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Accuracy in quantifying brain-derived steroid hormones (“neurosteroids”) has become
increasingly important for understanding the modulation of neuronal activity, development,
and physiology. Relative to other neuroactive compounds and classical neurotransmitters,
steroids pose particular challenges with regard to isolation and analysis, owing to their lipid
solubility. Consequently, anatomical studies of the distribution of neurosteroids have relied
primarily on the expression of neurosteroid synthesis enzymes.To evaluate the distribution
of synthesis enzymes vis-à-vis the actual steroids themselves, traditional steroid quantifi-
cation assays, including radioimmunoassays, have successfully employed liquid extraction
methods (e.g., ether, dichloromethane, or methanol) to isolate steroids from microdis-
sected brain tissue. Due to their sensitivity, safety, and reliability, the use of commercial
enzyme-immunoassays (EIA) for laboratory quantification of steroids in plasma and brain
has become increasingly widespread. However, EIAs rely on enzymatic reactions in vitro,
making them sensitive to interfering substances in brain tissue and thus producing unre-
liable results. Here, we evaluate the effectiveness of a protocol for combined, two-stage
liquid/solid-phase extraction (SPE) as compared to conventional liquid extraction alone for
the isolation of estradiol (E2) from brain tissue. We employ the songbird model system, in
which brain steroid production is pronounced and linked to neural mechanisms of learning
and plasticity. This study outlines a combined liquid–SPE protocol that improves the per-
formance of a commercial EIA for the quantification of brain E2 content. We demonstrate
the effectiveness of our optimized method for evaluating the region specificity of brain E2
content, compare these results to established anatomy of the estrogen synthesis enzyme
and estrogen receptor, and discuss the nature of potential EIA interfering substances.
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INTRODUCTION
The unequivocal identification and quantification of steroid levels
in the central nervous system (CNS) is critical for understanding
how steroids control physiology, brain function, and behavior. By
acting within the brain, steroids can regulate long-term (weeks–
months) and short-term (seconds–hours) changes in structural
morphology, synaptic physiology, and behavior. Although steroid
production has been well characterized for peripheral endocrine
glands such as the gonads and adrenals, the role of steroid hor-
mones synthesized de novo in the CNS, termed “neurosteroids” is
less well understood (Baulieu, 1991, 1998; London et al., 2006). As
we continue to gain insight on the profound effects of steroids in
the brain on neuronal activity and physiology (Compagnone and
Mellon, 2000; Woolley, 2007; Garcia-Segura, 2008; Remage-Healey
et al., 2010a), it has become increasingly important to refine and
reevaluate current methodology for the analysis of neurosteroids.

Prior to analytical measurement, steroids must be isolated by
means of extraction to maximize the accuracy and precision of
the assay. To determine the most effective means of extraction, it
is important to consider both the nature of the tissue and the type

of assay. Steroid assays typically involve a competition binding
of ligand for a specific antibody, such as in the case of radioim-
munoassay (RIA) or enzyme-immunoassay (EIA), which can be
sensitive to pH, temperature as well as the presence of interfering
proteins.

Steroid hormones are lipophylic molecules, necessitating
organic extraction from largely aqueous biological tissues and flu-
ids. The extraction of steroids from vertebrate plasma is the most
widely used, typically involving a single liquid–liquid extraction,
which partitions steroids into an organic solvent, traditionally
diethyl ether, or dichloromethane (in both birds and mammals:
Stone et al., 1971; Wingfield and Farner, 1975; Ball and Wingfield,
1987; Schlinger et al., 1992; Fenske, 1995).

To isolate steroids from more viscous and lipid-rich samples
such as brain tissue, simple liquid–liquid extractions often afford
only partial separation of hydrophobic (e.g., lipids) and aqueous
(e.g., proteins) compounds. More elaborate forms of extraction
are necessary. For example, the purification of sex hormones from
yolk has been performed via a series of liquid–liquid extractions,
followed by solid-phase extraction (SPE, using diatomaceous earth
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microcolumns; Schwabl, 1993). Likewise, the extraction of gonadal
steroids has in some cases required the combination of high-
performance liquid chromatography (HPLC) and SPE (Cochran
and Ewing, 1979).

Brain tissue presents a serious challenge to conventional tech-
niques because of its exceptionally heterogeneous aqueous–lipid
composition. Residual lipids have the ability to interfere with
subsequent analysis (Rash et al., 1979; Lepage et al., 1993) and
hence necessitate removal using extraction. Moreover, neuros-
teroids often exist in very low concentrations, which necessitate
a clean extraction with minimal loss of target antigen.

Traditional measures of neurosteroid levels have utilized RIA
(Abraham, 1974; Corpechot et al., 1981; Wang et al., 1997).
Although highly sensitive, immunoassays rely on antibodies with
variable cross-reactivity to steroids and non-steroidal molecules.
In assaying brain samples, the potential for non-specific binding
and protein and/or proteoglycan interference is quite high vs. more
homogeneous aqueous samples like plasma. Most importantly,
these effects can lead to inaccurate and unreliable assay reporting
of steroid levels in the brain (see Schumacher et al., 2008).

The advent of SPE offers a low-cost and safe solution to purify
samples prior to immunoassay. Indeed, reverse-phase extractions
using coated silica cartridges (C18) have been successfully imple-
mented in the extraction of steroids from plasma (Stone et al.,
1971; Heikkinen et al., 1981; Fenske, 1995), urine (Shackleton and
Whitney, 1980; Heikkinen et al., 1981; Lee and Goeger, 1998),
human prostate (Higashi et al., 2005), rat fetal tissues (Samtani
and Jusko, 2007), and brain (Mathur et al., 1993; Wang et al., 1997;
Serra et al., 2000).

Songbirds have become an extremely useful model for the
study of brain-derived steroid production and action (Schlinger
and Brenowitz, 2002; London et al., 2006; Remage-Healey et al.,
2010b). The anatomical distribution of the estrogen–production
enzyme aromatase in particular has been extensively studied in the
zebra finch brain (Shen et al., 1995; Metzdorf et al., 1999; Saldanha
et al., 2000; Pinaud et al., 2006). The degree of correspondence of
the expression of aromatase (as determined using immunohisto-
chemical methods) with region-specific brain estrogen content (as
determined via neural tissue extraction) is crucial to understand-
ing the regional bioavailability of estrogens in the CNS. The use
of SPE on songbird brain tissue, for quantification via RIA, has
been validated recently (Newman et al., 2008). However whether
SPE is in fact a reliable means to quantify neurosteroids via EIA is
unclear for any model system. This is particularly important since
often EIA can yield increased sensitivity as compared to RIA for
assaying steroidal molecules in the sub nanomolar range, such as
estrogens. Secondly, EIAs are becoming commonly used in labora-
tory research, due to their safety, reliability, and cost. Importantly,
the photochemical reactions that drive EIAs rely on specific tem-
perature and pH ranges, and can be subject to interference from
residual lipids and proteins in the biological tissue sample. There-
fore, a straightforward detailed extraction protocol is needed for
brain steroid content using EIA.

Here we assess the effectiveness of combined liquid and SPE
for the isolation of 17-β-estradiol (E2) from songbird brain tis-
sue. We address this issue in two ways: by measuring the effect
of SPE on (1) the standard displacement curve, as measured by

a commercially available EIA, and (2) the recovery rate, as mea-
sured independently using radioinert and radioisotopic methods.
We then employ these newly validated methods to describe the
regional specificity of estrogen content in brain, as well as the
estrogen content in brain relative to circulating plasma levels.

MATERIALS AND METHODS
SUBJECTS
All procedures were approved by the UCLA institutional animal
care and use committee. All brain tissue and plasma were collected
from captive adult zebra finches. Within <2 min of disturbance
(to lessen effects of stress on steroid levels) birds were rapidly
decapitated and the whole brain was removed, dissected into
brain macroareas (see below), and stored at −80˚C until homog-
enization. Blood was collected from the trunk and centrifuged at
10,000 rpm for 2 min. The resulting plasma was stored at −80˚C
until extraction.

ESTRADIOL INJECTIONS
We initially tested the ability of the commercial assay to detect
E2 in brain homogenates using conventional liquid (organic)
extraction methods with diethyl ether. Adult female zebra finches
were isolated for 24 h prior to estradiol or saline injection into
the pectoralis muscle. Estradiol treated birds (n = 3) were given
20 μl of 300 μg/ml E2 solution in saline (Sigma). Saline treated
birds (n = 3) were given 20 μl of saline (0.9% w/vol). Injections
were administered 1 h prior to tissue collection, whereupon the
brain was collected and immediately dissected onto iced alu-
minum foil into functional regions using established landmarks
(Remage-Healey et al., 2009): anterior telencephalon (AT), pos-
terior telencephalon (PT), hippocampus (HP), mediobasal telen-
cephalon, which contains aromatase-rich nucleus taeniae (MBT),
anterior hypothalamus (AH), posterior hypothalamus (PH), optic
tectum (OT), and cerebellum (CB). Brain tissues were weighed
immediately after dissection and frozen at −80˚C until further
processing.

Prior to assaying, samples were thawed, homogenized in SPO4

buffer on ice and ether extracted (see below). Samples were then
reconstituted in 120 μl of EIA buffer and assayed on an E2 EIA kit
(Cayman Chemical) for measurements of E2 levels.

ETHER EXTRACTION PROTOCOL
Whole homogenates were prepared in 2 ml of SPO4 buffer on ice
via a homogenizer (Tissue Tearor, Biospec) until complete disper-
sion of tissue into the buffer. Each sample was then ether extracted
by first adding 3 ml of diethyl ether, vortexing for 30 s, and cen-
trifuging at 2100 rpm for 5 min at 40˚C. The resulting mixture was
then incubated in a MeOH/dry ice bath to solidify the aqueous
phase (bottom) and the organic phase was eluted into a new tube.
Ether extraction was repeated twice more on the thawed aqueous
phase of each sample. Following elution, the organic phase was
dried under air in a water bath at 50˚C prior to being resuspended
in 120 μl EIA buffer for either EIA directly or SPE.

SOLID-PHASE EXTRACTION PROTOCOL
We utilized a 12-port Visiprep™SPE vacuum manifold (Supelco)
with endcapped C18-SD 3 ml cartridges (Empore). Initial
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experiments showed that extracting homogenized brain tissue
with SPE alone (i.e., without prior organic extraction) severely
curtailed recovery of E2 to as much as 10% (preliminary data, not
shown), due to homogenized tissue obstructing the flow of eluent
through the vacuum manifold. Therefore, we performed a two-
stage extraction (ether extraction as above, followed by SPE) on
brain tissue and plasma samples to determine the effectiveness of
this dual extraction method at reducing EIA assay interference.

Prior to eluting samples, C18 columns were conditioned with
250 μl of 100% MeOH and equilibrated twice with 250 μl ddH2O
under vacuum pressure. Dried ether extracted samples were resus-
pended in 120 μl of EIA buffer, loaded, and eluted through
the columns under vacuum pressure. After this initial elution,
columns were eluted with 250 μl of ddH2O twice to wash out
hydrophilic polar compounds. A third and fourth wash with 250 μl
of 90% MeOH then allowed for the elution of relatively hydropho-
bic compounds, including steroids (e.g., Newman et al., 2008).
Columns were dried under vacuum after each loading. For each
sample, eluent derived from the 90% MeOH elution was evap-
orated to dryness under a steady stream of air in a water bath
at 50˚C and stored at −20˚C. Prior experiments using gas chro-
matography (GC)/mass spectrometry (MS) confirmed that the
90% MeOH fraction fully eluted estradiol (Remage-Healey and
Schlinger, unpublished observations). Samples were resuspended
with 120 μl of EIA buffer immediately prior to assaying.

ENZYME-IMMUNOASSAY
Previously, we optimized the usage of the E2 EIA (Cayman Chem-
icals) for the quantification of E2 levels in microdialysate samples,
validated with independent confirmation of E2 using GC/MS;
Remage-Healey et al., 2008). Here we assess the ability of EIA
to accurately measure a gradient of exogenous E2 concentrations
in whole brain homogenate following two extraction protocols:
extraction with ether only and extraction with ether followed
by SPE.

Homogenized adult zebra finch brain tissue in SPO4 buffer (pH
– 7.4–6, 159.7 mg/ml) was separated into eight 500 μl aliquots.
Each aliquot was spiked with radioinert E2 to obtain one of eight
concentrations to approximate the physiological range of E2 levels
in zebra finch tissue (4000, 1600, 640, 256, 102, 41, 16, 7 pg/ml)
and in the dynamic range of the commercial EIA. Samples were
ether extracted and then reconstituted in 250 μl of EIA buffer.
Each sample was then split into two equal 120 μl aliquots to form
two sets of eight 120 μl aliquots, and SPE was conducted on one
set (as described above).

Ether and ether +SPE extracted samples were assayed on E2 EIA
along with unextracted standards of equivalent E2 concentration
(4000, 1600, 640, 256, 102, 41, 16, 7 pg/ml) to determine the effec-
tiveness of the two extraction protocols in reducing assay interfer-
ence for the displacement curve. We estimated the recovery of E2

after ether extraction alone vs. ether extraction plus SPE. Recovery
was estimated in two ways: (1) the extraction recovery of radio-
labeled E2 as determined via radioisotopic decay using a liquid
scintillation counter and (2) the extraction recovery of radioinert
E2 as determined via EIA. We added 10,000 cpm of tritium-labeled
E2 (48.9 nM, [3H]-Estradiol; New England Nuclear) into a set of
2 ml SPO4 aliquots in duplicate. Both sets were ether extracted

and one set was resuspended with 120 μl of EIA buffer prior to
SPE. Extracted aliquots were then reconstituted with 100 μl of
methanol and vortexed for scintillation counting alongside unex-
tracted but equivalently spiked samples. Radioinert E2 was added
to a separate set of 2 ml SPO4 aliquots in quadruplicate. Both sets
were ether extracted and one set was resuspended with 120 μl of
EIA buffer prior to SPE. Extracted aliquots were then reconsti-
tuted with 2 ml of SPO4 buffer and assayed via EIA alongside
unextracted but similarly spiked samples. A similar extraction
recovery was estimated for homogenized brain tissue in a separate
experiment.

COMBINED LIQUID AND SOLID-PHASE EXTRACTION
Using the optimized combined liquid and SPE procedure we
measured differences in E2 levels of dissected macroareas of the
adult male zebra finch brain. Adult males (n = 12) were placed
in sound isolation chambers 24 h prior to exposure to a stimulus
consisting of two females placed in an adjacent cage inside the
chamber. Immediately after 30 min of exposure to females, males
were decapitated and whole blood was collected, centrifuged, and
plasma was stored at −80˚C. Brains were dissected on ice into func-
tional groups, according to established procedures for isolating
macroareas based on primary landmarks (see above; Remage-
Healey et al., 2009). Immediately after dissection, tissue, and
plasma wet weight was recorded and frozen at −80˚C. Prior to
assay, tissues were thawed, homogenized in SPO4 buffer on ice,
ether extracted, and solid phase extracted (as above). Finally, sam-
ples were reconstituted in 120 μl of EIA buffer and assayed on an
E2 EIA kit.

RESULTS
ESTRADIOL INJECTIONS
Compared to saline treated birds, we observed a clear eleva-
tion in overall E2 levels across ether extracted brains of E2

treated birds (df = 1,28 F = 30.686, p < 0.0001; Figure 1). Mann–
Whitney post hoc tests revealed that E2 levels were significantly

FIGURE 1 | Injection of 17β-estradiol (E2) into the pectoralis muscle

produces elevated brain E2 content, relative to saline-injected controls

(n = 3 each; * p < 0.05 for between group comparisons for each brain

region). CB, cerebellum; OT, optic tectum; AH, anterior hypothalamus; HP,
hippocampus; MBT, mediobasal telencephalon (containing avian amygdala);
AT, anterior telencephalon; PT, posterior telencephalon.
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FIGURE 2 | Displacement curves for each extraction method reveal that combined liquid (ether) and solid-phase extraction (SPE) method improves E2

assay sensitivity at lower concentrations (i.e., <640 pg/ml).

elevated following E2-injection in HP, AH, OT, nucleus taeniae,
and PT (Z > 1.96; p < 0.05 for all comparisons) but not in AT or
CB (p > 0.13). As expected, substantial variation in E2 levels occurs
across brain regions regardless of treatment (df = 6,28 F = 8.899,
p < 0.0001). Therefore, the commercial EIA demonstrated that
endogenous and exogenous E2 was detectable in songbird brain
tissue following ether extraction alone.

COMBINED ETHER AND SOLID-PHASE EXTRACTION OF BRAIN TISSUE
Recovery of estrogens following our extraction procedures was
estimated using both radiolabeled and radioinert estrogens in
separate extraction experiments. In SPO4 solution, we observed
a 93.4 and 86.2% recovery of radiolabeled and radioinert E2,
respectively, due to ether extraction alone. With ether extraction
followed by SPE, we observed a total net recovery of 76 and 89.5%
of radiolabeled and radioinert E2, respectively (Figure 3). In a sep-
arate experiment, the total recovery of E2 following ether +SPE
extractions (as measured by EIA) from brain homogenate was
60.09 ± 4.02% (in quadruplicate). The results presented below for
extracted samples does not account for recovery.

We compared the slopes of displacement curves that were
extracted with ether alone vs. ether +SPE (Figure 2). The slope of
the ether extracted dilution curve was indistinguishable from zero
(F = −3.946, p = 0.121), and therefore is a poor predictor of brain
E2 content, particularly at lower levels. A multiple linear regression
model indicated that the ether extracted curve was indeed not par-
allel to the standard curve (t = 9.708, p = 1.41e-08; Figure 2: box
data labels). Our results strongly suggest that ether alone yields a
particular poor extraction.

Enhancing extraction by combining ether followed by SPE,
demonstrated a significant improvement in the slope of the

FIGURE 3 | Percent recovery of E2 using two primary extraction

methods. Recovery was estimated using both radioisotopic (hot) and
radioinert (cold) E2 in extracted samples vs. equivalent unextracted
samples.

displacement curve compared to the slope of the ether only
extraction (t = 4.356, p = 0.0038). Taken together, the displace-
ment curve extracted with ether +SPE demonstrated a significant
improvement in dynamic sensitivity as compared to the displace-
ment curve extracted with ether alone. Despite this improvement,
the use of ether +C18 columns for the extraction of serially diluted
E2 spiked brain homogenate yielded a curve that was not strictly
parallel with the standard curve (t = 5.352, p = 4.36e-05; Figure 2:
triangle data labels). Importantly, however, the commercial EIA
was better able to discriminate between differences in E2 levels at
lower concentrations (<650 pg/ml) with the addition of the SPE.
This is particularly important since E2 concentrations in zebra
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finch plasma and brain predominantly occur within this critical
range.

E2 IN MALE ZEBRA FINCH BRAIN
Using our optimized ether +SPE protocol, EIA was used to mea-
sure brain E2 levels in adult male zebra finches following 30 min
of exposure to adult females (n = 12; Figure 4). There were sig-
nificant regional differences in E2 levels (df = 8,90 F = 3.025,
p = 0.0047). MBT levels were highest, and were significantly
greater than those found in telencephalon (Fisher’s PLSD: vs.
AT: p = 0.0211, vs. PT: p = 0.028) and hypothalamus (vs. AH:
p = 0.0081, vs. PH: p = 0.0057). MBT (containing aromatase-
rich nucleus taeniae) and the HP both had E2 levels signifi-
cantly higher than plasma (MBT: p = 0.0011, HP: p = 0.0499), OT
(MBT: p = 0.0003, HP: p = 0.0178), and CB (MBT: p = 0.0002,
HP: p = 0.0152).

DISCUSSION
Estrogens are implicated in a vast number of functions in the
vertebrate brain, including actions derived from local and acute
synthesis within the brain itself (Balthazart et al., 1990; Baulieu,
1998; Forlano et al., 2006). We describe here the challenges of mea-
suring E2 in brain homogenate using liquid extraction alone, and
outline a reliable, low-cost means of serial liquid–SPE steps that
together improve quantification of brain E2 content with EIA.

ETHER EXTRACTION ALONE
Our results show that the commercial E2 EIA assay used here is
capable of detecting exogenous increases in brain E2 concentra-
tion. Further experiments showed that EIA is capable of detect-
ing changes in ether extracted brain E2 content induced by the
potent aromatase inhibitor Fadrozole (35–37% decrease in brain
E2 content in telencephalon and HP; data not shown) and that

FIGURE 4 | Brain and plasma (P) E2 content in adult male zebra finches

(n = 12) using the optimized combined liquid–solid-phase extraction

procedure. Elevated brain E2 content demonstrated here corresponds to
functional and region-specific differences in aromatase (ARO) and estrogen
receptor (ER) expression in the zebra finch brain. Plus signs indicate
elevated expression of ARO and ER for each brain region; minus signs
indicate little to no expression (after Shen et al., 1995; Metzdorf et al., 1999;
Saldanha et al., 2000). Abbreviations as in Figure 1. P, plasma. Letters
indicate significant differences among brain regions (p < 0.05).

ether extracted brain estrogens are detectable and unequivocally
confirmed using GC/MS (see Results). These initial experiments
confirmed the capacity of the commercial EIA to detect brain E2

levels, and changes in brain E2 content induced via endogenous
and exogenous treatments. Importantly, however, the experiment
with exogenous E2-injection (Figure 1) alerted us to the poten-
tial for inaccuracies in steroid measurements at biological relevant
levels using liquid extraction alone.

VALIDATING SPE
We tested the possibility that a two-stage extraction procedure was
required to eliminate interfering substances from the EIA reac-
tion plate. SPE, particularly reverse-phase extraction using C18
coated silica, has gained popularity for a variety of applications
as a method of purifying samples for steroid analysis (see Intro-
duction). In particular, SPE has been useful in optimizing the
detection and quantification of brain E2 content as measured by
RIA (Newman et al., 2008). Here we provide an independent con-
firmation of the validity of this approach for brain E2 content, and
we demonstrate SPE’s potential to improve the performance of
the EIA for the quantification of brain E2, particularly at the low,
subnanomolar concentrations.

Extraction prior to assaying plays an integral part in mini-
mizing possible interference. Indeed, we observe that a limited
liquid–liquid extraction of brain homogenate hinders EIA’s ability
to detect variation of sample E2 levels at the lower range of steroid
concentrations, effectively “flattening” the displacement curve and
rendering any measurement below approximately 600 pg/ml unre-
liable (Figure 2). Subsequent elution of samples through SPE
greatly increased the assay’s sensitivity at the lower end of the
curve in comparison to a liquid–liquid only extraction.

The most likely explanation for the improvements seen here
with SPE is the elimination of substances that interfere with the
EIA’s enzyme reaction(s). Assay interference can originate from
a number of sources and can occur at different stages of the
immunoassay. EIAs rely on the highly specific association between
the primary antibody and the target antigen. In the case of com-
petitive EIAs, the resulting antibody–antigen complex must also
bind with high affinity to a plate-bound antibody IgG. The degree
to which the extraction step minimizes cross-reactivity and non-
specific binding during plate development likely directly impacts
the accuracy and precision of the resulting colorimetric reaction
step.

A number of substances may disrupt proper ligand–antibody
competition, which can lead to the distortion of the displacement
curve. While highly sensitive, the E2-antibody used here has cross-
reactivity for estradiol-3-glucuronide (14%), estrone (12%), and
estradiol-17-glucuronide (10%). These and estrogenic derivatives
and conjugates, such as E2 fatty acid esters, have similar chemical
properties to estradiol, and may remain in significant quantities
after a simple ether extraction. Although little is known of the
presence of these E2 metabolites in birds, there is evidence that E2

fatty acid esters are synthesized in the rat brain (Xu et al., 2002) and
exert estrogenic effects on a variety of rat brain tissue (MacLusky
et al., 1989). The presence of these conjugates may inflate the mea-
surement of unconjugated E2 levels by directly competing with free
E2 for antibody binding sites. In addition, E2 fatty acid esters are
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known to associate with lipoproteins during circulation (Larner
et al., 1987), granting them both lipophilic and hydrophilic prop-
erties that further complicate liquid extraction. These and other
substances may persist in the saponified layer between the aqueous
and organic phase during liquid (organic) extraction alone, and
subsequently provide a source of interference during EIA. Residual
non-estrogenic lipids, likely composed of free fatty acids and gly-
colipids, can prevent binding indirectly, by sequestering steroids
or their antibodies within micelles (Rash et al., 1979). The fore-
brain of the zebra finch also contains robust expression of estrogen
receptors (ERs; Gahr and Metzdorf, 1999) and unextracted ER and
brain-derived E2 binding proteins may all compete with the assay’s
E2-antibody for both free and conjugated E2. The current findings
are consistent with the hypothesis that the two-stage liquid/SPE
protocol improves the separation of E2 from such sources of assay
interference.

Despite it’s safety and cost advantages, EIA may in fact be more
sensitive to interfering substances than RIA. The quantification of
bound antigen using EIA is achieved by first washing away free
reagents, and then measuring the rate of a photochemical reaction
(e.g., hydrolysis of acetylcholine by acetylcholinesterase) with a
spectrophotometer. This process is susceptible to the presence of
non-specific proteases that may significantly reduce the reactive
properties of the EIA.

Using this optimized two-stage liquid/SPE protocol, the cur-
rent results demonstrate that regional differences exist in brain

E2 content. The addition of SPE yielded results that are consis-
tent with known patterns of aromatase activity and ER expression
in the songbird brain (Saldanha et al., 2000). Areas with estab-
lished aromatase expression showed higher concentration of E2

in males, including mediobasal telencephalon containing nucleus
taeniae, hypothalamus, HP, and telencephalon, in contrast to the
CB and OT, which contain little to no known aromatase in the
uninjured brain (Saldanha et al., 2000). The region-dependent
ER expression throughout the zebra finch brain (Metzdorf et al.,
1999) is also very likely to contribute to region differences in
brain estrogen content as measured using these and similar
methods, due to local accumulation and sequestration of neu-
rally and peripherally derived estrogens. These findings for the
region specificity of brain estrogen content, and the correspon-
dence to brain aromatase and ER expression are presented in
Figure 4. Lastly, the relative paucity of E2 in plasma compared
to brain regions such as the MBT and HP is consistent with
the hypothesis that the brain is the primary source of estrogens
in the male songbird (Schlinger and Arnold, 1991; Taves et al.,
2010).
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