-centered
methods for computationally analyzing various sources of omics
data and better comprehending the complex structures of biologi-
cal processes and cellular components within cancer cells are also
explained.
2. Literature review

The PubMed biomedical repository [16] and the dblp computer
science bibliography [17] were selected to perform a literature
overview on ML-based studies in cancer towards disease diagnosis,
disease outcome prediction and patients’ classification. We
searched and selected original research journal papers excluding
reviews and technical reports between 2016 (January) and 2020
(December). In the PubMed’s advanced search option, we added
the query terms ‘‘Cancer AND machine learning”, ‘‘Cancer AND
artificial intelligence” and ‘‘Cancer AND deep learning”, separately,
in the title field and not in the abstract to obtain the relevant stud-
ies. The same strategy and keywords were followed and applied to
the dblp query search. According to our search results a total of 921
and 165 studies were found in PubMed and dblp databases, respec-
tively, for the three queries. Duplicate studies and review or tech-
nical reports within the search results were excluded. A total of
734 research studies were further compared to provide a compre-
hensive overview of the application of ML and DL techniques in
oncology research. We systematically reviewed the methods and
outcomes of these research works and compared them until we



Fig. 1. The results of our literature overview on cancer diagnosis, patients’ classification and prognosis. The upper part of the figure presents the literature search results per
category when considering each database. The bottom part of the figure depicts the timeline (last five years) results considering the total number of articles for the three
search queries.
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identified the main clinical scenarios where ML methods are
widely applied to enhance the automated decision support sys-
tems, the selection of appropriate treatments and the explanation
of clinical reasoning.

The Tables showing the total number of studies identified in the
preceding year for each search query in PubMed [16] and dblp [17]
are given as supplementary material (Tables I-III). In the current
work, we selected the most representative research from each clin-
ical setting and provided a quick review of their key findings. To
summarize the most current computational methods and clinical
investigations in connection to early disease diagnosis, prognosis,
and clinical outcome prediction for patient monitoring, we
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examined primarily preliminary studies published in the last year
in both archives.

In Fig. 1, we present the results of our literature overview on
cancer diagnosis, prognosis and patients’ risk stratification the last
five years on both databases. In Fig. 1 (upper part), a group-based
barplot illustrates the number of articles that were identified when
considering each search query in the databases. Fig. 1 (bottom
part) illustrates the timeline results for each database. The total
number of articles as regards to the total sum of the articles within
the three queries is depicted per year.

In the sections that follow we present briefly the popular and
rising techniques of DL and RL along with their successful
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application and impact in oncology research and clinical practice.
The clinical scenarios we have identified according to our literature
overview are clearly presented along with the relative publications
in the next sections. These clinical scenarios are among the most
successful domains of biomedical ML-based applications in medi-
cal oncology. We provide details on the facets of robustness and
explainability when ML-based models are employed in the health-
care systems. A summary and outlook presenting the recent
advances and new challenges for the application of ML models
for automated decision making in the clinical practice is also given
in the last section.

2.1. Deep learning in oncology research

The potential of AI/ML techniques in biomedicine and precision
oncology has become apparent with advances in new ML methods
for computer-aided diagnosis [7]. These new technologies have
been also integrated into the clinical practice for improving patient
outcomes and accelerating clinical decision making [14]. DL
approaches, a branch of ML, have recently showed great help to
physicians in medical oncology with the development of
medical-imaging diagnostic systems trying to improve disease
diagnosis and the early detection of tumors [18,19]. With the avail-
ability of huge amounts of data and the parallel and distributed ML
frameworks for their analysis, DL architectures have emerged and
are categorized into three groups: (i) the deep neural networks
(DNNs) [20–22], (ii) the convolutional neural networks (CNNs)
[23,24] and (iii) the recurrent neural networks (RNNs) [25,26] DL
architectures are essentially artificial neural networks with numer-
ous non-linear layers. The key distinguishing aspect of DL is that
the feature layers are learnt from data using a general-purpose
learning method rather than being created by the user.

ML can be roughly divided into three paradigms: (i) the super-
vised task that includes a label/class, (ii) the unsupervised task
where no label is provided and (iii) the last category of RL tech-
niques where an agent is trained to perform actions sequentially.
Supervised techniques are mainly applied in today’s use of ML in
automated patient-centered decision making with the decision
trees (DTs), support vector machines (SVMs) or linear regression
being the most common algorithms [27]. Based on the traditional
ML techniques the main descriptors or variables are used to train
a model and extract patterns and reasonable representations of
feature vectors relevant to the problem under study. Despite this,
the ability of conventional machine-learning approaches to ana-
lyze natural data in its raw form is limited. On the other hand,
nowadays, DL (i.e. the implementation of multi-layered neural net-
works) has gained a lot of attention for their potential to include
multiple levels of representation of features as part of the learning
process, increasing thereby the model’s performance, computa-
tional feasibility and scalability [28,29]. DL approaches can be
adapted to new representations of data allowing the different lay-
ers of features to be learned from more informative data using a
complex learning procedure. DL outperforms in tasks related to
perception problems (such as image analysis and sound recogni-
tion), while typical ML methods suffer from managing high dimen-
sional datasets.

In cancer research and medical oncology, several DL architec-
tures have been developed and applied for the classification and/
or detection of cancer types [30]. The evaluation of DL models’ per-
formances have shown that this type of techniques outperform
other conventional ML approaches. DL frameworks have been also
developed and further utilized for cancer diagnosis and classifica-
tion based on gene expression profiles [31–33]. Concerning cancer
prognosis and treatment, DL methods have been proposed to tackle
the problem of predicting the drug response in certain cancer types
[12].
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2.2. Reinforcement learning in oncology research

RL, a distinctive class of ML, has also found applications in can-
cer research and medical oncology towards finding the optimal
treatment policies and computer-aided disease diagnosis [34,35].
In an RL model, an agent (i.e. the physician) learns from the inter-
action with his/her environment to achieve a goal based on the
outcome that he/she wants to optimize (reward function). The
learning process of an agent in a typical RL cycle is a continuous
procedure. The interaction with the environment occurs at discrete
time points. Once an environment’s state is received the agent
selects a certain action to interact with it. The environment
responds then to the action and the reward that the agent will or
will not receive is finally determined [36].

The incorporation of DL and RL systems into clinical practice
with reference to available structured and unstructured biomedical
and clinical cancer data will improve our understanding of cancer
complexity and the role of risk factors and determinants in the
development of effective treatment protocols.

2.3. Systems biology in oncology research

Systems biology concerns the integration of different compo-
nents (i.e. genes, proteins and other cellular components) and
how they interact in a dynamic environment. To facilitate our
understanding on how cellular components function we need to
elucidate in an integrated way how the system is organized with
reference to dynamic networks of genes or proteins alongside their
interactions with each other [37]. The development of AI models
that predict the characteristics of large and interconnected net-
works found in living organisms would permit the thorough inves-
tigation of how signaling molecules produce functional cellular
responses. In systems biology, mathematical descriptions of the
processes during cancer progression and knowledge from network
analysis and ML theories are used to identify the components and
their interactions in a network-centered model and integrate them
into an interconnected biological pathway. To this end, molecular
or cellular associations and causal dependencies can be identified
[38–40].

The last decade, different omics platforms have provided large
cancer datasets concerning the biological and cellular processes
that can be studied at both the gene and protein levels. Applying
AI/ML tools on omics data, based on systems biology and
network-based theory, we may be able to expose the intricate
structure of biological processes, improving our understanding of
cancer onset and progression. Network theory and analysis in
oncology research could permit to decipher the organization of
biological signals within the cells in terms of nodes (e.g. genes or
proteins) and edges which represent the relationships among them
allowing to quantify the strength, type and direction of these inter-
actions based primarily on omics data. High-throughput technolo-
gies, such as DNA microarrays, facilitate the simultaneous
assessment of many gene expression levels as they vary over time.
The huge amount of available experimental data may be used to
obtain a better understanding of how genes interact with one
another, forming a network and allowing for integrative analysis
of biological systems [37,38].

In the following sections, we clearly provide the clinical scenar-
ios we found based on our literature review, along with the rele-
vant papers published in the field of cancer research and clinical
oncology.

2.4. Cancer detection and diagnosis

Arguably, automated cancer detection and diagnosis is one of
the most important and successful domains of biomedical ML
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applications. According to our search results in PubMed and dblp,
the last five years 192 research studies proposed ML-based pipeli-
nes based on conventional or state-of-the-art techniques to per-
form diagnostic tasks in common cancer types such as breast,
lung, colon and pancreatic cancers, among others. Most of the stud-
ies used imaging data acquired from computed tomography (CT),
magnetic resonance imaging (MRI), X-ray radiography and
positron-emission tomography (PET) to develop automated diag-
nostic models based mainly on DL architectures.

In this review article, we present the most recent and indicative
studies of the last year using either imaging or clinical, genomic
and other relevant medical data to develop ML-based models for
disease diagnosis and detection. A large proportion of this compre-
hensive list corresponds to studies that handle the specific clinical
scenario by utilizing solely imaging data as input to DL models
(Table I in the supplementary material).

To this direction, automatic disease diagnosis was studied in
terms of CNN models to early detect breast cancer by analyzing
histopathological images [41–49]. More specifically, Zheng et al.
[42] examined and proposed a CNN-based transfer learning
method to early detect breast cancer by efficiently segment the
ROIs. In comparison to other machine learning traditional
approaches, promising results were obtained with high levels of
accuracy (i.e. 97.2%) and a fair balance between sensitivity and
specificity metrics (i.e. 98.3%, and 96.5%, respectively). Similar
approaches were proposed by Benhammou et al. [43], Sha et al.
[44], Kumar et al. [45], Krithiga et al. [46], Hameed et al. [47],
and Li et al. [48] towards assessing the diagnostic capability of
deep CNN architectures by analyzing imaging slides. Based on
the models’ preprocessing, training, and evaluation procedures,
favorable results were suggested with an average percentage of
accuracy equal to 90.0%, demonstrating the authors’ contribution
in assisting clinicians to their diagnostic processes. DL frame-
works were also designed and developed in [50–54] based on
the CNN architecture for the analysis of CT and dermoscopy
images in liver and skin cancer, respectively. In the study of
Das et al. [53] the Gaussian mixture model (GMM) algorithm
was primarily used to effectively segment the lesions and deep
neural networks were then employed for the automated diagnos-
tic task. Furthermore, in [54] feature selection and optimization
was performed to identify the most important determinants of
skin cancer detection while deep CNN was employed for mela-
noma detection. Promising results were obtained by the studies
with high performance in terms of classification accuracy
(i.e. � 90.0%).

Conventional ML algorithms, such as DTs, Random Forests
(RFs), Naïve Bayes (NB), k Nearest Neighbor (kNN), Artificial Neu-
ral Networks (ANNs), Gradient Boosting Machines (GBMs) and
SVMs were also applied the last year in medical oncology for
the automated detection and diagnosis of cancer. Indicative works
include the studies of [55–62] where positive results were
obtained by employing traditional ML techniques for the analysis
of clinical, laboratory, genomic and epidemiological data to effec-
tively diagnose prostate, lung, colorectal, breast and gastric can-
cers. In a separate work [63], supervised and unsupervised
techniques were applied to transcriptomic data for the identifica-
tion of potential candidate biomarkers (i.e. genes) with reference
to pancreatic cancer onset. Preprocessing steps based on certain
bioinformatics workflows were applied to detect the novel gene
set that contributes to the extension of prostate cancer to adja-
cent lymph nodes with Area Under the ROC Curve (AUC) higher
than 0.90.

The total number of published studies identified in the previous
year based on our literature search results for cancer prognosis and
survival prediction is shown in Table II in the supplementary
material.
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2.5. Cancer patient classification

In medical oncology and cancer research the classification task
of disease prediction has been studied thoroughly based on well-
established ML algorithms for handling binary or multi-class learn-
ing problems. Patient classification into predefined groups would
enable the development of ML-based predictive models able to
assess risk stratification with generalizable performance. In this
regard, numerous research papers were released last year that pre-
dicted the identification of key variables for cancer classification
using traditional algorithms and DL methods. Most of the studies
utilized DL architectures for the analysis of imaging and genomic
data with respect to risk prediction and stratification. Indicatively,
in [64–69] DL models were trained to classify and detect disease
subtypes based on images and genetic data. These data-driven
approaches demonstrated the superiority of ML-based frameworks
towards exploiting heterogeneous datasets with respect to
improved diagnosis and treatment.

Recently, a very interesting study was proposed by Li et al. [70]
with regards to the assessment of pan-cancer Ras pathway activa-
tion and the identification of hidden key players during disease
progression. RNA sequencing, copy number and mutation data
were integrated in the DL model to provide insights into the path-
way activity. The proposed model achieved superior performance
in comparison to relevant studies concerning the classification of
abnormal activity of the Ras pathway in tumor samples (i.e.
AUC > 0.90) In an alternative study, a colorectal cancer (CRC)
cohort [71] was analyzed based on whole-genome sequencing
experiments of DNA samples to obtain an ML model with accurate
generalization performance towards the early detection of the dis-
ease. A comprehensive ML-based pipeline was proposed to investi-
gate the genomic profiles and cancer status and further identify the
highly ranked covariates that discriminate control cases and early-
stage CRC patients. According to the performance results a mean
AUC of 0.92 with a mean sensitivity of 85.0% at 85.0% specificity
were achieved.

Furthermore, well-known adaptive ML algorithms have been
used widely in the literature for cancer classification by integrating
different types of data [72–76]. Song et al. [77] proposed a predic-
tive model for long-term prognosis of bladder cancer based on the
learning ability of ML algorithms. The validated classification
model was developed by utilizing clinical and molecular features
able to distinguish cancerous from non-cancerous samples. Posi-
tive results were obtained in terms of classification performance
with AUC higher than 0.70. Recently, similar works were published
[60,78–81] aiming at applying data-driven methodologies to clas-
sify cancer data for prediction purposes. These studies correspond
to ML-based models that improve the decision making process of
physicians during patient monitoring and follow-up. Due to the
availability of large amounts of heterogeneous data types in cancer
research these studies utilized cancer data coming from patient
registries, electronic health records, demographics, sequencing
and imaging technologies.

Two distinct research studies [82,83] were published currently
which use CT data integrated with radiomics features to classify
cancer cases for improved prediction of lung cancer and in pul-
monary lesions, respectively. The combination of radiomic features
with clinical information in terms of ML algorithms empowered
the extraction of potential patient characteristics that need to be
considered thoroughly for disease screening. The performance
metrics of the proposed ML-based methods were high with classi-
fication accuracy and AUC higher than 77.0% and 0.80, respectively.

The total number of studies identified in the previous year
based on our indicative literature search results for cancer progno-
sis and survival prediction is shown in Table III in the supplemen-
tary material.
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2.6. Cancer prognosis and survival prediction

This is another important aspect of cancer research where AI is
expected to provide significant insight in the management of
patients diagnosed with cancer. Specifically, in this category we
have gathered studies aiming to assess the prognosis of patients,
i.e. predict approximate survival based on a set of features (clinical,
imaging, genomic), evaluate response to treatment and conse-
quently patient prognosis. Due to the volume of data and its com-
plexity, such analyses would be inevitable without the
employment of ML algorithms and especially DL techniques.
Specifically, during the last year only, approximately 200 studies
were published aiming to assess cancer prognosis. Among them,
the considerable majority utilized DL techniques, whereas only a
small percentage used traditional ML algorithms.

Same as in the previous scenarios as well, and in accordance
with the cancer research overall, certain organ cancers are pre-
dominantly studied, such as breast, lung, prostate and colorectal.
The types of data used vary across the studies, however, we
observe propensity towards specific sources of data for each cancer
type. Specifically, pathology data are used in prostate cancer,
breast and colorectal cancer research utilize genomic data, and
lung cancer is largely dependent on imaging data, especially CT
scans. Despite those slight propensities per cancer type, we
observe that all ML techniques, and especially DL techniques, are
primarily used for the analysis of imaging data, indifferent to the
type of imaging modality employed.

An interesting approach was recently proposed by [84] where
an automated deep learning system was trained to grade prostate
biopsies following the Gleason grading system. Similar approaches
have been presented in the literature for assessing prostate cancer
prognosis [85,86]. In the same manner, a DL approach is proposed
in [87] to discern between benign and malignant lesions of the
skin, resulting in an overall AUC = 0.91. Another commonly used
purpose of ML for cancer prognosis, is the assessment of approxi-
mate survival of the patient based on a set of features, from the
baseline; encompassing information from subsequent follow-up
visits achieves higher accuracy. Such studies have been presented
in the literature for several types of cancer, e.g. lung cancer [88],
breast cancer [89], bladder cancer [90], etc. For a similar end pur-
pose, ML algorithms have also been used for predicting response to
treatment and consequently assessing the patient’s overall progno-
sis and survival [91].

The total number of relevant studies identified in the preceding
year based on our literature search results for cancer prognosis and
survival prediction is shown in Tables I-III in the supplementary
material.

2.7. Robustness and explainability of AI/ML models

The recent advances in AI/ML raised the issue of vulnerabilities
that affect the predictive models and strongly impact their robust-
ness. To this direction, a set of principles for trustworthy and
secure use of ML techniques in the digital society have been drawn
to augment innovation while protecting fundamental human
rights [92]. Although ML techniques could extract complex pat-
terns and correlations from large datasets, there is a severe lack
of understanding considering the causal relationships and the
explicit rules [93].

To ensure the right deployment of ML models in the clinical
practice in accordance with a sound regulatory framework, three
main topics need to be highlighted and addressed. Firstly, the
transparency of the models, which relates to the technical require-
ments and the data used, should be achieved. To obtain a complete
view of a ML model the levels of implementation (i.e. technical
principles), specifications (i.e. details about the training and testing
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phase) and interpretability (understanding model’s reasoning)
must be fulfilled. The second topic concerns the reliability of the
models along with the technical solutions that need to be clarified
and adopted to prevent failures of autonomous systems in specific
conditions. To assess the reliability of a model its performance and
vulnerabilities need to be evaluated. Poor performance and exis-
tence of malfunctions indicate that a learned ML model is not reli-
able. Hence, the approaches of: (i) data sanitization, (ii) robust
learning and (iii) extensive testing have been proposed to increase
the reliability of ML models. The protection of sensitive data in ML
systems is the third point that needs to be encountered for ensur-
ing a good regulatory framework towards building and making use
of automated systems. The implementation of data protection
principles will guarantee the compliance to the privacy and data
protection laws. Nevertheless [94], the use of anonymization and
pseudonymization techniques on sensitive data in accordance with
the General Data Protection Regulation (GDPR) in Europe [95] and
the guidelines on how the information may be used or shared in
accordance with the Health Insurance Portability and Accountabil-
ity Act (HIPPA) in the United States [96] may increase model’s
complexity and impact its explainability.

Understanding the mechanisms and reasoning of a ML system
in the digital society could guarantee its reliability. Introducing
standardized approaches to assess the robustness of predictive
models with respect to the data used for training, promoting mod-
el’s transparency through explainability-by-design principle for
ML-based systems and designing methodologies to address vulner-
abilities ensuring thereby the reliability will promote an effective
and secure use of AI/ML systems. Furthermore, the successful
establishment of good practices towards the right development
and deployment of automated ML-based systems will ensure a reg-
ulatory framework for strengthening the trust in AI/ML systems.

Explainable AI (XAI) provides a framework to facilitate the
understanding why an AI system or ML model have produced a
given result. Interpreting the output of a model and giving the
explanations at the local and global levels would benefit the
improvement of clinical decision support systems. Model-specific
and model-agnostic analysis could be implemented for black-box
models’ explanations (such as SVM models) increasing thereby
their trustworthiness and transparency in clinical trials [97].
Model-specific explanations are common but not well-adapted
for two models with different structures. Once a new architecture
for a predictive model is obtained a new method for model explo-
ration and diagnostics should be searched. On the contrary, model-
agnostic techniques could enhance models’ exploratory analysis
with instance-level exploration methods for better understanding
on how a model yields a prediction for a particular single observa-
tion. Apart from instance-level explanations, dataset-level-
explainers for ML-based predictive models help to understand
how the model’s predictions perform for the entire dataset and
not for a certain observation [97]. Concerning the explanations of
network-based models and tree-based classifiers (e.g. DTs and
RFs), XAI techniques related to local and global explanations could
benefit more the output interpretation concerning their less com-
plex structure and hyper-parameters tuning. Although, DL tech-
niques have been proved very efficient and effective regarding
their performance, explanations on how a DL model has produced
a result should be based on more comprehensive techniques with
reference to model-specific and model-agnostic analysis.

2.8. Summary and outlook

In the previous review article [98], we provided a comprehen-
sive overview of ML applications for cancer prognosis and predic-
tion by explaining the main aspects of ML and their clinical
implications. On this basis, we analyzed the most representative



Fig. 2. The most widely researched study topics in cancer biology, where ML-based techniques are frequently used. The six major features are illustrated, as well as the major
biological issues they may address. CNVs: Copy Number Variations, DNA: Deoxyribonucleic acid, RNA: Ribonucleic acid, miRNAs: microRNAs
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studies published between 2010 and 2015 which used traditional
ML approaches to predict cancer susceptibility, recurrence, and
survivability in cancer patients. In this work, we conduct a thor-
ough and complementary literature search on the application of
ML-based models in cancer research and oncology the last five
years (2015–2020). According to our search results in both the
PubMed [16] and dblp [17] databases, a comprehensive list of pub-
lications was obtained. In comparison to our previous review arti-
cle, three different clinical scenarios were identified according to
their clinical outcomes regarding disease diagnosis, patient classi-
fication and prognosis. To highlight the most recent achievements
in the subject, we included the most representative studies from
the previous year in each category. Furthermore, we investigated
the contrasts between recent research works in terms of data used
and cutting-edge ML approaches for addressing each clinical situ-
ation in the data-driven era of precision oncology.

AI and ML approaches may be utilized to explore many aspects
of cancer biology and extract new insights given that any disrup-
tion to the genetic material causes the beginning and development
of carcinogenesis. Apparently, a massive quantity of genetic infor-
mation on neoplasia has now been gathered, and it is rapidly
increasing. This knowledge has significantly aided two key goals
in cancer research: (i) a better understanding of the processes
and mechanisms of oncogenesis, and (ii) their direct use in clinical
practice as markers of diagnosis, prognosis, prevention, and cancer
treatment. Fig. 2 depicts the major subject themes in cancer biol-
ogy that have been extensively explored in terms of ML applica-
tions during the last decade. We classified the main topics
according to the well-established research domains in oncology
research and provide indicative paradigms where ML-based meth-
ods can be employed.

The last decade, AI and its technologies has made tremendous
progress helping clinicians to automate tasks, detect the disease
earlier while obtaining more real and tangible results for tailoring
treatments. In comparison to the traditional statistical approaches,
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ML-based techniques have the inherent ability to identify patterns
from high-dimensional datasets while automating the decision-
making process by developing reasoning systems for disease early
diagnosis, prognosis and risk stratification.

In the light of the recent advances in DL and RL methods for
building ML-oriented systems we herein discuss their main charac-
teristics alongside their major applications in the field of cancer
research. Regarding the robustness and explainability of AI/ML sys-
tems we provide a brief overview of the standard points that need
to be addressed when building ML models towards establishing a
trustworthy regulatory framework while ensuring reliability, data
protection and transparency as well as understanding of models.

ML methodologies have raised concerns in automated decision
making tools and personal data regarding the lack of reasoning and
explicit rules in black-box models. Hence, technical solutions need
to be adopted for the design of standardized principles to increase
the robustness and explainability of AI/ML systems as well as face
the challenges of transparency and reproducibility of AI-based
solutions. Transparency and reproducibility in AI are paramount
for prospectively validate and implement in clinical practice such
technologies and models [9,10]. Several frameworks and repro-
ducible research practices have been implemented to ensure that
the methods and code underpinning a research publication are
adequately documented. Transparency is handled in terms of com-
mon code, software dependencies, and parameters required to
train a model, allowing thereby the research study to be repro-
ducible [99,100]. Practical and pragmatic recommendations for
the effective documentation of research experiments and results
have been proposed in the scientific community towards repro-
ducible research and open science [100]. The degrees of repro-
ducibility that are introduced concern the: (i) experiment
reproducible, (ii) data reproducible and (iii) method reproducible.
Different set of factors need to be documented within a publication
to validate and reproduce the research results. Encouraging the
research community to follow the best practices and recommenda-
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tions for (i) data in publications, (ii) source code implementing AI/
ML, (iii) AI methods and (iv) experiments described in scientific
publications would be the steppingstone to accelerate trans-
parency and reproducibility in the era of AI research. Several
research groups cited replicable and clinically validated results in
accordance with the oncology context, as well as transparency
and validity in AI/ML-based solutions, concerning the clinical sce-
narios we addressed in this study and the indicative publications
of 2020 described in each case [57,67,84].

Furthermore, transparent and reliable predictive models can
protect the sensitive data according to anonymization and
pseudonymization approaches that have been assessed by the
GDPR [94,95]. Nowadays, ML-based systems are not yet considered
reliable enough to avoid any malfunction without the human
supervision. Identifying the vulnerabilities of ML models would
foster the predictions of the given input and output in the learning
process of a predictive model enhancing its robustness. According
to the guidelines for the ethical development of ML-based systems
[101], an ethics by design approach has been proposed for trust-
worthy AI/ML for GDPR-compliant, ethical and robust systems.
Certain ethics and trustworthy aspects are outlined along with
possible tools to self-assess an automated decision support system
based on cutting-edge ML methodologies.

In addition to the standard technical solutions regarding the
trustworthiness of autonomous ML-based systems in clinical prac-
tice we should also take into consideration the FAIR (Findable,
Accessible, Interoperable and Reusable) data principles [102].
Thinking of the complex nature of cancer and the multistep pro-
cess of tumorigenesis, one can easily presume that not enough data
can be obtained from single centers regarding cancer research.
Tailoring treatments to patients according to their status at both
the phenotype and genotype levels would accelerate the auto-
mated decision process in disease management in the era of preci-
sion oncology. Moreover, the rise of omics data and their
integration in precision oncology will promote a global and inte-
grative analytical approach. Therefore, the adherence to the FAIR
(Findable, Accessible, Interoperable and Reusable) principles when
developing computational models leverages the adoption of data
quality guidelines, data integration procedures and GDPR-
compliance data sharing and access.

Dealing with multiple data modalities, i.e. multimodal frame-
works, when building a ML-based framework for cancer prediction
and classification, poses a new challenge in the field of cancer
research. The development of integrative predictive models by
combining the output from different algorithms is an innovation
but also a challenge for the interpretation and reliability of the
models implications in clinical practice.

To achieve our mission towards precision oncology and better
understand the complex mechanisms of cancer, intervention
actions should be designed by means of evidence-based decision
support tools to prevent what is preventable, optimise diagnostics
and treatment and support the quality of life of patients and care-
givers. Furthermore, considering the COVID-19 pandemic in the
last two years and the situation in the public healthcare systems,
we can admit that cancer patients faced a severe and anxious per-
iod of follow-up visits trying to avoid a possible COVID-19 diagno-
sis which resulted in reduced hospitalizations and procedures
[103,104]. As a result, we can foresee the influence of the COVID-
19 pandemic on cancer early detection, on top of worsening prog-
nosis and patient screening.
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