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Abstract

Motivation: Single-cell RNA sequencing (scRNA-seq) measures gene expression at the resolution

of individual cells. Massively multiplexed single-cell profiling has enabled large-scale transcription-

al analyses of thousands of cells in complex tissues. In most cases, the true identity of individual

cells is unknown and needs to be inferred from the transcriptomic data. Existing methods typically

cluster (group) cells based on similarities of their gene expression profiles and assign the same

identity to all cells within each cluster using the averaged expression levels. However, scRNA-seq

experiments typically produce low-coverage sequencing data for each cell, which hinders the clus-

tering process.

Results: We introduce scMatch, which directly annotates single cells by identifying their closest

match in large reference datasets. We used this strategy to annotate various single-cell datasets

and evaluated the impacts of sequencing depth, similarity metric and reference datasets. We found

that scMatch can rapidly and robustly annotate single cells with comparable accuracy to another

recent cell annotation tool (SingleR), but that it is quicker and can handle larger reference datasets.

We demonstrate how scMatch can handle large customized reference gene expression profiles

that combine data from multiple sources, thus empowering researchers to identify cell populations

in any complex tissue with the desired precision.

Availability and implementation: scMatch (Python code) and the FANTOM5 reference dataset are

freely available to the research community here https://github.com/forrest-lab/scMatch.

Contact: alistair.forrest@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Although the whole-transcriptome analysis of single cells has been

possible since 2009 (Tang et al., 2009) only recently has it become

broadly applied in the research community. This is due to the devel-

opment of new massively multiplexed single-cell RNA sequencing

(scRNA-seq) protocols (Han et al., 2018; Hashimshony et al., 2012;

Macosko et al., 2015; Picelli et al., 2013; Rosenberg et al., 2018)

and the broad availability of commercial platforms for generating

these libraries. Barcode-based tracking methods (molecular-, cellu-

lar- and plate-level tags) now allow us to profile gene expression in

thousands of cells. This advance in single cell profiling is enabling

characterization of the diverse cell types that make up various tissues

(Regev et al., 2018) and to study biological processes, such as cell

development (Bendall et al., 2014; Klein et al., 2015; Setty et al.,

2016; Trapnell et al., 2014), cell state transition (da Rocha et al.,

2018; Haghverdi et al., 2016; Shin et al., 2015; Treutlein et al.,

2014) and multi-cellular interactions (Tay et al., 2010; Thompson

et al., 2014; Wang et al., 2014).

For the majority of these new studies, high cell count, low-

sequencing depth strategies are being used; however, low-sequencing

depth scRNA-seq data typically only measures the expression of the

most highly expressed 500–2000 genes per cell (Macosko et al.,
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2015; Zheng et al. 2017). Additionally, cells have different RNA

complexities, e.g. embryonic stem cell transcriptomes are more com-

plex (expressing a broad range of genes) than fully differentiated

cells which have transcriptomes more skewed to high expression of

a smaller subset of genes. This translates to variable numbers of

genes detected per cell and consequently variable numbers of ‘drop-

outs’ (genes that are expressed but not detected) for different cell

lineages.

To date, most publications analysing scRNA-seq data start by

unsupervised clustering of the cells based on similarity between their

gene expression profiles (Kim et al., 2018; Svensson et al., 2017).

The aim of this is to subdivide the cells into separate clusters that

represent biologically meaningful sub-populations. Canonical mark-

er genes of known cell types enriched in each cluster are then used to

annotate the cluster (consequently all cells within the cluster are

given the same label). Despite this being the most common ap-

proach, a recent review of clustering algorithms applied to single

cell data (Freytag et al., 2018) found little degree of overlap between

clusters identified by different methods and their granularity. In part

due to the small and variable number of genes detected this results

in either under-clustering of the single-cell data or misassignment.

Problematically, in both cases, dissimilar cells are grouped together

(Freytag et al., 2018; Kim et al., 2018; Shirai et al., 2016).

Here, as an alternative to the cluster-then-annotate approach, we

directly annotate single cells without clustering using scMatch, a

Python programme that utilizes the similarity between single-cell

gene expression profiles and reference expression profiles to directly

annotate single cells in a scalable fashion. Basic steps of the annota-

tion pipeline are shown in Figure 1. The first step of the pipeline

involves calculating the similarity between gene expression meas-

ured in a single cell with reference gene expression profiles from a

public database, such as the FANTOM5 atlas [Functional

ANnoTation Of Mammalian genomes 5 (Arner et al., 2015; Forrest

et al., 2014; Lizio et al., 2017)]. In top-match mode, a cell is simply

annotated based on the best correlated sample within the reference

database (Fig. 1, Step 2A). Alternatively, ontology-mode uses sam-

ple ontology terms (such as the cell ontology; Diehl et al., 2016) to

group samples from the same cell type or lineage and then calculates

the average correlation (Fig. 1, Step 2B). The ontology term with the

highest average correlation is then used to annotate the cell. We

benchmark scMatch by evaluating its annotation recall using several

public single cell datasets where the identity of every single cell is al-

ready known. We show that the choice of correlation measure, the

sequencing depth, the cell types in question and the reference data-

base all have an impact on the annotation accuracy. Despite this,

scMatch performs well for a broad collection of cell types, and is ro-

bust to variations in sequencing depth.

2 Materials and methods

2.1 Count table down sampling
Existing down-sampling methods usually retain a random subset of

the reads in a SAM or BAM file. From the count table, all aligned

reads are known. To down-sample reads in a cell to a certain

amount, we first calculate the retain probability P by dividing the

target read count by the original read count. If the target read count

is not less than the original read count, then the retain probability is

100%. After gaining the retain probability, we use the P to get the

subset of detected reads in the cell. If the read count of a gene is C,

then we randomly draw one or zero C times, providing the probabil-

ity to draw one is P. The sum of the draw results is the down-

sampled read count of that gene. In this way, approximately P � ori-

ginal reads are retained. Since the down-sampling is a stochastic pro-

cess, the down-sampled count tables with the same retain probability

are not identical. We therefore, down-sample a count table ten times

and analyse all resulting tables to minimize the technical biases. The

annotation recall plotted in the down sampling analysis is the num-

ber of correctly annotated single cells in 10 down-sampled count

tables divided by the total number of single cells in these 10 tables.

2.2 Highly expressed and lineage-specific gene lists
Highly expressed and lineage-specific genes were extracted from

the FANTOM5 expression atlas. The 4129 highly expressed genes
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Fig. 1 Annotation of single cells using scMatch. scRNA-seq expression profiles are compared against a reference database. Matching samples from the reference

database are then ranked by highest to lowest similarity. In top-match mode the cell is annotated with the label of the reference sample with the highest similar-

ity. In ontology-mode, the cell ontology with highest average similarity is used to annotate the query cell. Shapes represent the features of a unique gene expres-

sion profile
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correspond to those detected in the FANTOM5 atlas with max-

imum expression �500 tags per million. The 272 lineage-specific

genes were manually curated by examining the expression profiles

of genes with maximum expression in the FANTOM5 atlas

above 100 tags per million (115 are expressed above 5000

Transcripts Per Million (TPM). Note, the default in scMatch is to

use all genes; however users are also able to provide custom gene

lists if desired.

2.3 Reference datasets used in scMatch and SingleR
Reference gene expression data were collected from FANTOM5,

SingleR’s Github repository (https://github.com/dviraran/SingleR)

and UCSC Xena Cancer browser (https://xenabrowser.net). For the

FANTOM5 data 916 human samples (660 primary cell samples and

256 cancer cell line samples were used) and 821 mouse samples (302

tissue samples, 471 primary cell samples and 48 cancer cell line sam-

ples) were prepared as high-quality reference datasets [low read

count, low-quality samples were excluded as were samples that

could not inform on cell type (e.g. lung, testis)]. Cell ontology terms

for the FANTOM5 samples were downloaded from the consortium

website and underwent further manual annotation. These are avail-

able here https://github.com/forrest-lab/scMatch/tree/master/refDB/

FANTOM5. 972 human samples and 1188 mouse samples in

SingleR’s reference dataset were extracted from R data files (https://

github.com/dviraran/SingleR/tree/master/data). Bulk tumour RNA-

seq data for 474 melanoma and 172 glioblastoma samples in The

Cancer Genome Atlas (TCGA) were downloaded from the UCSC

Xena Cancer browser. Note, we provide several of these reference

databases via GitHub but users are also able to use their own cus-

tom reference databases. The list of samples used in each analysis is

provided in Supplementary Table S9.

2.4 Single-cell datasets
Test scRNA-seq data were collected from NCBI GEO (Li et al. cell

line data GSE81861; Tirosh et al. melanoma data GSE72056, and

from the 10X Genomics website [peripheral blood mononuclear

cells (PBMCs), https://support.10xgenomics.com/single-cell-gene-ex

pression/datasets).

2.5 Single-cell data annotation using scMatch and

SingleR
The evaluation was conducted on a virtual machine equipped with

16 vCPUs and 48 GB of RAM. We ran scMatch using two correl-

ation measures (Pearson and Spearman coefficients) and three sub-

sets of genes (i) all genes in the FANTOM5 atlas (22 049 genes), (ii)

highly expressed genes (detected in the FANTOM5 atlas with max-

imum expression �500 tags per million, 4129 genes) and (iii) manu-

ally curated lineage-specific genes from the FANTOM5 atlas (272

genes). The top matched samples returned by scMatch were used to

evaluate the annotation recalls. SingleR (version 0.1.0) was run fol-

lowing the authors’ instructions and the fine-tuned results were used

to evaluate the annotation recalls.

2.6 Software implementation
scMatch is written in Python, it can load gene expression data in

CSV files or produced by 10X Genomics platform and then annotate

them in parallel using any reference datasets. The resulting outputs

are stored in Excel and CSV files.

Table 1. Annotation recalls of scMatch on four deeply profiled cell

lines

Remove zeros Keep zeros

Spearman

(%)

Pearson

(%)

Spearman

(%)

Pearson

(%)

A549 100.00 14.90 100.00 45.90

K562 95.90 1.40 100.00 20.50

GM12878 batch1 81.20 0.00 93.80 0.00

GM12878 batch2 100.00 50.00 100.00 57.30

H1 batch1 100.00 82.60 100.00 94.20

H1 batch2 100.00 84.40 100.00 96.90

Note: Spearman’s and Pearson’s correlation coefficients were calculated be-

tween individual cells from the Li et al. (2017) dataset and all FANTOM5

samples, using either all genes (keep zeros), or detected genes only (remove

zeros). An annotation was considered correct if the matching cell type in

FANTOM5 had the highest correlation. Annotation recall is calculated as the

number of cells that were correctly annotated by scMatch divided by the total

number of cells of that type in the Li et al. dataset. The number of single cells

for each cell line is: A549: 74 cells, K562: 73 cells, GM12878 batch1: 32 cells,

GM12878 batch12: 96 cells, H1 batch1: 69 cells and H1 batch2: 96 cells.

Batch1 and batch2 correspond to biological replicates.

Table 2. Annotation recalls of scMatch on four down-sampled cell

lines using Spearman’s correlation coefficient

Spearman

Remove zeros (%) Keep zeros (%)

A549 150 000 reads 99.20 100.00

100 000 reads 98.00 100.00

50 000 reads 94.60 100.00

10 000 reads 87.30 99.70

1000 reads 63.00 92.20

K562 150 000 reads 95.20 100.00

100 000 reads 92.90 100.00

50 000 reads 90.80 100.00

10 000 reads 85.10 99.50

1000 reads 14.50 94.80

GM12878 batch1 150 000 reads 80.30 90.00

100 000 reads 74.70 89.70

50 000 reads 66.90 90.00

10 000 reads 41.20 89.10

1000 reads 14.40 79.70

GM12878 batch2 150 000 reads 99.70 100.00

100 000 reads 99.60 100.00

50 000 reads 98.40 100.00

10 000 reads 92.80 100.00

1000 reads 46.10 96.60

H1 batch1 150 000 reads 98.30 100.00

100 000 reads 98.00 100.00

50 000 reads 97.40 100.00

10 000 reads 96.20 100.00

1000 reads 50.00 99.40

H1 batch2 150 000 reads 100.00 100.00

100 000 reads 100.00 100.00

50 000 reads 100.00 100.00

10 000 reads 99.60 100.00

1000 reads 59.30 99.10

Note: The recalls at depths varying from 1000 read up to 150 000 reads

calculated (i) only using detected genes or (ii) using all genes. Average recalls

of 10 random down-samplings are shown for each. Batch1 and batch2 corres-

pond to biological replicates. Annotation recall is calculated as in Table 1.
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3 Results

3.1 Evaluating annotation of high coverage scRNA-seq

data from cell lines by comparison to the FANTOM5 ref-

erence database
To explore methods for direct annotation of single cell expression

profiles using previously published bulk expression datasets as refer-

ence databases, we first attempted to annotate single cell expression

profiles of cell lines using the FANTOM5 expression atlas as a refer-

ence. Using single cell data generated by Li et al. (2017) (profiled

using the SMARTer Ultra-Low RNA Kit platform) we calculated

Spearman and Pearson correlations between single cell expression

profiles of four cell lines (A549, K562, GM12878, H1 Human em-

bryonic stem cells) and 1829 bulk expression profiles from the

FANTOM5 project (Lizio et al., 2017). We chose to focus on these

four cell lines as corresponding bulk expression profiles were avail-

able in the FANTOM5 atlas. We considered a single cell correctly

annotated if the best correlation corresponded to the matching cell

line in FANTOM5 (Table 1). Note for the human embryonic stem

cells we considered any match to any human embryonic stem cell

lines and human induced pluripotent stem cells in FANTOM5 as a

correct annotation. We also took advantage of biological replicates

of H1 and GM12878 cells provided in the Li et al. paper to examine

reproducibility.

From this comparison we found Spearman’s correlation coeffi-

cient outperformed Pearson’s correlation for all six libraries.

Specifically, the annotation recalls for A549, K562, GM12878

(Batch 2) and the two H1 human embryonic stem cell batches were

100%, while that for GM12878 (Batch 1) was 93.75% (30 cells out

of 32) (Table 1, Supplementary Table S1). We also carried out a par-

allel analysis where the correlations were only calculated using the

genes detected in each cell (i.e. genes detected in FANTOM5 but not

in the query cell were not used in the calculation of the correlation).

However using all genes and Spearman’s correlation coefficient pro-

vided the best recalls (Table 1).

3.2 Impact of sequencing depth on annotation recall
In the above analysis, the median number of reads per cell was 2

029 222. Our method achieved a high recall on this high sequencing

depth data; however, drop-seq-based experimental techniques typic-

ally sequence single cells at much lower depths. For example, 10�
genomics recommend 20–50 000 reads per cell and Pollen et al.

have reported that 50 000 reads per cell is sufficient to annotate cells

correctly using expressed canonical marker genes (Pollen et al.,

2014). We, therefore, down-sampled the Li et al. cell line data used

above to various fixed read depths per cell, to explore how the

sequencing depth affected the annotation (Section 2).

As expected, cells with more reads were more likely to be cor-

rectly classified than those down-sampled to lower read depths

(Table 2, Supplementary Fig. S1 and Supplementary Table S2). As in

Table 1, using all genes (rather than filtering out genes with zero val-

ues) yielded the highest recalls. This effect was more apparent at

lower reads depths, e.g. when GM12878 Batch 1 was down-

sampled to 1000 reads the recall using all genes was 79% but when

zeros were filtered out this dropped to 14%. Notably, when zeros

were kept, the other five libraries still had high recalls ranging from

92 to 99% at this lowest depth of 1000 reads per cell. In terms of

misclassifications, these typically were of closely related cells. For

example, single cells from Batch 1 of the lymphoblastoid B cell line

GM12878 were sometimes misannotated as primary B cells or other

B cell lines (Supplementary Table S3). Last, decreasing the sequenc-

ing depth affected recall of different cell types to different degrees

reflecting the different ranges of correlations observed for each cell

type and differences in the number of similar (but distinct) cell types

in the reference database. This has important implications for cell

classification. Both sequencing depth and the cell type considered af-

fect the classification performance.

3.3. Annotation of PBMCs profiled using the 10X

genomics platform
Next to evaluate scMatch on authentic low-depth data, we assessed

the performance of our method on a low-sequencing depth dataset

obtained from 10 bead purified sub-populations of PBMCs profiled

using the 10X genomics chromium 3’ assay (Zheng et al., 2017). In

this dataset, each cell was sequenced to a depth of �20 000 raw

reads which translates to medians of 525 genes and 1300 unique

molecular identifier counts per cell.

To determine whether the classification accuracy of scMatch

could be improved by using different subsets of genes, we compared

the annotations using correlations calculated using (i) All reference

genes (22 049 genes) to those obtained using either (ii) Highly

expressed genes (detected in the FANTOM5 atlas with maximum

expression � 500 tags per million, 4129 genes) or (iii) Manually

curated lineage-specific genes from the FANTOM5 atlas (272

genes). To score the annotation accuracy using each gene list we first

attempted to map the ten PBMC sub-populations studied in the ori-

ginal publication to their corresponding primary cell types in the

FANTOM5 reference dataset (445 primary cell samples,

Supplementary Table S9). For all except CD8þCD45RAþ Naı̈ve

cytotoxic T cells we were able to find a corresponding sample in

FANTOM5 (Supplementary Table S4).

For four of the nine PBMC sub-populations with matching sam-

ples in FANTOM5, cell annotation using Spearman’s correlation

coefficients yielded the best recalls; CD19þ B cells, CD8þ cytotoxic

T cells, CD14þ monocytes were best annotated using all genes,

while CD34þ haematopoietic stem cells were equally well anno-

tated using all genes or using only highly expressed genes (from

Table 3 and Supplementary Table S5). For the other five sub-

populations (T cell subsets and NK cells) Pearson’s correlation coef-

ficients, with various gene lists, yielded better recalls. In particular

CD4þ helper T cells, CD4þ/CD45RAþ/CD25� Naı̈ve T cells and

CD4þ/CD25þ Regulatory T cells had recalls above 50% using ei-

ther all genes or highly expressed genes. In contrast CD56þNK cells

and CD4þ/CD45ROþMemory T cells had poor recall regardless of

the correlation method or the gene sets used.

Next we evaluated the use of the ‘ontology-mode’ (using

Spearman’s correlations on all genes, Fig. 1) to annotate this dataset.

To do this we used the cell ontology (CL) annotations provided in

the FANTOM5 atlas. For each single cell, correlations against refer-

ence samples in FANTOM5 with the same cell ontology annotation

were averaged, and then cell ontology matches were sorted based on

the average correlation. The results for Spearman correlations are

summarized in Supplementary Table S6. As expected, for cell types

where we already had high recall their annotations did not dramatic-

ally change. For example, almost 100% of B-cells were annotated as

CL: 0000236: B cell, and 83% of CD34þ cells were annotated as

CL: 0000037: hematopoietic stem cell. However, for multiple cell

types the annotation recalls improved in ontology-mode. E.g.

CD14þ monocytes achieved a recall of 78.8% in top-match mode

but 94.3% were annotated as CL: 0002397: CD14-positive, CD16-

positive monocyte in ontology mode, similarly CD4þ/CD45ROþ
Memory T cells only achieved a recall of 5.4% in top-match mode,

but 45.9% were correctly annotated as CL: 0002678: memory
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regulatory T cell in ontology mode while the remainder mapped

to other CD4þ subsets (30% were annotated as CL: 0002677:

naive regulatory T cell and 21% as CL: 0000897: CD4-positive,

alpha-beta memory T cell) (Supplementary Table S6). We envisage

‘ontology-mode’ will be useful to give an indication of the cell

lineage when a cell type that is not in the reference database needs to

be annotated.

3.4 Performance of scMatch and SingleR using identical

reference databases
Recently Aran et al. (2019) presented an R package SingleR similar

in concept to scMatch. For human cell annotation, SingleR uses 259

bulk RNA-seq samples from the BLUEPRINT (Fernandez et al.,

2016) and ENCODE (Sloan et al., 2016) projects and 713 bulk

microarray samples from the Human Primary Cell Atlas (HPCA)

(Mabbott et al., 2013) as reference expression data. To compare the

performance of scMatch (Spearman’s correlation, all genes) to

SingleR we annotated all cells from the 10X PBMC dataset above

using both methods with either (i) BLUEPRINT þ ENCODE, (ii)

HPCA, (iii) BLUEPRINT þ ENCODE þ HPCA or (iv)

BLUEPRINT þ ENCODE þ HPCA þ FANTOM5 as reference

databases (see Table 4, Supplementary Table S6).

For the majority of cell types SingleR and scMatch had similar

accuracy; however, the relative accuracy of each depended greatly

on the reference database used (Table 4). For example, when using

the ENCODE þ BLUEPRINT RNA-seq data as reference, SingleR

outperformed scMatch in six out of eight comparisons. When using

HPCA as the reference SingleR had better recall twice, scMatch had

better recall three times and there were three ties (defined as <0.5%

difference). Notably no regulatory T cells were correctly annotated

when using the HPCA as reference. Last when using the combined

BLUEPRINTþENCODEþHPCA dataset as reference, scMatch out-

performed SingleR six times, SingleR outperformed scMatch twice,

and neither were able to correctly annotate the two Naı̈ve T cell

populations (these typically matched to bulk CD4 or CD8,

respectively).

To demonstrate scMatch’s usage on a large reference dataset, we

next merged BLUEPRINTþENCODEþHPCA and FANTOM5 into

a single reference dataset of 1417 samples and used it to annotate

Table 3. Annotation of 93 655 PBMC cells profiled on the 10X platform

Specific genes Highly expressed genes All genes

Pearson (%) Spearman (%) Pearson (%) Spearman (%) Pearson (%) Spearman (%)

CD4þ/CD25þ regulatory T cells 37.7 8.4 55.6 53.2 59.7 19.3

CD8þ cytotoxic T cells 30.7 37.5 2.0 76.4 2.0 98.3

CD19þ B cells 92.0 41.5 38.1 99.9 37.4 100.0

CD56þ NK cells 0.6 4.9 22.9 0.0 20.6 0.0

CD4þ helper T cells 55.5 68.1 98.2 30.0 98.4 5.8

CD14þ monocytes 10.7 78.8 28.0 42.9 27.5 78.8

CD34þ cells 0.8 4.4 56.3 83.0 36.0 82.8

CD4þ/CD45ROþ memory T cells 44.0 0.5 26.3 12.7 28.5 5.4

CD4þ/CD45RAþ/CD25� naive T cells 11.1 51.0 86.6 5.5 85.9 7.7

CD8þ/CD45RAþ naive cytotoxic T cells 29.7 35.8 0.0 86.5 0.0 99.1

Note: The relative recalls for PBMCs when annotated using scMatch with the FANTOM5 dataset as a reference. (i) Pearson’s correlation coefficient and (ii)

Spearman’s correlation. Accuracy calculated using different gene lists is shown [(i) All reference set genes (22 049 genes), (ii) Highly expressed genes (detected in

the FANTOM5 atlas with maximum expression �500 tags per million, 4129 genes) and (iii) Manually curated lineage-specific genes from the FANTOM5 atlas

(272 genes)]. Annotation recall is calculated as the number of cells that were correctly annotated by scMatch divided by the total number of cells of that type in

the Zheng et al. (2017) dataset.

Table 4. The recalls of annotating the PBMCs using scMatch and SingleR using ENCODE, BLUEPRINT and HPCA datasets

BLUEPRINTþENCODE HPCA BLUEPRINTþENCODE

þHPCA

BLUEPRINTþENCODE

þHPCAþFANTOM5

SingleR

(%)

scMatch

(%)

SingleR

(%)

scMatch

(%)

SingleR

(%)

scMatch

(%)

scMatch (%)

CD4þ/CD25þ Regulatory T cells 42.8 28.1 0.0 0.0 43.1 37.9 39.0

CD8þ Cytotoxic T cells 82.7 27.5 18.0 8.9 34.0 43.0 44.8

CD19þ B cells 99.9 66.5 100.0 99.9 90.5 99.0 99.2

CD56þ NK cells 99.2 95.8 95.1 93.3 95.0 98.4 98.5

CD4þ Helper T cells 94.5 86.4 99.5 99.5 93.5 98.2 97.9

CD14þMonocytes 98.1 95.5 83.2 95.6 96.4 97.6 97.7

CD34þ cells 84.6 88.2 80.4 85.3 88.5 85.7 85.3

CD4þ/CD45ROþMemory T cells 75.4 80.8 95.3 97.5 73.1 86.8 86.0

CD4þ/CD45RAþ/CD25� Naive T cells N/A N/A 85.3 85.3 0.0 0.0 0.0

CD8þ/CD45RAþ Naive Cytotoxic T cells N/A N/A 0.0 0.0 0.0 0.0 0.0

Note: Comparison of scMatch and SingleR using different reference datasets. Annotation recall is calculated as in Table 3. (i) We used SingleR in fine-tuning

mode, (ii) There are no matched reference samples in the BLUEPRINT þ ENCODE database for CD4þ/CD45RAþ/CD25� Naı̈ve T cells and CD8þ/CD45RAþ
Naı̈ve cytotoxic T cells.
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the PBMCs. For six of the cell types the annotations obtained by

scMatch using BLUEPRINTþENCODEþHPCAþFANTOM5 and

BLUEPRINTþENCODEþHPCA were comparable (<0.5% differ-

ence) however for the CD4þ/CD25þ Regulatory T cells and the

CD8þ Cytotoxic T cells there were increases in recall of 1.07 and

1.81%, respectively (Table 4). We also examined the impact of

increasing the number of reference samples on false positive rates

and found that the higher recalls observed with more reference sam-

ples were accompanied with high precision (Supplementary Table

S7). Thus incorporating more reference samples improved the per-

formance of scMatch.

In terms of run times. When we used BLUEPRINTþENCODEþ
HPCA as the reference dataset, on virtual machines with identical

resources (16 vCPUs and 48 GB of RAM), scMatch was able to use

up to 10 CPUs and took 40.5 h to annotate all 93 655 PBMCs while

SingleR was only able to utilize at most two CPUs and took 193 h.

This is largely because scMatch uses memory more efficiently.

This may also explain why we were unable to load the combined

BLUEPRINTþENCODEþHPCAþ FANTOM5 dataset into SingleR

to assess its performance.

3.5 Application of scMatch to cancer datasets
Previously, Tirosh et al. (2016) deeply sequenced 4645 single cells

from 19 human melanoma tumours of various clinical and thera-

peutic backgrounds and detected the identities of these cells through

flow cytometry, genetic and transcriptional profiles. Using scMatch

and Spearman correlations we next annotated this dataset by com-

parison against the 916 FANTOM5 primary cells and cell lines,

which include two melanoma cell lines (G-361 and COLO 679) and

primary melanocytes. As shown in Supplementary Table S8, 94% of

the cells (1187/1257) originally annotated as melanoma ‘malignant

cells’ were annotated as either melanoma cells (31%) or melano-

cytes (63%).

As a key step in single-cell analysis of tumour samples is the

classification of cells as tumour or normal cells, we next assessed

whether expansion of the reference database in scMatch by incorpo-

rating bulk RNA-seq datasets from TCGA) (Cancer Genome

Atlas Network, 2015) would improve the discrimination of melan-

oma cells from melanocytes. To do this we added 474 bulk melan-

oma profiles and 172 bulk glioblastoma profiles (as an unrelated

tumour type) to the FANTOM5 reference database (Supplementary

Table S9).

By adding these two bulk RNA-seq datasets and rerunning

scMatch against this extended reference dataset, the majority of mel-

anoma cells were now correctly annotated as melanoma (83.29%,

1047 cells out of 1257). We note only three cells in the dataset were

now misannotated as glioblastoma (Supplementary Table S8).

Additionally, three B cells and 36 T cells were now annotated as

melanoma. Examining the scMatch results for these lymphocytes

revealed they most closely matched melanoma lymph node metasta-

ses which are likely to contain large fractions of lymphocytes.

Last, we investigated the expression of melanocytic markers in

cells that were annotated as ‘malignant cells’, ‘non-malignant cells’

or ‘unresolved’ (based on Tirosh et al.’s inferred Copy Number

Variation (CNV) and marker gene analyses from the original publi-

cation) and compared these to ‘melanoma’, ‘melanocyte’ and ‘other

cell type’ annotations provided by scMatch (Supplementary Fig. S2).

As expected, the majority of cells annotated by both Tirosh et al. as

‘malignant cells’ and by scMatch as melanocytic expressed high lev-

els of the melanocytic markers MITF, PMEL, MLANA and TYR.

Additionally 90 of the 132 cells labelled as ‘unresolved’ in the

original publication, and 86 of the 416 cells labelled as ‘non-malig-

nant cells’ were classified as melanoma cells or melanocytes by

scMatch, the majority of which expressed melanocytic markers.

Last, 14 cells classified as ‘malignant cells’ in the original publica-

tion were annotated as other cell types by scMatch. These are poten-

tially misannotations in the original publication as they do not

express TYR or MITF and only 1 expresses PMEL (Supplementary

Fig. S2), but we cannot rule out dropout or mutations in these cells

that inactivate these melanocytic markers. Together, this suggests

that scMatch will be useful for annotation of tumour cells within

single-cell datasets and that the power to correctly classify these cells

may be improved by selective leveraging of large bulk tumour data-

sets such as TCGA.

4 Discussion

scRNA-seq is a rapidly evolving and increasingly popular technique

for transcriptomic analysis of complex tissues. To reach its full po-

tential, a reliable approach for cell type classification is required.

Most contemporary approaches employ unsupervised clustering of

cell expression profiles, followed by manual annotation of each clus-

ter’s identity based on gene expression markers (Kim et al., 2018;

Svensson et al., 2017). However, the unsupervised clustering algo-

rithms are known to yield inconsistent results (Freytag et al., 2018).

Additionally, manual cluster annotation is subjective, non-scalable

and non-reproducible. To overcome these limitations, we developed

scMatch, a marker-free annotation programme for scRNA-seq data

based on a test-to-reference per cell comparison.

In development of scMatch, we first systematically compared the

accuracy of the cell annotations using different similarity measures

(Pearson’s versus Spearman’s correlation coefficients), different gene

lists (all genes, cell type-specific genes and highly expressed genes)

and with single-cell data at different sequencing depths. In most

cases, Spearman’s rank correlation and using all genes yielded higher

recall rates (Tables 1 and 3) and thus we recommend this option to

users, red however for flexibility, we provide the user the options of

using Pearson’s correlation and different user-defined sets of genes.

To assess the impact of sequencing depth on the annotation recall,

we performed cell type annotation of down-sampled human cell line

data. As might be expected, annotation recall rates decreased with

lower read depths; however, even when the depth was down-

sampled to as low as 1000 reads, the recall rates were still high at

79–99% making scMatch a useful tool for annotating low-depth

single-cell experiments (Table 2).

scMatch is not the first tool to compare single cells to reference

datasets. SingleR, recently introduced by Aran et al. uses a similar

approach; however, scMatch has some advantages over SingleR.

When using all genes (the best performing and recommended mode

for scMatch) no pre-processing of test and reference gene expression

data is required. It is also computationally more efficient as (i) the

reference dataset is held in a simpler data structure which requires

less memory and (ii) it does not incorporate a computationally

intensive fine-tuning step. In terms of accuracy, the results were

comparable between scMatch and SingleR (Table 4). However,

when using the combined reference dataset of BLUEPRINTþ
ENCODEþHPCA, scMatch had higher recall than SingleR for 6 out

of 10 PBMC cell types tested. A possible explanation as to why this

occurs may be because SingleR calculates correlations only using the

variable genes in the reference dataset. By combining samples from

multiple reference datasets the set of variable genes identified by

SingleR may change and thus affect the annotations. In contrast

scMatch uses all genes as default, thus adding extra samples will not
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affect the correlations of existing samples. Additionally, scMatch

offers ontology-mode which should be useful in cases where a

matching cell type is absent but knowing cell lineage is still inform-

ative. Last, scMatch reports the sample in the reference dataset with

the highest correlation, however these correlations vary with read

depth in each cell and cell type considered (Supplementary Fig. S1).

Currently we are unable to provide a meaningful confidence meas-

ure for annotations reported by scMatch. Cell types not present in

the reference dataset will still be annotated with their closest match

and closely related subtypes (e.g. T cells) may be difficult to

discriminate.

For these methods the reference dataset used has a large impact.

For example, when the FANTOM5 primary cell dataset was used as

a reference, natural killer cells were poorly annotated (Table 3),

however, when the HPCA and BLUEPRINTþENCODE were

added, the recall approached 99% (Table 4). This was also associ-

ated with high precision (Supplementary Table S7). Similarly when

we extended the reference dataset to include bulk tumour data from

the TCGA the annotation of melanoma cells improved

(Supplementary Fig. S2). We note however there are several consid-

erations in regards to the reference dataset, including (i) the relative

representation of each cell type, (ii) the desired granularity of cell

types represented, (iii) the quality of the reference samples and (iv)

the inclusion of reference datasets generated using different platform

technologies.

In principle, the addition of more reference samples for the same

cell type should provide a better representation of the diversity with-

in a cell type, but it also has the potential to increase the number of

cells hitting this cell type by chance. When annotating PBMCs using

the FANTOM5 references we saw no relationship between the

total number of matched reference samples and recall rates

(Supplementary Table S5). For example for CD4þ helper T cells,

there were 26 reference samples but only a recall rate of 5.75%

(Spearman all genes). In contrast, the CD34þ stem cells which only

had five reference samples had a recall of 82.83%. Importantly add-

ing a large number of reference samples corresponding to a cell type

absent from the test dataset (172 bulk glioblastoma RNA-seq sam-

ples) introduced very few mis-annotations with only 3 of the 4645

cells in the melanoma dataset, mis-annotated as glioblastoma. We

note, although CAGE, RNA-seq and microarrays have different dy-

namic ranges and biases, the inclusion of reference datasets meas-

ured on these different platforms improved the recall rates for both

the PBMCs and the melanoma dataset. We attribute this to the

meta-dataset containing a better coverage of cell states than any of

the single datasets alone. Thus for the novice user we recommend to

use all available relevant databases. Specifically, for normal tissues

and primary cells we recommend using all available primary cell

data, while for tumour samples inclusion of cell lines and bulk tu-

mour samples is recommended to identify tumour cells.

In conclusion, with the availability of large numbers of single

cell datasets over the coming years, driven by the Human Cell Atlas

(Regev et al., 2018) and others (Han et al., 2018; Tabula Muris

et al., 2018), scalable methods such as scMatch are needed for cell

classification. Conversely, the cell types identified and their expres-

sion profiles in these atlases can be fed in as reference datasets to im-

prove the annotation of future experiments.
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