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Abstract
Background: Gastrointestinal nematodes constitute a major cause of morbidity and mortality in
grazing ruminants. Individual animals or breeds, however, are known to differ in their resistance to
infection. Gene expression profiling allows us to examine large numbers of transcripts
simultaneously in order to identify those transcripts that contribute to an animal's susceptibility or
resistance.

Results: With the goal of identifying genes with a differential pattern of expression between sheep
genetically resistant and susceptible to gastrointestinal nematodes, a 20,000 spot ovine cDNA
microarray was constructed. This array was used to interrogate the expression of 9,238 known
genes in duodenum tissue of four resistant and four susceptible female lambs. Naïve animals were
used in order to look at genes that were differentially expressed in the absence of infection with
gastrointestinal nematodes. Forty one unique known genes were identified that were differentially
expressed between the resistant and susceptible animals. Northern blotting of a selection of the
genes confirmed differential expression. The differentially expressed genes had a variety of
functions, although many genes relating to the stress response and response to stimulus were more
highly expressed in the susceptible animals.

Conclusion: We have constructed the first reported ovine microarray and used this array to
examine gene expression in lambs genetically resistant and susceptible to gastrointestinal nematode
infection. This study indicates that susceptible animals appear to be generating a hyper-sensitive
immune response to non-nematode challenges. The gastrointestinal tract of susceptible animals is
therefore under stress and compromised even in the absence of gastrointestinal nematodes. These
factors may contribute to the genetic susceptibility of these animals.
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Background
Grazing ruminants are constantly exposed to natural chal-
lenge by gastrointestinal nematodes. Infection by such
parasites leads to clinical disease and production losses
and is a serious problem in animal husbandry. The eco-
nomically important gastrointestinal parasites of sheep
belong to the Order Strongylida and the family Trichos-
trongyloidea and include Teladorsagia (Ostertagia), Tri-
chostrongylus, Nematodirus and Haemonchus spp. The host
response to parasite challenge is complex and poorly
understood due to its polygenic nature. The response var-
ies from sheep breed to sheep breed and from animal to
animal [1]. The response can result in rapid or delayed
expulsion of parasites and the host response is critical for
determining subsequent parasite status [2]. Resistance to
nematodes is primarily due to acquired immunity and is
largely a Th2 type response [3-8] although innate immu-
nity is also thought to play a role [9]. Sheep lines which
have been selected to be resistant to one particular nema-
tode species have been shown to have increased resistance
to other nematode species [10-13] primarily due to a non-
specific mechanism of parasite expulsion [2]. Historically
anthelmintic drenching has been used to control nema-

tode infection, however, the efficacy of this treatment is
decreasing as parasite resistance to anthelmintics
increases and nematodes resistant to multiple classes of
anthlemintics are now found worldwide [14]. The use of
chemicals in food production is also increasingly encoun-
tering public hostility [15].

An alternative method of helminth control is vaccination
of host animals. This strategy has successfully combated
many bacterial and viral diseases, however, despite exten-
sive research there is currently no vaccine available against
the major gastrointestinal parasitic nematode species [15-
17]. This is most likely due to the number of nematode
species infecting the host and the complex parasite life
cycle which expresses different antigens at each stage.

A natural method of parasite control is breeding for host
resistance. Resistance to internal parasites, as measured by
faecal egg count (FEC), has moderate heritability (h2 =
0.23–0.41, [1]) and this method has been shown to make
significant genetic gains in a variety of sheep breeds [18-
24] due to the combination of reduced FEC and reduced
pasture contamination. The current method of animal
selection is cumbersome and inefficient, however, as ani-
mals are selected based on their phenotype. Genetic gain
could be accelerated if animals were selected on genotype
rather than phenotype.

Lines of Perendale sheep have been divergently selected
for parasite resistance and susceptibility at AgResearch,
New Zealand since 1986 and differ in FEC by 4.9 fold
[24]. The number of adult nematodes in the gastrointesti-
nal tract of animals from the resistant line is also lower
than that from the susceptible line [25]. Resistant animals
therefore have an increased genetic capability to respond
to and subsequently reject parasites when challenged. The
identification of genes involved in this process would
allow the development of genetic markers, which could
be used in marker assisted selection breeding programs. A
previous study identified genes differentially expressed
between the selection lines in response to parasite chal-
lenge, but the use of challenged animals confounded the
resistance status of the animals with level of infection.
This study also did not distinguish innate from acquired
immunity [25]. We therefore chose to look at those genes
that were differentially expressed between the selection
lines regardless of the level of infection by using naïve ani-
mals that had never been exposed to gastrointestinal nem-
atodes. We did this using high-throughput DNA
microarray technology. This allowed us to examine the
relative expression of thousands of genes in a single exper-
iment and to group genes into expression classes, provid-
ing insight into their biological function.

Differenced Normal Q-Q plot for the modified T value of the log ratio of the meanFigure 1
Differenced Normal Q-Q plot for the modified T 
value of the log ratio of the mean. The expected normal 
deviate (normal score) is plotted against the difference 
between the observed order statistic and the expected nor-
mal order statistic (95% confidence limits shown in red). 
Data is combined from all 16 slides of the experiment. ESTs 
more highly expressed in resistant animals are shown on the 
right while ESTs more highly expressed in susceptible animals 
are shown on the left.
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Results
The microarray experiment examined gene expression in
duodenum tissue from four resistant and four susceptible
naïve Perendale lambs. Poly(A)+ RNA isolated from duo-
denum tissue was reverse transcribed into cDNA, fluores-
cently labelled and hybridised to ovine 20 k cDNA
microarrays. The experiment design was a factorial dye
swap design involving 16 slides, where every animal was
compared to every animal in the opposite selection line,
as described previously [25]. One hundred ESTs showed
differential expression (Figure 1) between the resistant
and susceptible animals. Forty ESTs were more highly
expressed in the resistant line while 60 were more highly
expressed in the susceptible line. These ESTs were rese-
quenced in order to verify the insert sequence. Confirmed
ESTs were annotated using BLASTN against the human
RefSeq database and a cut-off E value of 1 × 10-18. Thirty
of the ESTs more highly expressed in susceptible animals
could be verified and annotated in this manner giving 25
unique human RefSeqs. Sixteen of the ESTs more highly
expressed in resistant animals could also be annotated.
The lists of differentially expressed human RefSeqs is
given in Tables 1 and 2.

Northern blotting was carried out to confirm differential
expression of a number of genes (Figure 2). TFF3 encodes
intestinal trefoil factor 3. This gene is a member of a fam-
ily of trefoil factors that is involved in mucosal mainte-
nance and repair and is known to be overexpressed during
inflammatory processes [26]. In accordance with the
microarray results, this gene had a 20% increase in expres-
sion in the duodenum of the susceptible animals com-
pared to the resistant (Figure 2A). While the degree of
upregulation was not marked it was still significant (P =
0.05).

Differential expression of the pancreatic secretory trypsin
inhibitor gene (SPINK1) was also confirmed. SPINK1
encodes a gene also known as TATI (tumour associated
trypsin inhibitor) that is expressed mainly in the pancreas
but is also expressed in the mucosa of the small intestine
[27]. One of the major roles of SPINK1 is thought to be
the prevention of premature activation of pancreatic pro-
teases. This has the effect of decreasing the rate of mucus
digestion by luminal proteases within the stomach and
colon. SPINK1 is also known to increase the proliferation
of a variety of cell lines and to stimulate cell migration,

Table 1: Genes more highly expressed in the duodenum of genetically susceptible animals compared to resistant

Human 
Refseq: 
Genbank 
accession 
number

Gene description Gene 
name

Ensembl 
human gene 
Cytogenetic 

band

Contig 
BLAST 
E value

Fold 
increase 

in 
expression

P value

NM_003226* Intestinal trefoil factor 3 TFF3 21q22.3 3 × 10-59 1.2 7.7 × 10-20

NM_006398* Ubiquitin D UBD 6p22.1 1 × 10-52 1.3 1.8 × 10-12

NM_003122* Serine protease inhibitor, Kazal type 1 SPINK1 5q32 2 × 10-58 1.3 5.5 × 10-10

NM_001009555 SH3 domain protein D19 EVE1 4q31.3 0 1.8 3 × 10-9

NM_004295 TNF receptor-associated factor 4 TRAF4 17q11.2 0 1.1 1.3 × 10-8

NM_022342 Kinesin family member 9 KIF9 3p21.31 0 1.4 1.8 × 10-7

NM_005646 TAR (HIV) RNA binding protein 1 TARBP1 1q42.2 0 1.2 2 × 10-7

NM_033503 Bcl2 modifying factor BMF 15q15.1 1 × 10-18 1.2 3.7 × 10-7

NM_003392 Wingless-type MMTV integration site family, member 5A WNT5A 3p14.3 6 × 10-58 1.2 4.1 × 10-7

NM_000179 MutS homologue 6 MSH6 2p16.3 0 1.2 8 × 10-7

NM_001655 Archain 1 ARCN1 11q23.3 0 1.2 1.4 × 10-6

NM_079423 Myosin light polypeptide 6 MYL6 12q13.2 0 1.1 1.9 × 10-6

NM_006184 Nucleobindin 1 NUCB1 19q13.33 0 1.1 3.4 × 10-6

NM_178156 Fucosyltransferase 8 FUT8 14q23.3 0 1.3 4.5 × 10-6

NM_005533 Interferon induced protein 35 IFI35 17q21.31 3 × 10-77 1.1 6.7 × 10-6

NM_000062 Serine (or cysteine) proteinase inhibitor, clade G SERPING1 11q12.1 2 × 10-50 1.2 9 × 10-6

NM_002133 Decycling heme oxygenase 1 HMOX1 22q12.3 0 1.1 1.1 × 10-5

NM_002816 Proteasome 26S subunit PSMD12 17q24.2 0 1.2 1.1 × 10-5

NM_002116 Major histocompatibility complex, class I, A HLA-A 6p21.33 8 × 10-35 1.1 1.2 × 10-5

NM_013442 Stomatin-like 2 STOML2 9p13.3 0 1.2 1.2 × 10-5

NM_201265 Bone marrow stromal cell-derived ubiquitin-like 7 BMSC-UbP 15q24.1 0 1.3 1.5 × 10-5

NM_016248 A kinase anchor protein 11 AKAP11 13q14.11 1 × 10-44 1.2 1.8 × 10-5

NM_006808 Sec61 beta subunit SEC61B 9q22.33 1 × 10-138 1.1 1.9 × 10-5

NM_032492 Jagunal homologue 1 JAGN1 3p25.3 1 × 10-180 1.1 2.8 × 10-5

NM_002083 Glutathione peroxidase 2 GPX2 14q23.3 0 1.2 3.3 × 10-5

* More than one EST corresponding to this gene was differentially expressed and their probabilities were combined.
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implying that it may be involved in the healing response
following injury [28]. When measured by Northern blot,
SPINK1 expression was increased two fold in the suscepti-
ble animals compared to the resistant animals (Figure 2B)
and this increased expression was highly significant (P =
0.005). In particular two of the resistant animals had very
low levels of SPINK1 expression although expression in
the other two resistant animals was still lower than expres-
sion in any of the susceptible animals.

Differential expression of the immunity associated
GTPase, GIMAP8, was also confirmed. This gene is a mem-
ber of a novel family of GTPases conserved among higher
plants and vertebrates [29]. Human GIMAP proteins are
known to be expressed most highly in the spleen and
lymph nodes, but expression has also been detected in the
digestive tract [30]. GIMAP proteins are thought to be
involved in the control of cell survival and response to
infection and GIMAP8 has been shown to have anti-apop-
totic functions. Expression of this gene is known to be
decreased in the spleen of mice infected with the proto-
zoan parasite Plasmodium chabaudi [29]. GIMAP8 was
expressed 2.6 fold more highly in the intestine of resistant
animals compared to susceptible (Figure 2C) as measured
by Northern blot. This differential expression is also
highly significant (P = 0.0018). It is notable that the fold
increase in expression of both GIMAP8 and SPINK1 is
markedly higher when quantitated by Northern blot
rather than when quantitated by microarray. Differential
transcript expression of GIMAP8 was also observed with
the four resistant animals predominantly expressing an
approximately 3,300 bp transcript, although a larger tran-

script of approximately 4,100 bp could still be detected. In
contrast three of the susceptible animals predominantly
expressed the larger transcript although the smaller tran-
script was detectable, while one susceptible animal
expressed the smaller transcript. The precise size of the
GIMAP8 transcript is unknown in sheep. Transcript vari-
ants of this gene, with sizes of 4,700 bp and 4,200 bp,
have been previously reported in human and transcript
variants of size 4,200 bp and 2,900 bp have been reported
in mouse [29,30].

Gene Ontology (GO) terms significantly associated with
the differentially expressed genes were found using
EASEonline [31] and are listed in Table 3. A number of
GO terms were significantly associated (P < 0.05) with the
genes more highly expressed in the intestine of susceptible
animals. These terms pertain to an organism's response to
stress and stimulus and imply that despite the absence of
nematodes from the environment of the susceptible ani-
mals, their gastrointestinal tract is still responding to
insults or injuries, possibly by other pathogens. The only
GO term significantly associated with genes more highly
expressed in resistant animals was "cellular process" indi-
cating that the intestine of these animals does not appear
to be under stress.

Promoter regions of the 16 genes more highly expressed
in resistant animals and the 25 genes more highly
expressed in susceptible animals were analysed for com-
mon cis-regulatory motifs. The analysis was performed
using the MEME motif prediction program [32]. Only two
motifs were significant and both were found in the pro-

Table 2: Genes more highly expressed in the duodenum of genetically resistant animals compared to susceptible

Human 
RefSeq: 
Genbank 
accession 
number

Gene description Gene 
name

Ensembl 
human gene 
cytogenetic 

band

Contig 
BLAST 
E value

Fold 
increase

 in 
expression

P value

NM_003789 TNFRSF1A-associated via death domain TRADD 16q22.1 1 × 10-136 1.3 2.9 × 10-8

NM_000988 Ribosomal protein L27 RPL27 17q21.31 4 × 10-98 1.2 5.9 × 10-7

NM_007209 Ribosomal protein L35 RPL35 9q33.3 1 × 10-141 1.2 2.4 × 10-6

NM_014716 Centaurin, beta 1 CENTB1 17p13.1 7 × 10-62 1.3 2.9 × 10-6

NM_000477 Albumin ALB 4q13.3 1 × 10-151 1.2 3.4 × 10-6

NM_175571 IMAP family member 8, GTPase GIMAP8 7q36.1 2 × 10-22 1.2 4.2 × 10-6

NM_006118 HS1 binding protein HAX1 1q21.3 0 1.2 4.6 × 10-6

NM_005801 Putative translation initiation factor SUI1 17q21.2 0 1.1 4.7 × 10-6

NM_182752 Family with sequence similarity 79, member A FAM79A 1p36.32 1 × 10-117 1.2 5.3 × 10-6

NM_006827 Transmembrane trafficking protein TMP21 14q24.3 4 × 10-19 1.1 7.7 × 10-6

NM_001107 Erythrocyte acylphosphatase 1 ACYP1 14q24.3 1 × 10-114 1.2 9.2 × 10-6

NM_000211 Integrin, beta 2 ITGB2 21q22.3 0 1.2 1 × 10-5

NM_000613 Hemopexin HPX 11p15.4 1 × 10-121 1.2 1.5 × 10-5

NM_145869 Annexin A11 ANXA11 10q22.3 1 × 10-122 1.2 2 × 10-5

NM_002872 Small GTP binding rho family protein RAC2 22q13.1 0 1.2 2 × 10-5

NM_033657 Death associated protein 3 DAP3 1q22 0 1.1 2.5 × 10-5
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moter regions of the genes more highly expressed in sus-
ceptible animals. The sequence logo for these motifs is
shown in Figure 3. MAST analysis indicated that despite
individual motifs not being significant, the combination
of motifs identified in promoter regions of both groups
were unique to the group in which they were discovered
as they were not significantly associated with the oppos-
ing group or with all the genes on the array by Fisher's
exact test (Table 4). A separate MAST analysis indicated
that the motifs identified in this study were also not sig-
nificantly associated (P > 0.05) with genes previously
reported to be differentially expressed in sheep exposed to
gastrointestinal nematodes [25] (data not shown).

In order to identify which transcription factors could bind
to the motifs, each motif was compared to the transcrip-
tion factor binding sites in the TRANSFAC database [33].
Each motif was shuffled 1,000 times and the comparison
process repeated in order to establish its significance. Fig-
ure 3 lists the significant motifs discovered along with
their best TRANSFAC hits. The full list of identified motifs
and their TRANSFAC hits are available in Additional files
1 and 2. The two significant motifs found in the promoter
regions of the genes more highly expressed in susceptible
animals give B cell lineage specific activator protein
(BSAP) and Peroxisome proliferative activated receptor
gamma (PPARG) as their best hit. BSAP, also known as
PAX5 is a transcription factor required for B cell develop-

ment [34], however, it should be noted that the P value of
this hit is not significant and so this motif may be bound
by a transcription factor not represented in the TRANSFAC
dataset. Interestingly, five of the six genes associated with
the GO term "response to biotic stimulus" have this motif
in their promoter regions, indicating this motif may be
involved in the regulation of this response. Peroxisome
proliferative activated receptor gamma (PPARG) is a lig-
and activated transcription factor which has an important
role in adipocyte differentiation [35]. PPARG is known to
have anti-inflammatory effects and to play an important
role in the maintenance of mucosal integrity in the intes-
tine [36]. This transcription factor may therefore play a
role in co-ordinately regulating genes more highly
expressed in the intestine of the susceptible animals.

Discussion
This study identified a number of genes differentially
expressed between lines of lambs differing genetically in
their ability to become resistant to gastrointestinal nema-
todes. These genes were differentially expressed in the
absence of nematode challenge and so represent basal
expression differences between the selection lines. It is
noteworthy that significant differences were observed in
naïve animals as much previous work has shown that ani-
mals differing in host resistance primarily differ in the
rapidity and strength of their acquired immune response
rather than differing in their innate immunity [3,5,6]. To
our knowledge this is the first report of constitutive differ-
ences in gene expression in naïve sheep differing in their
genetic ability to respond to host infection.

Gene Ontology terms associated with the genes more
highly expressed in susceptible animals included
"response to stimulus", "response to stress", "defence
response" and "response to pests, pathogens and para-
sites". This implies that the gastrointestinal tract of the
susceptible animals is responding to stress even in the
absence of nematode challenge. This is evidenced by the
elevated expression of seven genes that are induced in
response to stimulus, HLA-A, MSH6, GPX2, IFI35, UBD,
SERPING1 and TFF3. HLA-A encodes an MHC class I
heavy chain molecule that, in conjunction with B2M,
presents endogenously derived peptides to CD8+ cytotoxic
T cells. HLA-A has broad tissue expression and has been
shown to be induced by a number of cytokines, in
response to infection and in patients with the inflamma-
tory bowel syndrome Crohn's disease [37-39]. MSH6
encodes a MutS homologue protein which, in complex
with MSH2, forms the MutSα heterodimer, while MSH2
in complex with MSH3 forms the MutSβ heterodimer.
Both these complexes are involved in mismatch repair
and repair mutagen-induced lesions in DNA as well as
errors in DNA replication [40]. MutSα repairs both DNA
mismatches and short 1–2 bp insertions or deletions

Northern blottingFigure 2
Northern blotting. Northern blots showing differential 
expression of TFF3 (A), SPINK1 (B), and GIMAP8 (C). mRNA 
levels were normalised to that of GAPDH (D).
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(indels) while MutSβ repairs longer 2–6 bp indels [41]. A
change in expression of either MSH6 or MSH3 can subse-
quently lead to a change in the MutSα to MutSβ ratio. The
MutSα complex is induced at the transcriptional level in
response to radiation [42]. Expression of MSH6 may be
higher in the duodenum of susceptible animals in order
to assist these animals to cope with toxic and mutagenic
insults present in ingested food. GPX2 is another stress
response gene more highly expressed in the intestine of
the susceptible animals. This gene encodes the selenopro-
tein, gastrointestinal glutathione peroxidase 2, which
catalyses the reduction of peroxides by reduced glutath-
ione and protects the cell against oxidative damage. This
gene is known to be induced in response to oxidative
stress [43]. The interferon inducible gene IFI35 is induced
at the transcriptional level in response to interferons, and
complexes with the N-Myc interacting protein, NMI, to
form a high molecular weight cytosolic complex [44]. The
precise function of this complex, however, remains
unknown. UBD encodes a small ubiquitin-like modifier
protein also known as FAT10. UBD is induced by the
cytokines IFNγ and TNFα [45] and can bind proteins and
target them for degradation by the proteasome in a
cytokine inducible, irreversible, ubiquitin-independent
manner [46]. SERPING1, also known as C1 inhibitor (C1-
INH), encodes an IFNγ inducible [47] serine protease
inhibitor of the complement and contact systems. This
protein therefore exhibits an anti-inflammatory effect
[48,49]. SERPING1 is known to help prevent endotoxic
shock [50] and is under investigation as a clinical treat-
ment for a variety of diseases [51]. TFF3 encodes intestinal
trefoil factor 3. Trefoil factors are involved in mucosal pro-
tection and healing and are induced during inflammation
and in response to gastrointestinal mucosa damage [52].
The increased expression of so many stress response genes
in the intestine of the susceptible animals appears to indi-
cate that these animals are responding to gut insult and
inflammation. Alternatively, these animals may constitu-

tively express these stress response genes at inappropriate
levels in the absence of challenge. Interestingly, stress
response genes did not appear to be more highly
expressed in the duodenum of susceptible animals after
natural challenge with nematodes [25] indicating that
these genes may be inappropriately regulated in the gas-
trointestinal tract of susceptible animals.

The source of stress to the intestinal tract of the susceptible
animals remains unknown. Some of the stress response
genes more highly expressed in susceptible animals are
known to play a role in protecting the cell against oxida-
tive damage. MSH6 is involved in repairing DNA lesions
caused by oxidation [53] while GPX2 reduces DNA dam-
aging agents [54]. HMOX1 is also strongly induced by oxi-
dative stress and is involved in heme degradation [55].
Chronic gut inflammation is associated with enhanced
production of leukocyte derived oxidants [56]. Therefore
the gastrointestinal tract of the susceptible animals may
be suffering damage from reactive oxygen species. This
could come from a number of sources such as aberrant
cellular metabolism or phagocytic leukocytes responding
to an infection. Indeed some of the stress proteins more
highly expressed in the gastrointestinal tract of the suscep-
tible animals are involved in the immune response and
are inducible by pro-inflammatory cytokines. Therefore
although free from gastrointestinal nematodes, the sus-
ceptible animals may be responding to infection by other
viral or bacterial pathogens.

A number of pro-apoptotic genes are more highly
expressed in the intestine of the susceptible animals.
These genes promote apoptosis in response to stress.
Apoptosis is a primary form of defence against infection,
stress, damage or injury in the cell. MSH6, TRAF4, UBD
and BMF can all induce a protective apoptotic response in
cells [45,57-59]. The soluable form of HLA-A has also
been shown to trigger apoptosis of CD8+ T cells [60].

Table 3: GO terms significantly associated with the differentially expressed genes

GO term No. of RefSeqs associated with 
term

Fisher exact score

Susceptible Response to biotic stimulus 6 0.00012
Response to stimulus 7 0.00028
Response to external stimulus 6 0.00067
Defense response 5 0.00072
Response to stress 5 0.00124
Organismal physiological process 5 0.00425
Immune response 4 0.00486
Response to pest/pathogen/
parasite

3 0.00956

Cytoskeleton 3 0.0397
Resistant

Cellular Process 9 0.0426
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Apoptosis can be induced directly by DNA damage or by
cytokine signalling.

The genes more highly expressed in intestinal tissue of
susceptible animals also included a number that encode
proteins involved in protein degradation: these are
PSMD12, which encodes a non-ATPase component of the
26S proteasome subunit, UBD which encodes a ubiquitin-
like protein that targets proteins for degradation and
BMSC-UbP which encodes a bone marrow stromal cell
derived ubiquitin-like protein [46,61,62]. Another gene
which can play a role in protein degradation is SEC61B,
which encodes the beta subunit of the Sec61 protein
translocator, which transports proteins across the endo-
plasmic reticulum. This complex is also known to play a
role in retrograde transport of misfolded or degraded pro-
teins back into the cytoplasm for proteasome degradation
[63]. Therefore there appears to be increased protein deg-
radation in the intestinal tract of the susceptible animals.

In summary, a number of stress response genes appear to
be induced in the intestinal tract of naïve susceptible ani-
mals. How the induction of these genes is regulated is
unclear at present, however, the identification of two sig-
nificant motifs in the promoter regions of these genes
indicated that transcription may be co-ordinately regu-
lated by the BSAP or PPARG transcription factors. The role
of PPARG in regulating genes involved in nematode sus-
ceptibility could potentially be examined by treating ani-
mals with PPARG agonists in order to modulate PPARG
activation. Motifs for BSAP or PPARG binding were not

found in the promoter region of genes whose expression
was not elevated in the susceptible animals, showing they
are unique to these genes.

Only 16 genes were more highly expressed in the intestine
of the resistant animals than the susceptible animals.
These genes had a variety of biological functions and the
only GO term significantly associated with these genes
was "cellular process". However two of genes more highly
expressed in the resistant animals are vital for maintaining
a functioning and healthy immune system. RAC2 plays an
important role in response to pathogens as it regulates
neutrophil chemotaxis and superoxide production and
deficiency of RAC2 leads to impaired host defences and
neutrophilia [64,65]. Deficiency of ITGB2, also known as
CD18, can also lead to neutrophilia [66] and ITGB2 is
also known to be important in innate immunity [67]. Two
apoptosis inducing genes are more highly expressed in the
intestine of the resistant animals. These genes are DAP3
and TRADD. DAP3, a proposed nucleotide binding pro-
tein, is a major positive regulator of apoptosis and has
been shown to be critical for anoikis [68]. TRADD
encodes a tumour necrosis factor receptor adaptor pro-
tein. This protein links the TNF receptor to the caspase
pathway initiating apoptosis [69]. Despite a few genes
with similar functions being more highly expressed in the
intestine of resistant animals, no significant motifs were
identified in the promoter regions of these genes indicat-
ing that they may not be co-ordinately regulated at a tran-
scriptional level. Alternatively, the small number of genes
with significantly elevated expression provided little
power to detect motifs responsible for co-ordinate regula-
tion.

A previous study identified genes differentially expressed
between the resistant and susceptible lines in response to
nematode challenge [25]. Interestingly, there were no
genes that were consistently differentially expressed both
pre and post-infection. However, the ubiquitin-like mod-
ifier gene, UBD, was more highly expressed in the suscep-
tible animals prior to infection but more highly expressed
in resistant animals after infection with gastrointestinal
nematodes. UBD expression is induced by the cytokines
IFNγ and TNFα. Expression of TNFα is known to be
induced in intestinal lymph of genetically resistant Rom-

Table 4: MAST results

Resistant (16) Susceptible (25) Array (8809) Fisher exact score

Proportion of genes with significant combination of resistant motifs 0.50 0.00 0.05 4.7 × 10-7

Proportion of genes with significant combination of susceptible motifs 0.06 0.44 0.08 4.6 × 10-6

Proportion of promoter regions which contain the combination of motifs detected by MEME with P < 0.0001. Numbers in parenthesis represent 
the total number of genes in each group. In both cases the combination of motifs is found more frequently in the group in which it was originally 
identified. The significance of this is given by Fisher's exact score.

Significant motifs detected in the promoter regions of the dif-ferentially expressed genesFigure 3
Significant motifs detected in the promoter regions 
of the differentially expressed genes. The significant 
motifs found in the promoters of the differentially expressed 
genes are given along with their sequence logos and top 
TRANSFAC hit.
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ney sheep during primary infection of naïve animals with
T. colubriformis [4]. Therefore, while UBD is expressed
more highly in naïve susceptible animals, upon infection
with nematodes the resistant animals may induce UBD
expression to a higher level than the susceptible animals
in a TNFα-dependent manner. The previous study also
identified smooth muscle function and Major Histocom-
patibility Complex II expression as important mediators
of parasite resistance [25]. The current study did not iden-
tify smooth muscle or MHC II genes as differentially
expressed between the lines in the absence of challenge
and so shows that these genes are induced in response to
challenge. Resistance to gastrointestinal nematodes may
therefore be mediated, in part, by the ability to induce
expression of these genes and this response is generated
upon exposure to infection.

Conclusion
Despite divergent selection over many years relatively few
genes were differentially expressed between the selection
lines in the absence of nematode challenge. Many more
genes were found to be differentially expressed between
the lines in response to natural parasite challenge [25]
however, the genes identified in the present study may
contribute to an animals innate resistance or susceptibil-
ity. The genes more highly expressed in resistant animals
had a variety of functions, but some were involved in
maintaining a healthy immune system, while some were
pro-apoptotic genes. A number of genes more highly
expressed in the susceptible animals were related to cellu-
lar response to stress and infection indicating that the sus-
ceptible animals may have a compromised
gastrointestinal tract, even in the absence of nematode
infection, and this may contribute to their innate suscep-
tibility. It is notable that the human orthologs of the dif-
ferentially expressed genes are located on a number of
different human chromosomes (Tables 1 and 2). It is not
known whether the polymorphisms that give rise to the
differences in expression reported here are due to cis or
trans mutations. Although it is possible that a mutation in
one or a small number of genes may give rise to the
expression differences, the diversity of the actions and
pathways of the genes differentially expressed is consist-
ent with genetic resistance to nematodes being due to
many genes with small effects rather than a mutation in a
single locus. The recent release of the bovine genome [70],
a closely related species, will greatly aid mapping and rese-
quencing of sheep genes responsible for parasite resist-
ance.

Methods
Selection lines and tissue collection
Resistant and susceptible lines of Perendale sheep have
been selected based on faecal egg count (FEC) since 1986.
These lines now differ in faecal egg count by 4.9 fold [24].

Pregnant ewes were adjusted to concentrate feed, treated
with anthelmintic, brought indoors and subsequently
lambed indoors. The lambs were raised indoors to insure
their immune system remained naïve with respect to gas-
trointestinal nematodes. During this period the ewes and
lambs had access to commercially formulated sheep nuts
and chopped Lucerne hay ad libitum. All animals were
faecal sampled periodically to ensure no parasitic nema-
todes were present. Four female lambs per selection line
were chosen and at an average age of 84 days (standard
deviation, 6.8 days) these animals were sacrificed and
duodenum tissue promptly collected. The tissue was fro-
zen in liquid nitrogen and stored at -80°C. No adult nem-
atodes could be detected in the abomasums or intestines
of the animals confirming their naïve status. The average
live weight of the lambs pre-slaughter was 23.4 kg (stand-
ard deviation, 3.8 kg). No significant differences were
observed between the weights of the animals in the two
lines at any stage. All procedures were approved by the
AgResearch Invermay Animal Ethics Committee, formally
constituted under the New Zealand Animal Welfare Act.

RNA preparation
Total RNA was isolated from the duodenum of each ani-
mal using TRIzol (Invitrogen) and was cleaned using an
RNeasy kit (Qiagen). RNA integrity was confirmed by
denaturing agarose gel electrophoresis and RNA was
quantitated using a NanoDrop® ND-1000 Spectrophoto-
moter (NanoDrop Technologies). First-strand cDNA was
made from 25 µg of total RNA by anchored oligo(dT)20-
primed reverse transcription incorporating amino-modi-
fied dNTPs, and was subsequently labelled indirectly by
fluorescent coupling of Cy™3 and Cy™5 mono-reactive
dyes (Amersham) using the SuperScript™ Indirect cDNA
Labeling System (Invitrogen) according to the manufac-
turer's instructions.

Array preparation
Ovine cDNA libraries were prepared from 27 tissues by
MWG Biotech (Germany). These libraries were single-pass
sequenced from the 5' end generating expressed sequence
tags (ESTs). The inserts, representing ovine expressed
sequences, were then amplified in 96 well plates using the
universal primers SP6 and T7 in 50 µl reactions (1.5 mM
MgCl2, 2 mM each dNTP, 45 pmol primers and 2.5 units
AB Red Hot Taq polymerase). The reactions were dena-
tured at 94°C for 3 minutes then cycled 36 times at 94°C
for 45 sec, 55°C for 45 sec and 72°C for 60 sec. Finally
products were extended at 72°C for 5 min. The PCR prod-
ucts were verified by agarose gel electrophoresis, precipi-
tated and resuspended in printing solution as described
previously [25]. At the University of Otago Genomics
Facility an ovine microarray consisting of 19,968 spots
was printed onto poly-L-lysine coated glass slides using an
ESI array robot with 32 split pinheads depositing 0.6 nl
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with a 100 µm spot size. After printing the slides were UV
irradiated to cross-link the DNA to the polylysine coating.

Slide hybridisation, scanning and normalisation
Slides were prehybridised by incubation for 45 min at
42°C in 50 ml of 5 X SSC, 0.1% SDS, 1% BSA. They were
then rinsed twice in deionised water, once in isopropanol
and dried. The labelled cDNA was denatured by heating at
95°C and then combined with 50 µl SlideHyb #1
(Ambion) and applied to slides. Slides were hybridised at
54°C for 16 hours in humidified chambers (Monterey).
Post-hybridisation the slides were washed in the dark at
54°C for 10 min in 2 X SSC, 0.1% SDS, 5 min in 1 X SSC
and 10 min in 0.1 X SSC. All buffers were filtered through
0.22 µm filters. The slides were dried and scanned in a
ScanArray 5000 (Packard Biosciences) and the dual
images collected in TIFF format. The combination and
processing of the images was carried out using GenePix
Pro (Axon Instruments). The data for each slide was nor-
malised following the procedure of Baird et al., [71]. For
each EST on the array, the normalised data from all 16
slides was combined and a number of average statistics
calculated. ESTs were excluded from further analysis if
they had more than 6/16 bad spots. The remaining ESTs
were sorted based on the modified T value [72] for the log
ratio of the mean [Additional file 3]. ESTs where the tail of
the probability plot was more extreme than the 95% con-
fidence limit [73] were counted as differentially expressed
(Figure 1). All the microarray information has been sub-
mitted into the National Centre for Biotechnology Infor-
mation (NCBI) Gene Expression Omnibus (GEO) website
[74]. The accession number for the experiment series is
GSE3738.

Northern blotting
20 µg of total RNA from duodenum tissue was separated
on a 1% formaldehyde agarose gel and transferred to
Hybond nylon membrane (Amersham) by capillary trans-
fer. Probes were generated by amplification from the orig-
inal EST using the gene specific primers listed in Table 5.
The PCR products were verified by sequencing, labelled
with α32P-dCTP (Amersham) using the RadPrime DNA
labelling system (Invitrogen) and unincorporated radio-
activity removed using the High Pure PCR product purifi-
cation kit (Roche). Membranes were prehybridised for 45
min at 42°C in 10 ml ULTRAhyb (Ambion). The probes
were diluted 1:10 in 10 mM EDTA and denatured by boil-
ing for 10 min followed by cooling on ice for 5 min. After
addition of 0.5 ml of ULTRAhyb, the probe was added to
the prehyb solution and incubated overnight at 42°C. The
membranes were then washed twice for 5 min at room
temperature in 2 X SSC, 0.1% SDS followed by 2 X 15 min
in 0.1 X SSC, 0.1% SDS at 42°C. The membranes were
then exposed to BioMax XAR film (Kodak). The images
were scanned using an ImageScanner (Amersham) and

the resulting images quantitated using ImageQuant TL
(Amersham) and normalised to GAPDH mRNA levels.
This gene was not differentially expressed in the microar-
ray experiment making it a suitable choice of housekeep-
ing gene for normalisation.

Microarray data interpretation
All ESTs in the ovine libraries, along with all ovine ESTs
deposited in NCBI were assembled into contigs using
CAP3 [75] after an initial clustering step using BLAST.
ESTs on the array were annotated by finding the human
RefSeq (RefSeq release as at 11/4/2005) corresponding to
the contig to which they belonged using BLASTN [76] and
the following options: -e 0.01 -v 5 -b 5. Each EST was
annotated with the top human RefSeq hit. In the case of
the differentially expressed ESTs, a more stringent E value
cutoff of 1 × 10-18 was applied. In cases where the EST
matched more than one transcript variant of a gene then
the top hit is listed. All analysis hereafter refers to the
annotated RefSeq genes. Gene Ontology (GO) terms sig-
nificantly associated with the differentially expressed
genes were found using the Expression Analysis System-
atic Explorer (EASE). The list of differentially expressed
genes was submitted to EASEonline [77]. The background
list submitted included all human RefSeqs on the array.
EASE calculates overrepresented functional gene catego-
ries compared to all the genes on the array [31].

A region of 1,500 bp upstream of the transcription start
site of each of the RefSeq genes on the array was retrieved
from the human genome browser at University of Califor-
nia-Santa Cruz [78] and sequences were masked for
repeats through the retrieval process. The choice of pro-
moter length was based on the report that approximately
75% of human core promoters lie within 1,500 bp of the
transcription start site [79]. Of the 9,238 unique RefSeqs
on the array, promoter regions for 8,809 RefSeqs were
retrieved. Motifs in the promoter regions of the differen-
tially expressed RefSeq genes were detected using the
MEME motif detection program [32]. The motif lengths
ranged between 6 and 12 bases, any number of repetitions
of the motif was permitted, the reverse complement was
allowed and the top 15 motifs were identified in each
group The identified motifs were also compared to the
transcription factor database, TRANSFAC release 8.1, [33]
using the method described in Aerts et al., [80]. Each motif
was permuted 1,000 times and best matches and their
level of significance are reported. The full list of motifs
identified in the promoter regions of the genes more
highly expressed in susceptible and resistant animals, and
their top TRANSFAC hits are available in Additional files
1 and 2 respectively. In order to carry out a MAST analysis
[81] motifs with a Pearson's correlation coefficient greater
than 0.6 were identified and excluded from further analy-
sis. Promoter regions of both groups of differentially
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expressed genes and all RefSeq genes on the array were
subsequently screened for the presence of all unique
motifs using MAST. Once again, reverse complement ori-
entation of the motifs was allowed and the results
obtained were analysed using Fisher's exact test based on
the number of RefSeq promoters with a combined motif
significance of P < 0.0001 in each of the groups.
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Additional File 1
This file contains all motifs detected by MEME in the promoter regions of 
genes more highly expressed in susceptible animals.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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Additional File 2
This file contains all motifs detected by MEME in the promoter regions of 
genes more highly expressed in resistant animals.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-42-S2.pdf]

Additional File 3
This file ranks the ESTs on the array according to their differential expres-
sion and contains statistical information for each EST on the array.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-42-S3.xls]
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Table 5: Primers used for Northern blot probe amplification

Primer Name Primer Sequence 5'-3'

GAPDHF TGAAGGTCCGTGTGAACGGATTTGGC
GAPDHR CATGTAGGCCATGAGGTCCACCAC
GIMAP8F TGCATACCTTTCCCTCTTCG
GIMAP8R GCCTAGCCGTAAATAGGAACC
SPINK1F CGGTGCAGTTTTCAACTGAG
SPINK1R CCAAGCACGCATTGTAGTGT
TFF3F TACGGTCCGGATTCCGGG
TFF3R CCTCATGCTGAGCACGGG
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