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Comparison of coronavirus disease 2019 (COVID-19) case numbers over time and between locations is
complicated by limits to virological testing to confirm severe acute respiratory syndrome coronavirus 2 infection.
The proportion of tested individuals who have tested positive (test-positive proportion, TPP) can potentially be
used to inform trends in incidence. We propose a model for testing in a population experiencing an epidemic of
COVID-19 and derive an expression for TPP in terms of well-defined parameters related to testing and presence
of other pathogens causing COVID-19-like symptoms. In the absence of dramatic shifts of testing practices in
time or between locations, the TPP is positively correlated with the incidence of infection. We show that the
proportion of tested individuals who present COVID-19-like symptoms encodes information similar to the TPP
but has different relationships with the testing parameters, and can thus provide additional information regarding
dynamic changes in TPP and incidence. Finally, we compare data on confirmed cases and TPP from US states up
to October 2020. We conjecture why states might have higher or lower TPP than average. Collection of symptom
status and age/risk category of tested individuals can increase the utility of TPP in assessing the state of the
pandemic in different locations and times.

COVID-19; modeling; test-positive proportion

Abbreviations: CLI, coronavirus disease 2019–like illness; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SEIR,
susceptible-exposed-infectious-recovered; TPP, test-positive proportion; TSP, test-symptomatic proportion.

The number of confirmed infections with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) is deter-
mined by the true infection rate and the number and type of
people who are tested for presence of the virus. Monitoring
the pandemic in a location (or comparing locations) by the
number of reported cases is confounded by the amount and
type of testing being done; the number of cases is inherently
limited by the number of tests performed. The test-positive
proportion (TPP) is used as an additional indicator of case
burden; a high TPP coupled with a large number of cases
is seen as an indication that the reported cases represent
the “tip of the iceberg” and that testing capacity should
be increased to get a better understanding of transmission.
Where capacity is limited, tests are given preferentially
to those more likely to be positive, such as hospitalized
patients, meaning that mildly symptomatic infections are

likely to be undetected. On the other hand, a low TPP is
viewed as an indication of a potentially effective surveillance
and containment strategy (1) and implies that increased
testing would not reveal a substantial number of undetected
infections. The World Health Organization and US Centers
for Disease Control and Prevention made TPP part of their
guidelines for easing lockdown restrictions, indicating that
it can be used to assess readiness for releasing restrictions
and recommending that communities should be below vari-
ous thresholds (5%–20%) for 14 days before they consider
relaxing social-distancing measures (2, 3).

While these interpretations are broadly plausible, many
aspects of testing strategies, including the rate of testing
of symptomatic and asymptomatic individuals, the num-
ber of tests available, and the performance of the tests,
could change TPP independently of the true incidence. We
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aimed to explore the relationship between TPP and testing
parameters, and suggest additional metrics and data to aid
interpretation of the TPP.

METHODS

Model for disease and testing

We modeled transmission of SARS-CoV-2 using a
susceptible-exposed-infectious-recovered (SEIR) model (see
Web Appendix 1 for further details, available at https://doi.
org/10.1093/aje/kwab023). The state variables represent
the number of individuals in each compartment, with
S + E + I + R = N. All individuals in the I compartment are
infectious and are symptomatic with coronavirus disease
2019–like illness (CLI) until they recover. A proportion
pI of those in the S and E compartments are symptomatic
with CLI from other causes (henceforth “non–SARS-CoV-2
CLI”).

We model the application of tests using compartments
for available test kits and completed tests applied to SARS-
CoV-2–positive/SARS-CoV-2–negative and symptomatic/
asymptomatic individuals. We assume that an individual’s
rate of testing differs by symptom status. Recovered individ-
uals are assumed not to seek testing. The test has sensitivity
pS. Exposed and infectious individuals are isolated upon
testing (efficacy of isolation is assumed to be perfect, repre-
sented by moving those individuals to the R compartment).

A schematic for the natural history and testing model is
shown in Figure 1 (see Web Table 1 for a table of param-
eters). The demand for tests is equal to the number of
individuals in each group multiplied by their rate of test-
seeking. Let dA and dS be the daily rate of testing among
asymptomatic and symptomatic individuals, respectively.
For example, every day a proportion dS of symptomatic indi-
viduals will receive a test. Total demand can be expressed as
D = (pIdS+(1−pI)dA)(E+S)+dSI (i.e., the total number of
tests sought by the entire population each day). The demand
from any specific group is denoted using subscripts (e.g.,
DES for exposed individuals with CLI). We assume that
anyone with CLI seeks testing at the symptomatic rate dS.

The number of tests performed per day is limited by a
daily maximum number of tests that can be performed Tmax
(i.e., laboratory capacity) and by the number of available test
kits T (i.e., test stockpile). We choose a simple functional
form for the number of tests performed per day: T∗ =
min(T , D, Tmax).

If demand for testing exceeds the number of available test
kits, the rate of testing for each compartment is normalized
by the demand (e.g., rate of testing among symptomatic,
exposed individuals is DEST∗/D). Thus, test kits are allo-
cated to each type of individual proportional to demand.

Relationship between incidence and TPP

The transmission model gives rise to an equation for
TPP as a function of infectious prevalence and the model
parameters. We assume that early in the epidemic, there are
few individuals in the R compartment (R ≈ 0). The TPP is

the number of positive tests over the total number of tests
carried out on a given day, or

TPP = pSdS
I
N + pS [pIdS + (1 − pI) dA] E

N

dS
I
N + [pIdS + (1 − pI) dA]

( S+E
N

)

= pS [dSI + (pIdS + (1 − pI) dA) E]

N [pIdS + (1 − pI) dA] + (dS − dA) (1 − pI) I
(1)

as S + E = N − I when R is very small. Rearranging gives

TPP[pIdS + (1 − pI)dA]

= I

N
[pSdS − TPP(dS − dA)(1 − pI)]

+ E

N
pS[pIdS + (1 − pI)dA]

All components of the above equation are positive if
dA ≤ dS. An upper bound for infectious prevalence is thus

I

N
≤ TPP

[
pIdS + (1 − pI)dA

]

pSdS − TPP(dS − dA)(1 − pI)

We assume that test sensitivity for pre-infectious individ-
uals is very low (4) so that the E class contributes little to
detected cases compared with the I class, and the above
inequality becomes an approximate equality.

Given the infectious prevalence I/N at a point in time
and assuming that the majority of detected cases are from
the infectious compartment, the number of positive tests per
capita (henceforth “confirmed incidence”) is estimated by

Ipos = dSpS
I

N

T∗

D
. (2)

We write TPP as a function of the confirmed incidence rate,

TPP ≈ Ipos

T∗
D [pIdS + (1 − pI) dA] + (

1 − dA
dS

)( 1−pI
pS

)
Ipos

.

(3)

If the relevant parameters were known, we could use equa-
tion (3) to “estimate” the confirmed incidence from the TPP;
we refer to this as the “TPP-estimated” incidence.

Additional metrics to aid interpretation of TPP

If the number of individuals with CLI (due to SARS-
CoV-2 and/or other causes) among those seeking testing is
known, the test-symptomatic proportion (TSP) provides a
similar relationship between confirmed incidence and TSP,
assuming (R ≈ 0):

Ipos ≈ T∗

D
dSps

TSP [pIdS + (1 − pI) dA] − pIdS

(1 − pI) [dS − TSP (dS − dA)]
. (4)
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Figure 1. Schematic for disease natural history (susceptible-exposed-infectious-recovered) and testing. Administered tests to each compart-
ment are determined by the proportion of individuals symptomatic with coronavirus disease 2019–like illness (CLI) in each compartment
(proportion pI in the S and E compartments caused by non–severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogens, 1
in the I compartment caused by SARS-CoV-2) and by the rate of testing among symptomatic (dS) and asymptomatic (dA) individuals. Tests
administered each day are limited by available tests T∗, and assigned proportionally to each compartment according to demand (T∗/D). Tests
applied to individuals with CLI are “symptomatic” and vice versa. Tests applied to individuals in the S compartment are true negatives, while
tests applied to individuals in the E or I compartment are true positives.

In addition to the presymptomatic exposed period, some
individuals remain asymptomatic throughout the course of
infection. To model asymptomatic infections, we assume
that a fraction pC of infected individuals become infectious
with symptoms, with the remaining 1 − pC not developing
CLI due to their SARS-CoV-2 infection. We assume that
infectiousness is the same regardless of symptoms. The
relationship in (3) becomes

TPP ≈
Ipos

T∗
D [pIdS+(1−pI) dA]+ (dS−dA)[

dS+(pIdS+(1−pI)dA)
(1−pC)

pC

] (1−pI
pS

)Ipos

(5)

This structure allows testing demand to vary for certain
target groups, defined either by frequent exposure to infec-
tion (e.g., essential workers) and increased β, or increased
probability of symptoms (e.g., the elderly) and increased
pS. We assume that these risk groups can be tested at a
rate (i.e., dS and dA) different from the rate in the general
population. The overall TPP will depend on the proportion of
tested individuals in these target groups. We use our previous
formulas to assess TPP and TSP stratified by risk group and
the potential for bias in the overall TPP caused by testing of
these groups.

Assessment of TPP-incidence and TSP-incidence
relationships using simulations

To assess the accuracy of equations (3) and (4), we sim-
ulated the SEIR model described above using an adaptive

tau-leaping method (R package adaptivetau). From the sim-
ulations we calculated the weekly confirmed incidence, TPP,
TSP, and supply/demand ratio T∗/D (stratified by risk group
where relevant), varying testing parameters dA, dS, and pI.
We then explored the impact of temporal variation in testing
in 2 ways: by inducing linear changes in testing parameters
and by drawing available tests T∗ from a lognormal distri-
bution to represent random fluctuations in capacity. Finally,
to understand the effect of targeting testing at high-exposure
and high-vulnerability populations, we varied the size of the
risk groups, the relative hazard of infection and probability
of symptoms, and relative rates of testing between the high-
and low-risk groups. In simulations, we used parameters
from existing literature where possible (5–12) (Web Table
1), with initial R0 drawn from a uniform distribution between
3 and 5. We modeled a lockdown with a reduction in R0 to
0.8–1 at 21–35 days after the start of the simulation.

Work with empirical data

In addition to our simulations, we used data from the
COVID Tracking Project (13) to examine the relationship
between TPP and confirmed cases across states, and within
states across time, with population data for states from the
US Census Bureau (14). We used the derived equations to
plot the expected relationship between TPP and confirmed
cases if all states had the same testing parameters, by fitting
equation (3) to the observed confirmed cases using ordinary
least squares regression. Similarly, we fitted equation (3)
to observed confirmed cases for a time series within a
single state to identify periods of time in which the trend
in TPP is not expected given the trend in confirmed cases.
In addition to national data, we used data from the Ore-
gon Health Authority (15), which reports the proportion of
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coronavirus disease cases with various symptoms to illus-
trate trends in symptoms over time.

RESULTS

Relationship between TPP and confirmed incidence

In Figure 2, we vary each model parameter in turn, with
the other parameters fixed at default values (Web Table
1), to explore its univariate relationship with TPP. As the
rate of confirmed infections increases (Figure 2A), the TPP
rises because there are more symptomatic, SARS-CoV-2–
positive individuals in the population demanding tests. In
addition, testing strategy can affect the TPP and TSP. Coun-
terintuitively, if individuals with CLI are tested at a higher
rate, the TPP will decrease (Figure 2B) if the rate of con-
firmed infections is held constant. In this case, higher rate
of testing individuals with CLI means that individuals with
non–SARS-CoV-2 CLI will also be tested at a higher rate,
leading to lower TPP. If more asymptomatic individuals are
tested (e.g., through expanding eligibility for testing), the
TPP will decrease, albeit modestly (Figure 2C). If there is
a shortfall of testing supply relative to demand (Figure 2D),
TPP will increase because the confirmed cases represent
a smaller proportion of infectious individuals, and more
overall demand from infectious individuals leads to higher
TPP. Finally, factors independent of policy decisions can
affect the TPP. The test sensitivity has a negligible effect on
the TPP (Figure 2E) when the confirmed incidence is held
constant. On the other hand, if prevalence of non–SARS-
CoV-2 CLI is higher (e.g., during an influenza outbreak),
the TPP will decrease as more SARS-CoV-2–negative indi-
viduals will seek testing (Figure 2F).

Figure 2 also shows the relationship between TSP and
the model parameters. TSP increases modestly as infec-
tious prevalence increases (Figure 2A) and decreases as
the testing rate among asymptomatic individuals increases
(Figure 2C). In contrast to the TPP, the TSP increases with
higher testing rate of individuals with CLI (Figure 2B) and
higher prevalence of non–SARS-CoV-2 CLI (Figure 2F),
because both of these parameters lead to increased test-
ing demand from symptomatic individuals. Testing supply
shortfall (Figure 2D) and test sensitivity (Figure 2E) have
negligible effects on the TSP.

Equation (3) provides intuition for how TPP and detected
cases will change under different scenarios. During the
exponential growth phase of an epidemic, TPP will rise as
infectious prevalence rises rapidly (Figure 2A). Similarly, if
the rate of new infections is declining and testing strategies
remain constant, TPP will decrease over time. This obser-
vation provides a simple way to understand whether a fall
in case numbers is due to a true decline in incidence or a
shortage of test kits. If the infectious prevalence declines,
the rate of confirmed cases and the TPP will both decline
(Figure 2A), whereas if the supply of test kits is falling rel-
ative to demand but the infectious prevalence remains con-
stant, the rate of confirmed cases will decrease (equation (2))
but the TPP will remain constant (equation (1); with constant
infectious prevalence, TPP is independent of test kit supply).
Similarly, concurrently rising TPP and confirmed incidence

is an indication that infectious prevalence is truly increasing.
If a rise in confirmed cases were due to increases in testing
capacity alone, we would not expect TPP to increase.

Relationship between TPP and TSP

Figure 2 demonstrates how the TSP could provide further
information to interpret changes in confirmed cases and TPP.
The relationship between TSP and testing parameters is in
some cases the inverse of the relationship between TPP and
the parameters. For example, a decrease in TPP coupled with
a rise in TSP over time provides evidence for an increase in
prevalence of non–SARS-CoV-2 CLI, or in the rate of testing
among individuals with CLI, over a change in testing rate
among asymptomatic individuals. External data on changes
in influenza-like illness over time can further narrow down
the cause of dynamic changes in TPP and TSP.

The presence of subclinical infections does not substan-
tially alter the relationship between TPP and confirmed
incidence if the majority of confirmed cases and positive
tests are from clinical cases. If confirmed incidence is fixed,
infectious prevalence, and thus TPP, increase modestly as
clinical fraction decreases.

Simulation results

We assessed the accuracy of the TPP and TSP formulas
using data generated from an SEIR model. We fixed the
testing parameters for all simulations and sampled before-
lockdown R0 uniformly from 3 to 5 (higher than observed
values (6) to include parameter space in which supply of
testing is limited), time of lockdown from 21 to 35 days, and
after-lockdown R0 from 0.8 to 1 in the absence of testing (5,
6). Figure 3 shows that if the supply of test kits is sufficient
to cover the demand from symptomatic and asymptomatic
individuals, the relationship between TPP and confirmed
incidence is as in equation (3) (gray points) but that if there
is limited supply of test kits the proportion of cases detected
decreases while the TPP remains the same. Therefore, the
TPP observed in the simulations is greater than predicted
(black points). We observe a similar pattern for TSP. We
found that the relationship between TPP and incidence was
unaffected by the efficacy of quarantine (Web Appendix 2
and Web Figure 1).

TPP was strongly correlated with the confirmed incidence
rate (average Pearson correlation = 0.94 across all simula-
tions in Figure 3). Correlation remained high in the presence
of linear changes in testing parameters over time within a
location but decreased when there was large variability in
daily available test kits. As the variance of testing availabil-
ity increased, the correlation between TPP and confirmed-
incidence time series decreased (Web Appendix 2 and Web
Figure 2), as decreases in confirmed cases due to testing
shortage occurred without concurrent decreases in TPP.

Effect of differential testing within risk groups

High-exposure individuals are more likely to be infected,
so infectious prevalence in this group will be higher than the
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Figure 2. Test-positive proportion (solid line) and test-symptomatic proportion (dotted line) vary differentially along the gradients of testing
strategies: rate of incident confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections (A), rate of testing among
symptomatic individuals (B), rate of testing among asymptomatic individuals (C), shortfall of test supply relative to demand (D), test sensitivity
(E), and prevalence of non–SARS-CoV-2 coronavirus disease 2019–like illness (F). CLI, coronavirus disease 2019–like illness.
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Figure 3. Confirmed incidence per 10,000 against test-positive
proportion (A) and test-symptomatic proportion (B) at 4 weeks,
from 10,000 susceptible-exposed-infectious-recovered simulations
in which initial and lockdown R0 values were randomly sampled from
specified ranges (see text). The darkness of the points represents
whether supply of testing was sufficient to cover demand at week 4,
which is a function both of the availability of test kits and R0. The solid
line in each panel denotes the relationship in equations (3) and (4).

general population. High-susceptibility individuals are more
likely to have symptoms and thus more likely to be tested, so
TPP will be higher in this group. However, the relationship
between confirmed incidence rate and TPP remains the same
unless the groups are tested at different rates.

We found that TPP at 35 days was positively correlated
with relative testing rate in high-exposure groups among
symptomatic individuals (Pearson correlation = 0.71) and
negatively correlated with relative testing rate among

asymptomatic individuals (correlation = −0.37). In contrast
we found that TPP at 35 days was negatively correlated
with relative testing rate in high-exposure groups among
symptomatic individuals (Pearson correlation = −0.27) and
asymptomatic individuals (correlation = −0.50). High rates
of testing of symptomatic individuals in this group is highly
effective at reducing transmission; the clinical fraction was
0.75. Therefore, higher testing is associated with lower
infectious prevalence among the high-susceptibility group,
and lower TPP.

If we had data on testing rates and cases stratified by risk
group (e.g., job category, age), plotting confirmed incidence
against TPP for each risk group could indicate whether
there were testing differences between the groups. In simula-
tions, the TPP-incidence relationship differed by risk group
when the high-risk group was tested at a higher rate (Web
Appendix 2 and Web Figures 3 and 4). See Web Appendix
2 for more details.

Comparison of TPP and confirmed incidence across US
states

Figure 4 shows the relationship between confirmed inci-
dence per 10,000 and TPP by state, at 4 different times rela-
tive to the start of the epidemic in each state. The parameter
values that minimize the sum of squares are plotted as a
regression line. If all states had the same testing parameters
and sufficient supply of test kits, we would expect them to
lie on the line as in Figure 3 (gray dots).

States that fall below the line have a lower TPP than ex-
pected given how many cases they have observed. Figure 2
shows that there could be several reasons for this: increased
prevalence of non–SARS-CoV-2 CLI; increased testing of
asymptomatic individuals; or increased testing of individ-
uals with CLI and correspondingly higher proportion of
infections detected. States that fall above the line have a
higher TPP than expected given how many cases they have
observed. The reasons for this are the inverse of those above.
In addition, as in Figure 3, there could be a shortfall in
supply of test kits relative to demand, leading to a lower
rate of case detection than the average state. We observed
a linear relationship between confirmed incidence and TPP,
except in the first panel where there is some evidence of
saturation of TPP at high incidence rates experienced early
in the epidemic. Most states fall close to the average, while
Massachusetts and Rhode Island appear to have consistently
had lower-than-average TPP. On the other hand, Colorado
appears to have consistently had higher-than-average TPP.
Outliers are explained by changes in reporting of test data
(for example, reporting serological and polymerase chain
reaction tests separately that had previously been reported
together) (13).

Figure 5 shows time series for individual states: 7-day
rolling-average confirmed incidence (solid line) and “TPP-
estimated” 7-day average confirmed incidence (dotted line),
with parameters for each state estimated using ordinary
least squares. Figure 5 demonstrates that often the TPP (and
thus TPP-estimated incidence rate) correlates with observed
incidence. Periods of time when this is not the case are
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Figure 4. Weekly average of observed confirmed incidence (x-axis) versus test-positive proportion (y-axis) on a log–log scale. Each point
represents a state, with Colorado (CO; triangle), Massachusetts (MA; square), and Rhode Island (RI; filled circle) highlighted. The trend line is
fitted using equation (3) for each time point separately. Each panel represents weekly averaged values at a set time point from the first day on
which prevalence was estimated to have reached 0.01% in the state: A) 28 days; B) 42 days; C) 56 days; D) 70 days. Test data are from the
Covid Tracking Project (13), and population data are from the US Census Bureau (14).

indicative of dynamic changes in testing strategy leading to
more toward positive or negative individuals being tested, a
change in supply of test kits relative to demand, or a change
in reporting of tests in the data that might not represent
changes in the number of tests being administered.

For example, in early April the TPP in all states, particu-
larly New York (Figure 5A) and Michigan (Figure 5B), was
higher than in May onwards, adjusting for the observed inci-
dence rate, due to tests being given preferentially to sicker
or higher-risk individuals. In Illinois (Figure 5C), the rise in
confirmed cases in April was accompanied by a decrease in
the TPP, suggesting an expansion of testing capacity and

a systematic targeting of healthier individuals. In Oregon
(Figure 5D), confirmed incidence rose in June and July
while TPP rose less dramatically. In addition, the proportion
of confirmed cases reporting symptoms is correlated with
TPP and confirmed incidence. Although not the TSP as we
have defined it, this metric gives an indication of how much
testing is being conducted among asymptomatic individuals.
In Florida and Arizona (bottom row), the rise and fall in
cases in over the summer was accompanied by a rise and
fall in TPP, and thus TPP-estimated incidence rate, as we
would expect if infectious prevalence were increasing then
decreasing.
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Figure 5. Seven-day rolling-average confirmed incidence (solid line) and “test-positive proportion-estimated” 7-day rolling average confirmed
incidence (dotted line), using data from the Oregon Health Authority (15) and the COVID Tracking Project (13). Each panel represents a single
state: A) New York; B) Michigan; C) Illinois; D) Oregon; E) Florida; F) Arizona. Parameters for estimated incidence are fitted to each time series
separately. In (D), points represent the proportion of confirmed cases that were symptomatic, plotted on the same axis.
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DISCUSSION

We have presented a simple transmission model incor-
porating testing of SARS-CoV-2 to derive an expression
for TPP as a function of well-defined parameters. We used
this expression to understand how TPP changes with the
confirmed incidence as well as other parameters related to
testing and the presence of other pathogens in the population.
In particular, our work can be used to build hypotheses for
why a location or point in time has a higher or lower TPP
than expected.

When comparing TPP between locations, it is important
to compare the rate of incident confirmed cases at the same
time. Within the United States, earlier in the epidemic,
New York and New Jersey were pointed to as examples of
states that had very high TPPs compared with the country
average, but this analysis shows that they were in line with
the average after adjusting for the observed incidence. We
showed that high variability in testing availability reduces
the correlation between TPP and incidence, underscoring the
need to evaluate smoothed trends in TPP.

Policies related to testing of high-risk groups in the pop-
ulation can drive changes in TPP. We showed that increased
testing in groups with higher prevalence of infection can
increase the TPP, although high testing rates can efficiently
control infection and thus reduce the TPP. We note that high
TPP in small subsets of the population (e.g., incarcerated
populations) is unlikely to cause large bias in the overall
TPP unless the background incidence or testing rate is low
or the population is small (e.g., at the county level). Publicly
available data on testing in different high-risk populations is
critical in understanding changes in TPP. To our knowledge,
the Centers for Disease Control and Prevention website is
the only source of such information stratified by age in the
United States (16), and this information is available only for
the whole country.

Other authors have attempted to infer the population
prevalence in the United States using case data and TPP (17,
18). Our approach was not to make predictions or recom-
mend absolute thresholds for TPP but to explore the effect of
varying testing parameters on TPP and its relationship with
incidence; many parameters affect TPP only through their
effect on incidence. We expect the relationship to be nonlin-
ear, but this nonlinearity occurs at higher infectious preva-
lence than is observed in the data we have used, meaning
that the model is not identifiable as we have 5 parameters to
fit a single linear gradient. We note that TPP and confirmed
incidence alone do not provide enough information to infer
the true prevalence or incidence, and we cannot assume that
simple relationships proposed between these variables will
hold in different settings (e.g., comparing March with June
2020 in the United States) (19).

The disease model presented here is a simplification of the
true natural history. While we briefly presented an extended
model, we could have considered further extensions. For
example, heterogeneous mixing and superspreading, which
have been observed for SARS-CoV-2 (20), and the details
of nonpharmaceutical interventions (NPIs) (e.g., which pop-
ulation they are applied to, variation in adherence by risk
group), likely affect the transmission dynamics. While these

features could affect the change in TPP over time, the
relationship between TPP and confirmed incidence would be
similar. For example, heterogeneity of NPI efficacy by risk
group would affect transmission dynamics, but we would
expect that within risk groups there would be strong corre-
lation between TPP and incidence over time.

We included random variation in testing availability to
account for short-term, unpredictable changes in testing
availability. Another source of variability in data is in the
reporting of tests performed, for example, due to changes
in guidelines or reporting delays, leading to variation in
TPP that does not reflect true rates of testing. In addition,
differences in which tests are included in the numerator and
denominator affect the value of the TPP (e.g., the first test
per person). We did not explicitly model repeated testing of
individuals and thus did not examine the differences between
available TPP metrics.

The assumption that allocation of test kits is proportional
to demand implies that selection bias in the sample of
individuals tested is independent of the number of test kits
available. It might be that, in cases of extreme restriction in
testing availability, more priority is given to sicker individu-
als seeking testing. Therefore, deviations from the expected
TPP when testing availability is limited would be more
extreme than observed in our simulations.

In conclusion, we have provided intuition for how TPP
changes in response to the prevalence of infectious indi-
viduals in the population as well as with various testing
parameters. Unless infectious prevalence is extremely high,
we expect a linear relationship between detected incidence
rate and TPP across locations, and deviations from this
relationship can be interpreted using the model equations.
In general, if a location has higher TPP than expected, this
means testing is targeted more toward sicker individuals, or
there is a shortage of test kits relative to demand. Increasing
TPP should be interpreted as a warning sign that transmis-
sion is increasing. Bias in TPP caused by increased testing
in certain risk groups can be alleviated by breaking down
testing data by group (e.g., age and occupation) and sep-
arately reporting testing in high-risk institutional settings.
Finally, the proportion of tested individuals showing symp-
toms would provide further information to explain changes
in case numbers.
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