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Abstract: Fusarium ear rot (FER) caused by Fusarium verticillioides is one of the main fungal diseases in
maize worldwide. To develop a pathogen-tailored FER resistant maize line for local implementation,
insights into the virulence variability of a residing F. verticillioides population are crucial for developing
customized maize varieties, but remain unexplored. Moreover, little information is currently available
on the involvement of the archetypal defense pathways in the F. verticillioides–maize interaction using
local isolates and germplasm, respectively. Therefore, this study aims to fill these knowledge gaps.
We used a collection of 12 F. verticillioides isolates randomly gathered from diseased maize fields in
the Vietnamese central highlands. To assess the plant’s defense responses against the pathogens, two
of the most important maize hybrid genotypes grown in this agro-ecological zone, lines CP888 and
Bt/GT NK7328, were used. Based on two assays, a germination and an in-planta assay, we found
that line CP888 was more susceptible to the F. verticillioides isolates when compared to line Bt/GT
NK7328. Using the most aggressive isolate, we monitored disease severity and gene expression
profiles related to biosynthesis pathways of salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA),
benzoxazinoids (BXs), and pathogenesis-related proteins (PRs). As a result, a stronger induction of
SA, JA, ABA, BXs, and PRs synthesizing genes might be linked to the higher resistance of line Bt/GT
NK7328 compared to the susceptible line CP888. All these findings could supply valuable knowledge
in the selection of suitable FER resistant lines against the local F. verticllioides population and in the
development of new FER resistant germplasms.

Keywords: benzoxazinoids; Fusarium verticillioides; Fusarium ear rot; maize; mycotoxins; phytohor-
mones; Vietnam

1. Introduction

Contamination of maize by mycotoxins is a global issue threatening food safety and
security, especially in the tropics. Mycotoxins are secondary metabolites produced by
filamentous fungi such as Fusarium verticillioides and Aspergillus flavus that often occur and
colonize crops in the field or during storage [1]. Due to the acute toxicity of mycotoxins,
legislated regulations for the acceptable limits for each mycotoxin in food and feed have
been established in many countries [2]. To tackle this problem, studies in breeding for
resistance to mycotoxigenic fungi have become an attractive topic in the community of
plant breeders.
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Fusarium verticillioides is the primary causal agent of Fusarium ear rot (FER) in most
tropical maize-growing areas [3–5]. This pathogen is capable of producing mycotoxins, pri-
marily fumonisins (incl. fumonisin B1 (FB1), FB2 and FB3), resulting in low yield and grain
quality as a consequence of the FER disease [6]. From a toxicological standpoint, FB1 is clas-
sified into group 2B as being possibly carcinogenic to humans [7]. The chemical structure
of FB1 is similar to sphingoid bases such as sphinganine and sphingosine. Based on this
structural similarity, FB1 has the ability to disrupt the sphingolipid biosynthesis pathway in
a mammalian cells, resulting in carcinogenesis [8,9]. In maize plants, Glenn et al. (2008) [10]
and Zitomer et al. (2010) [11] have demonstrated that FB1 produced by F. verticillioides is a
virulent factor, whereas Desjardins and Plattner (2000) [12] showed that this metabolite is
not involved in the pathogenesis of F. verticillioides. In Vietnam, F. verticillioides has been
frequently discovered in the central highlands’ maize fields between 2017 and 2019 [4]. In
particular, contamination of maize with fumonisins from the field to the postharvest chain
was documented in this agro-ecological zone [4,13]. An evaluation of virulence variability
of the local F. verticillioides population is needed as a first step in developing locally adapted
resistant cultivars.

Breeding for resistance to FER is the most eco-friendly, economical and sustainable
strategy, and has been attracting the interest of numerous plant breeders [14,15]. However,
to date, no commercial hybrid maize lines with complete FER resistance are available,
although transgenic Bt insect-resistant lines (Bt genes derived from Bacillus thuringiensis
encoding insecticidal proteins) have been suggested as effective FER control measures [16].

In recent years, although the F. verticillioides–maize interaction has been gradually
uncovered, it is still not completely understood due to its multi-layered nature. Insights
into the transcriptional levels of plants and the identification of defense-mediated hall-
mark genes upon infection by F. verticillioides can help to improve understanding of this
intricate interaction, and may be helpful for the development of FER resistant host lines.
Phytohormones e.g., salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) play a
pivotal role in the defense response of maize against F. verticillioides [14,17,18]. On the other
hand, the induction of hallmark genes associated with the benzoxazinoids (BXs) (i.e., an
antimicrobial and insecticidal secondary compound in maize) biosynthesis pathway has
been demonstrated linked to plant defense mechanisms against the pathogens [19,20].
The involvement of genes encoding pathogenesis-related proteins (PRs), especially β-1,3-
glucanase, chitinase and pathogenesis-related protein 10 (PR10 protein), has also been
observed in the defense responses of maize plants against F. verticillioides [17,21].

In the present work, we aim to evaluate the level of resistance or susceptibility of
Vietnamese maize genotypes to the local F. verticillioides field isolates. To achieve this, we
used a set of 12 local isolates of F. verticillioides derived from our previous study [4] together
with the two most important hybrid maize cultivars grown in the central highlands of
Vietnam, lines CP888 and Bt/GT NK7328. We examined the transcriptional regulation of
genes involved in the biosynthesis of phytohormones (e.g., SA, JA, and ABA), BXs, and
pathogenesis-related proteins (e.g., PR10 protein, glucanase and chitinase) within each
cultivar upon F. verticillioides root infection. This work is timely and important for the
proposal of tailored control strategies by introducing local resistant maize genotypes and
biocontrol agents against the residing F. verticillioides population.

2. Materials and Methods
2.1. Preparation of Fusarium verticillioides Isolates

Twelve F. verticillioides isolates were randomly isolated from maize fields in the central
highlands of Vietnam (Table S1). This F. verticillioides population consisted of isolates
derived from maize fields during three different crop seasons: the autumn-winter crop
of 2017, the summer-autumn crop of 2018, and the autumn-winter crop of 2018, in two
locations, Dak Lak and Dak Nong [4].

For the preparation of spore suspensions, each isolate was cultured on a PDA (Potato
Dextrose Agar, 40 g L−1) (Sigma Aldrich, Overijse, Belgium) plate for 7 days at 25 ◦C,
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prior to transferal into a cabinet equipped with near-UV lights (12 h light/12 h darkness)
for 7 days to induce sporulation. A spore suspension of each isolate was obtained by
rubbing the mycelial surface with 20 mL of sterile water and filtering through an auto-
claved Mira-cloth filter into a 50 mL sterile tube. A final concentration of each spore
suspension 107 conidia mL−1 was made based on microscopic counts using a Bürker cham-
ber. All isolates were maintained in spore suspension with 50% glycerol at −80 ◦C for a
long-term period.

2.2. Multilocus DNA Sequence Based Identification of Fusarium verticillioides

Total fungal DNA extraction was conducted following [4]. Three different fungal
gene regions consisting of translation elongation factor 1α (EF-1α) and the largest subunits
of RNA polymerase (RPB1 & RPB2) were amplified (Table S2). All PCR reactions were
performed using the GeneAmp PCR system 97,000 PCR (Applied Biosystem, Foster City,
CA, USA) following the protocol of Tran et al. 2021 [4]. Amplicons were separated on a
1.5% (w/v) agarose gel, stained with ethidium bromide for 30 min and then visualized
using the Molecular Imager® Gel DocTM XR+ System with Image LabTM Software (BIO-
RAD, Hercules, CA, USA). PCR products were purified using the E.Z.N.A.® Cycle-Pure
Kit (VWR International, Leuven, Belgium) before sending to LGC Genomics (LGC group,
Berlin, Germany) for Sanger sequencing.

2.3. Pathogenic Assay of Fusarium Verticillioides in Two Inbred Maize Lines
2.3.1. Seed Germination Assay

The line CP888 (originating from C.P. group, Vietnam) and the insect-resistant trans-
genic line Bt/GT NK7328 (originating from Syngenta group, Vietnam) are two important
maize lines grown in Vietnam’s central highlands [4]. In each treatment, thirty seeds were
disinfected by soaking in 30 mL of 1% sodium hypochlorite (NaOCl) for 30 s, followed by
washing with sterile water five times, and finally drying in a biosafety cabinet. The seeds
were then soaked in 25 mL of each F. verticillioides spore suspension (107 conidia mL−1) for
1 h, and transferred into a sterile petri plate containing a Whatman paper moistened with
4 mL sterile water (10 seeds per plate), and inoculated for 7 days at 25 ◦C. Sterile water was
used as a control. Germination rate and lengths of roots and shoots were used to evaluate
the susceptibility of these two maize lines to F. verticillioides isolates.

2.3.2. In-Planta Assay

In each treatment, five maize seeds were disinfected with 1% NaOCl and transferred
to a rectangular plastic pot (20 × 16 × 6 cm) with vermiculite substrate (Vermex, Soprema,
Belgium) to germinate for 5 days. The five germinated seeds were soaked in a fungal
suspension (107 spores mL−1) for 1 h prior to transferal to five glass tubes containing mixed
sand (200 g/tube) (Figure S1). Five days before planting, 3 g polymer gel (DCM Aquaperla,
Grobbendonk, Belgium) absorbed in 300 mL tap water was mixed with 2 kg non-sterile
fine sand (Vosschemie Benelux, Lier, Belgium) [22]. Every two days, 10 mL of tap water
was applied. After 2 weeks of planting, the maize plants were harvested. Based on the
length of leaves and roots, and the fresh biomass of leaves and roots, the susceptibility of
plants to pathogens was evaluated. Five control plants were treated with sterile water. For
the time-series assay, the following time points were chosen: 1 day after infection (dai),
2 dai, 4 dai, and 8 dai. Five plants from each treatment were harvested at each time point.
Length and fresh biomass of root and leaf were measured and then stored at −20 ◦C for
RNA extraction.

2.4. RNA Extraction and RT-qPCR

Roots and leaves were crushed with liquid nitrogen prior to RNA extraction, using
TRizol reagent (Sigma Aldrich, Belgium) according to the manufacturer’s instructions. RNA
concentration was determined using a Quantus fluorometer (Promega, the Netherlands).
cDNA of each RNA template was synthesized using the iScriptTM kit (Bio-rad, Belgium)
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and diluted 5 times with nuclease-free water. RT-qPCR assay was performed using a CFX96
Tough Real-time PCR Detection System (Bio-rad, Belgium). Each PCR reaction contained
6.25 µL Gotag®qPCR master mix (Promega, The Netherlands), 2 µL cDNA, 0.625 µL each
primer (5µM), and 0.208 µL CXR dye (Promega, The Netherlands), and 2.292 µL nuclease-
free water. The thermal programme was set up as follows: 95 ◦C for 3 min; 39 cycles of
95 ◦C for 10 s, and 60 ◦C for 30 s, followed by a melting curve acquisition from 65 to 95 ◦C
with the rate of 0.5 ◦C/s. The primers used for all genes are shown in Table S3. Elongation
factor 1α (EF-1α) and β tubulin (β-TUB) primers were used as reference genes. Gene
expression analysis was done using qBase+ software (Biogazelle, Belgium). Fold change
was calculated by diving the CNRQ values (calibrated normalized relative quantities) of
the infected samples by values of the control samples.

2.5. Statistical Analysis

All heat maps and boxplots were generated using the R software v.4.0.2 with the
packages ggplot2 and gplots (https://cran.r-project.org/ (accessed on 15 July 2021)). A
one-way ANOVA test followed by a post-hoc Tukey’s test was used in cases of normal
distribution, otherwise, a non-parametric Kruskal-Wallis test followed by a post-hoc Dunn’s
test -test was applied. All analyses were tested at a significance level of α = 0.05.

3. Results
3.1. Susceptibility of Two Maize Genotypes to Vietnamese Maize Fields’ Fusarium verticillioides
Population on Germination Seeds

In this work, we used the two main growing maize lines, CP888 and Bt/GT NK7328, in
the central highlands of Vietnam. The susceptibility of these two cultivars to locally isolated
F. verticillioides isolates was assessed by using a seed germination assay within 7 days. Data
show that line CP888 was more susceptible to F. verticillioides than line NK7328 (Figure 1).
Evidently, when infected with the pathogens, a significantly lower median germination rate
was observed in line CP888 seeds (n = 360, 3 ± 6%) when compared to line NK7328 seeds
(n = 360, 33 ± 9%) (one sided p = 0.03, Kruskal-Wallis test) (Figure 1B). The transparent
pathogenic phenotypes of germination seeds upon infection by the isolate F01.12, at which
the seed germination rate of line CP888 (n = 30) was 7% versus 43% for line NK7328 (n = 30)
(Figure 1A), made it clear that the germination of both cultivars was strongly impacted by
the infection by isolates F17.1, F22.11, F26.2, and F26.31.

In terms of the impacts on roots and shoots, in line CP888, shoot length was sig-
nificantly reduced when infected with the pathogens, compared to the control CP888
seeds (Figure 1C). The median shoot length was 0 ± 0.1 mm (in the infected seeds)
vs. 2.6 ± 0.7 mm (in the control seeds) (p < 0.0001). Similar results were obtained for
line NK7328. Likewise, a significant reduction of root length was observed in both cultivars
(Figure 1C).

In conclusion, the germination assay-based data show that the germination of both
cultivars was significantly impacted by the infection of F. verticillioides. By measuring the
root and shoot length, a higher disease level from the infection was observed in seedlings
of line CP888 compared to seedlings of line NK7328.

3.2. Susceptibility of Two Maize Genotypes to Vietnamese Maize Fields’ Fusarium verticillioides
Population on Maize Seedlings

Here, we evaluated the susceptibility of two maize genotypes when infected with the
pathogens on maize seedlings within 14 days. Upon seedling infection by F. verticillioides,
for line CP888, a clear infection was confirmed through root phenotypes (Figure 2A).
Notably, root length was significantly reduced, by 14.0 ± 3.6 cm (in the infected seedlings)
vs. 17.5 ± 3.2 cm (in the control seedlings) (p = 0.0011) (Figure 2C). The infection also
resulted in a significant reduction of leaf length and leaf biomass in the seedlings of
line CP888. In contrast, a lower disease level was observed at the roots of line NK7328
(Figure 2A,C). There was no significant difference in root length compared to the control
seedlings (p = 0.47). However, a significant reduction was observed in leaf length and leaf
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biomass in response to the infection. (Figure 2C). A heat map also indicated that line CP888
was more susceptible to the pathogens when compared to line NK7328 (Figure 2D).

Figure 1. (A) Germination of seeds on moistened Whatman papers by treatments. (B) Germination rates (%) of CP888 and
Bt/GT NK7328 seeds when infected with each Fusarium verticillioides isolate at 7 days after inoculation. Thirty seeds were
infected with each isolate at a concentration of 107 conidia mL−1, while sterile water was utilized for a control treatment.
(C) Impacts on root length and shoot length upon infection by pathogens. Statistical differences were interpreted using a
Student’s t-test at a significant value of α = 0.05.

On the other hand, data show a high virulence variability of F. verticillioides isolates
upon infection in maize seedlings (Figure 2B). In fact, based on the effect on leaf biomass of
line CP888 seedlings, a varying virulence level amidst 12 isolates was indicated (Figure 2B).
For example, isolate F01.12 showed a high virulent level on both maize seedlings, while
a non-virulent level was observed in isolate F14.22. Higher virulence was observed in
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isolates F01.2, F04.11, F06.12, F26.2, F02.11, and F26.31. By contrast, F14.22, F14.1, and
F11.11 were less virulent.

Figure 2. (A) Phenotype of roots by treatment upon 14 days. (B) Impact on leaf biomass upon infection with each F.
verticillioides isolate. Two hybrid maize cultivars CP888 and Bt/GT NK7328 were used. Different letters above each boxplot
indicate significant difference within cultivar using a parametric One-way ANOVA test followed by a post-hoc Tukey’s test
at a significance level of α = 0.05. (C) Impacts on leaf biomass, leaf length and root length. A Student’s t-test was done.
(D) A heat map of combined growth indicators by isolates. More red is more aggressive to pathogens.
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In conclusion, the in-planta data show that higher infection levels were observed in
line CP888 than in line Bt/GT NK7328 upon infection with F. verticillioides. We can conclude
that line CP888 maize is more susceptible to F. verticillioides than line Bt/GT NK7328. In
addition, this F. verticillioides population was shown to have highly variable virulence.

3.3. Differential Resistance Responses between Susceptible and Resistant Cultivars upon Infection
by Fusarium verticillioides on Maize Seedlings

The aforementioned data showed that maize line CP888 was more susceptible to
F. verticillioides than maize line Bt/GT NK7328 maize. Hence, in this work, to further
understand the mode of action of F. verticillioides on the resistance mechanism of these two
maize cultivars, we used the highly virulent isolate F01.12, and then assessed the transcript
levels of 11 genes associated with regulation of SA, JA, ABA, BXs, and PRs biosynthesis.
Data are shown in Figure 3.

Figure 3. Heat map of the differential gene expression levels in leaf and root of two hybrid maize lines, CP888 and Bt/GT
NK7328. The colors indicate the fold changes (FC) of gene expression in log base 2. Up-regulation of each gene is shown
in green (increased abundance), down-regulation is shown in red (decreased abundance), no change is shown in yellow,
and no expression is indicated in white. Fusarium verticillioides (FV); salicylic acid (SA); jasmonic acid (JA); benzoxazinoids
(BXs); abscisic acid (ABA). Dai = days after inoculation. Defense response was monitored at 1, 2, 4 and 8 dai. Control
CP888- or NK7328 plants mock-infected with sterile water (CPC and NKC, respectively). CP888- or NK7328 plants infected
with F. verticillioides strain F01.12 (CP+FV and NK+FV, respectively). Symbols (*) and (**) depict significant difference at
significance levels of α = 0.05 and α = 0.01, respectively, between the infected and the control mock plants within a cultivar
using one-tailed Kruskal-Wallis tests.

3.3.1. Salicylic Acid, Jasmonic Acid, and Abscisic Acid Dependent Responses

To determine the impact on SA, JA and ABA regulation, we examined genes encoding
hallmark enzymes comprising phenylalanine ammonia-lyase, PAL (for SA biosynthesis
pathway), allene oxide synthase, AOS, and lipoxygenases, LOX3 and LOX10 (for JA biosyn-
thesis pathway), and glycine-rich protein, ABI (for ABA biosynthesis pathway).

In roots, at early time-points (1 and 2 dai) upon infection of line CP888 with F. verticil-
lioides (CP+FV), the expression level of PAL remained unchanged when compared to the
mock control CP888 plants (CPC) (Figure 3). At 4 dai, a small downregulation of PAL was
observed (Log2FC = −0.8, p = 0.04), and later the gene expression returned to the basal
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level at 8 dai. For line NK7328, similar results were obtained at 1 and 2 dai when infected
with F. verticillioides. However, a small induction of PAL was observed at 4 dai (2.6-fold,
p = 0.07) and was then modulated back to the basal level as in the mock control NK7328
plants (Figure 3).

In leaves, at 1 dai, there was no difference in the expression level of PAL between the
F. verticillioides infected and mock control CP888 plants. A slight down-regulation of PAL
was observed at 2 dai (Log2FC = −0.9, p = 0.02). At later time-points, PAL was expressed
at the basal level. For plants of line NK7328, although the infection did not induce PAL at
early time-points, this resulted in a significant induction of PAL at 8 dai (3.9-fold, p = 0.01)
in comparison with the mock control NK7328 plants (Figure 3).

In terms of the JA pathway, in roots, at 1 dai, the expression levels of LOX3, LOX10 and
AOS were similar to the mock CP888 plants. At 2 dai, LOX10 and AOS were significantly
downregulated with Log2FC values of respectively −1.8 (p = 0.01), and −1.4 (p = 0.01). At
later time-points, all of these three genes were expressed at basal levels. By contrast, for the
F. verticillioides infected NK7328 plants, a small but significant induction of LOX3 and AOS
was observed at 2 dai, and then they expressed at the basal levels as in the control NK7328
plants (Figure 3).

In leaves at 1 dai, a downregulation of AOS was observed in the infected CP888 plants
(Log2FC =−2.2, p = 0.02). A downregulation of LOX10 (Log2FC = −1.3, p = 0.01), and AOS
(Log2FC =−1.2, p = 0.01) were found at 2 dai. These two genes were regulated back to
the basal levels at later time-points. Conversely, for the NK7328 plants at early infection
stages, the expression levels of these three genes remained unchanged compared to the
mock plants. The only significantly strong induction of AOS was observed in leaves of this
cultivar at 8 dai (15.4-fold, p = 0.01) (Figure 3).

Meanwhile, for ABA pathway-mediated responses, in roots at 2 dai, a downregulation
of ABI appeared in the infected CP888 plants (Log2FC = −1.8, p = 0.01). For the NK7328
plants, the expression level of ABI was unchanged at early time-points when compared to
the control NK7328 plants. A small induction of ABI appeared at 8 dai (2-fold, p = 0.01).

Similar expression patterns of ABI were observed in leaves of each cultivar (Figure 3).
In the infected CP888 plants, ABI was downregulated at early time-points, particularly
at 1 dai (Log2FC = −2.0, p = 0.01) before regulating at the basal level. Nonetheless, when
NK7328 plants were infected with the pathogen, a small induction of ABI was observed
at all time-points except for 2 dai, displaying at 1 dai (1.9-fold, p = 0.02), 4 dai (2.2-fold,
p = 0.01), and 8 dai (3.3-fold, p = 0.04).

In conclusion, data on the PAL, LOX3, LOX10, AOS, and ABI profiles indicate that F.
verticillioides infection might result in the downregulation of SA, JA, and ABA biosynthesis
pathways in the susceptible line CP888. By contrast, a small upregulation of these pathways
was observed in the line Bt/GT NK7328. Thus, the SA, JA, and ABA-mediated resistance
responses were likely to be activated stronger in plants of line NK7328 compared to line
CP888 upon infection by F. verticillioides.

3.3.2. Transcriptional Regulation of Downstream Pathogenesis-Related Proteins

To uncover the action on the transcriptional regulation of PRs, the expression of three
genes, PR2 (encoding β-1,3-glucanase), PR3 (encoding chitinase) and PR10 (encoding PR10
protein) downstream of the archetypal defense hormones were examined.

In roots, at 1 dai, a strong upregulation of PR2 (23.6-fold, p = 0.01) and PR3 (7.9-fold, p = 0.01)
was observed in the CP888 plants when infected with F. verticillioides (Figure 3). From 2 dai
onwards, both PR2 and PR3 were regulated back to the basal level with the exception of
an upregulation of PR2 at 8 dai (5.5-fold, p = 0.01). For NK7328 plants, upon infection by
F. verticillioides, a concomitant upregulation of PR2, PR3, and PR10 was observed at all time-
points. For example, at 2 dai, there was a significantly strong induction of PR2 (107.9-fold,
p = 0.01), PR3 (17-8-fold, p = 0.01), and PR10 (5.5-fold, p = 0.01) in the infected NK7328 plants.

In leaves, upregulation of PR2, PR3, and PR10 was shown in the infected CP888 plants
at all time-points. At 2 dai, PR2 increased 47.1-fold (p = 0.01) and PR3 increased 20.1-fold
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(p = 0.01) versus the control CP888 plants. Meanwhile, for line NK7328, these genes were
also strongly induced upon infection by F. verticillioides in which a significant upregulation
of PR10 was observed from 1 dai onwards, of PR3 from 2 dai onwards, and of PR2 from
4 dai onwards. Exceptionally, PR2 was significantly down-regulated at early time-points
(Figure 3).

In conclusion, data on the expression levels of PR2, PR3, and PR10 indicated that the
infection of F. verticillioides could result in a stronger upregulation of PRs production by
line NK7328 when compared to line CP888.

3.3.3. Transcriptional Regulation of Benzoxazinoids

When it comes to the action on the BXs biosynthesis pathways, we assessed three biomarker
genes, BX6, BX8 and BX9, encoding three respective hallmark enzymes, 2-oxoglutarate-dependent
oxygenase 6, 2-oxoglutarate-dependent oxygenase 8, and 2-oxoglutarate-dependent oxygenase 9,
in the BXs pathways.

In roots, upon infection by F. verticillioides at 2 dai, a small upregulation of BX9
was shown at line CP888 (1.9-fold, p = 0.02). For line NK7328 plants, at 1 dai, BX9 was
downregulated (Log2FC = −1.2, p = 0.023). BX6 (1.6-fold, p = 0.02) and BX8 (2.7-fold,
p = 0.01) were slightly induced at 2 dai.

In leaves, for line CP888 at 1 dai, the infection resulted in a significant down-regulation
of BX9 (Log2FC = −0.9, p = 0.067) compared to the control CP888 plants. Meanwhile,
for line NK7328 plants, at 1 dai, BX6 (1.8-fold, p = 0.01) and BX8 (2.5-fold, p = 0.07)
were concomitantly induced. BX8 remained upregulated afterwards, particularly at 8 dai
(27-fold, p = 0.01). A small but significant regulation of BX6 was also observed at 8 dai
(3.3-fold, p = 0.01).

In summary, upon infection by F. verticillioides, the biosynthesis of BXs seemed to be
activated more strongly in line NK7328 than in line CP888 by upregulating BX6 and BX8
in both roots and leaves.

4. Discussion

There is no local recommendation on the selection of FER-resistant maize lines in
Vietnam. Hybrid lines of CP888 and Bt/GT NK7328 are predominant in the Vietnamese
smallholder maize farms. Our previous reports have shown that the higher contamination
of both maize fields and post-harvest maize by fumonisins was observed in hybrid line
CP888 when comparing to line Bt/GT NK7328 [4,13]. This spurred the question whether
line CP888 was more susceptible to F. verticillioides. To answer this question, we evaluated
the susceptibility of these two locally-used cultivars to infection by 12 local isolates of
F. verticillioides using a seed germination assay and an infection assay on maize seedlings.

Firstly, the seed germination assay indicated that hybrid line CP888 was more suscep-
tible to F. verticillioides than line Bt/GT NK7328. In fact, seeds of hybrid line CP888 showed
a higher infection level by all the fungal isolates through a significant reduction of seed
germination rate (Figure 1B). Despite the fact that the F. verticillioides infection also resulted
in significant negative impacts on the seed germination of line NK7328, the overall disease
levels seemed to be less than in line CP888. Likewise, the higher susceptibility of line CP888
was confirmed in the in-planta assay (Figure 2) which showed high disease severity in roots
and leaves.

However, the susceptibility of maize cultivars varied in each isolate of F. verticillioides.
For example, in the germination assay, isolates F26.31, F26.2, F22.11, and F17.1 were
highly aggressive in line NK7328, completely suppressing seed germination, while less
aggressiveness was observed for isolates F02.11, F04.11, F14.1, and F01.12 (Figure 1B).
The different virulence levels were also confirmed among isolates by the in-planta assay
(Figure 2). Isolates F01.12 and F04.11 were more virulent than isolate F14.22 on line CP888
maize seedlings.

To better understand the mode of action in these two maize cultivars upon infection
by F. verticillioides F01.12, we verified a profile of SA-, JA-, ABA-, BXs-, and PRs pathway-
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related genes. SA and JA-dependent responses play an essential role in plant-pathogen
interactions [23]. In the present work, we found that a downregulation of PAL, LOX10 and
AOS could be associated with the higher susceptibility of line CP888 to F. verticillioides.
(Figure 3). Wang et al. (2016) [24] reported that genes associated with JA and SA pathways
were significantly upregulated in line BT-1 resistant maize when infected with F. verticil-
lioides. Moreover, Lanubile et al. (2014) [25] showed that a significant stronger induction
of JA signaling pathway was observed in CO441 resistant line maize when compared to
CO354 susceptible line maize, although SA signaling remained unchanged. Meanwhile,
Battilani et al. (2018) [26] demonstrated that LOX3 activation is a major susceptibility factor
of maize against F. verticillioides. Therefore, the earlier and higher expression of LOX3 may
result in reduced resistance of line CP888 to the pathogen.

In addition, ABA phytohormone has been demonstrated to play a significant role in
plant response to abiotic and biotic stress [27]. For example, ABA synthesizing pathway-
related genes were strongly induced in BT-1 resistant maize line upon F. verticillioides
infection, suggesting that higher transcript levels of ABA-related genes might be linked to
increased host resistance to the pathogen [24]. A similar result was observed in line Bt/GT
NK7328 with an upregulation of ABI, while for the susceptible line CP888, a downregulation
of ABI was shown when infected with F. verticillioides. Ton et al. (2009) [27] documented
that ABA-dependent stomatal closure is likely to function as a defensive barrier against
the penetration of pathogens into plants. A study by Nguyen et al. (2016) [28] showed
that Fusarium species can penetrate the stomata of immature maize leaves, although it is
not the main entrance of these fungal pathogens to maize plants [29]. The upregulation
of ABI might be responsible for the stomatal closure in line NK7328. To summarize, these
results provide evidence that the higher resistance of line Bt/GT NK7328 to F. verticillioides
might be linked to the stronger induction of plant hormone biosynthesis pathways when
compared to line CP888.

Regarding the involvement of PRs in the plant defense responses against F. verticil-
lioides, we found that F. verticillioides infection resulted in a strong induction of genes encod-
ing anti-fungal proteins: β-1,3-glucanase (PR2), chitinase (PR3), and PR10 in seedlings of
both cultivars. The higher transcript level of these genes might contribute to the increased
resistance of line Bt/GT NK7328 when compared to line CP888. In agreement with Lanubile
et al. (2012) [21], the higher expression levels of PRs encoding genes were found in kernels
of the resistant line compared to kernels of the susceptible line upon infection by F. verticil-
lioides. Campos-Bermudez et al. (2013) [17] have demonstrated that F. verticillioides infection
was responsible for an upregulation of PRs encoding genes in maize plants. Collectively,
these results suggest that stronger upregulation of PRs encoding genes might contribute to
the higher resistance of line NK7328 against F. verticillioides compared to line CP888.

Furthermore, BXs and their derivatives, such as 2,4–dihydroxy–1,4–benzoxazin–3–one,
2,4–Dihydroxy–7–methoxy–2H–1,4–benzoxazin–3(4H)–one, and 6–methoxybenzoxazolin–3–
one, are well-known as defense secondary metabolites in maize against fungal pathogens [30,31].
Despite the fact that biosynthesis pathways of BXs in maize have been well documented [20],
roles of BXs in plant resistance responses against F. verticillioides remain poorly understood. In
the present study, gene expression data showed that a stronger induction of BX6 and BX8 was
observed in line NK7328 seedlings compared to line CP888, suggesting that the biosynthesis of
BXs might be activated more strongly in line NK7328 than in line CP888 upon F. verticillioides
infection. Ding et al. (2015) [32] demonstrated that the resistance response of maize to Bipolaris
maydis, a fungal pathogen causing corn leaf blight, was associated with the upregulation of BXs
synthesizing genes (e.g., BX1 and BX8). Antimicrobial activity of BXs’ derivatives against B.
maydis was also confirmed [32]. A BXs-dependent maize defense system has also been demon-
strated to have involvement in responses to Spodoptera littoralis, a leaf feeder [33]. However, in
some cases, F. verticillioides is capable of detoxifying BXs metabolites by activating gene clusters
FDB1 and FDB2 [34]. While the detoxification of BXs does not link to its endophytic colonization
to maize seedlings [35], it might result in an increase in fumonisin production by F. verticillioides.
Baldwin et al. (2019) [19] demonstrated that the knockdown of BXs detoxification-related genes
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of F. graminearum results in a significant reduction of deoxynivalenol produced by this fungus
in wheat kernels.

Last but not least, the findings revealed that a systemic resistance observed in both
roots and leaves in the response to F. verticillioides was more synchronistic in line Bt/GT
NK7328 seedlings than in CP888 seedlings. Accordingly, the synchronistic resistance
response was confirmed in line Bt/GT NK7328 by the concomitant activation of the defense-
related genes in both roots and leaves. However, information on signal transduction
pathways in the defense response of maize to F. verticillioides infection remain largely
unexplored. Murillo et al. (1999) [36] supposed that accumulation of PRs is intervened at a
distance from the infection sites of F. verticillioides.

In conclusion, the aforementioned data support the higher susceptibility of line CP888
maize to F. verticillioides compared to Bt/GT NK7328-maize line. The findings could be
added to local recommendations in the selection of FER resistant maize lines in which
Bt/GT NK7328-maize line could be superior against local F. verticillioides isolates.

5. Conclusions

In present study, the virulence variability of F. verticillioides population residing in
maize fields of Vietnamese central highlands was reported. Most importantly, the findings
evidenced that a higher resistance of line Bt/GT NK7328 to F. verticillioides might be associ-
ated with a stronger induction of phytohormones (e.g., SA, JA, and ABA), pathogenesis-
related proteins (e.g., PR10 protein, glucanase and chitinase), and BXs synthesizing-related
genes. On the other hand, downregulation of the phytohormones encoding genes coupled
with lower transcriptional expression levels of genes related to biosynthesis pathways of
PRs and BXs, might result in the increased susceptibility of line CP888 upon F. verticillioides
infection. Optimistically, our findings provide valuable information to understand the
distinctive resistance mechanism of local maize genotypes against local F. verticillioides
isolates, which could help in the selection of a Fusarium ear rot resistant maize line tailored
for local use.
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Table S2: Primers used for DNA sequencing [37]. Table S3: Primers of target genes and reference
genes used in this study [38–40].
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