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ABSTRACT
Immune thrombocytopenia (ITP), characterized by decreased platelet counts, is a complex 
immune-mediated disorder with unelucidated pathogenesis. Accumulating evidence shows that 
T cell-mediated platelet destruction is one crucial process during the progression of ITP. Here, we 
attempted to identify core genes in peripheral blood-derived T-cells of chronic ITP through the 
analysis of microarray data (GSE43179) and clinical verification, with the aim to further understand 
the pathogenesis and progression of ITP. Compared with healthy controls, 97 differentially 
expressed genes (DEGs), including 63 up-regulated and 34 down-regulated were identified in 
ITP patients. Functional enrichment analysis showed that the DEGs were mainly enriched in innate 
immune response, inflammatory response, and IL-17 signaling pathway. Among the DEGs, top 15 
hub genes ranked by degree score were identified via protein-protein interaction (PPI) network 
and were further confirmed by quantitative reverse transcription PCR (qRT-PCR). Among top 15 
hub genes, the expression levels of 14 DEGs like TLR4, S100A8, S100A9, and S100A12 were 
significantly up-regulated, while one DEG IFNG was down-regulated in ITP patients. Noticeably, 
TLR4 exhibited the highest degree score, and S100A8 had the largest fold change in qRT-PCR 
analysis. Altogether, our results suggested that the pathogenesis and progression of ITP are 
related with multiple immune-related pathways, and that TLR4 and S100A8 are likely to play 
crucial roles.
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Highlights

● A total of 97 DEGs were identified, including 
63 up-regulated and 34 down-regulated

● The DEGs were related to innate immune 
response and IL-17 signaling pathway

● TLR4 had the highest degree score and 
S100A8 exhibited the highest fold change

● TLR4 and S100A8 play crucial roles in patho-
genesis and progression of ITP.

Introduction

Immune thrombocytopenia (ITP), an acquired auto-
immune disorder can lead to transient or persistent 
decrease of the platelet counts (below 100 × 109/L) 
and enhanced risk of bleeding [1,2]. The annual 
incidence of ITP is approximately 3.3 per 100,000 
adults in Europe [3], and 6.1 per 100,000 persons in 
US [4], and this increases with age [5]. The disease 
causes the hemorrhage in skin and mucous mem-
branes, internal organs, and even craniums, which 
seriously threatens human health [6]. At present, the 
pathogenesis of ITP remains unclear, but T cell- 
mediated platelet destruction is a key process during 
the progression of ITP [7]. Identification of differen-
tially expressed key genes in peripheral blood- 
derived T cells between chronic ITP patients and 
healthy controls would be helpful for understanding 
the pathogenesis and progression of ITP.

Due to a simultaneous detection of multiple sam-
ples, extremely high sensitivity, and minimized sys-
tematic errors, bioinformatics analysis of microarray 
data has been widely used to identify key genes in 
various autoimmune diseases [8–10]. Through 
a comparative DNA microarray analysis of human 
joint fibroblast-like synoviocytes derived from rheu-
matoid arthritis and osteoarthritis, some key genes 
and pathways involved in the pathogenesis of rheu-
matoid arthritis, and osteoarthritis were identified 
[8]. With the aid of microarray datasets analysis, 
vitiligo-related biomarkers were identified [11]. 
Through bioinformatics analysis of microarray data-
sets and clinical verification, the hub gene pro-ADM 
was identified in male patients with gout [10]. 
However, the hub genes involved in the pathogenesis 
and progression of ITP were largely unexplored.

In the present study, to identify the differen-
tially expressed key genes in peripheral blood- 

derived T cells between chronic ITP patients and 
healthy controls, an integration approach of bioin-
formatics analysis of microarray data downloaded 
from GEO dataset (GSE43179) and clinical verifi-
cation was performed. The hub genes identified 
here would serve to better understanding for the 
pathogenesis and progression of ITP.

Materials and methods

Microarray data collection

The DNA microarray dataset (GSE43179) was col-
lected from the Gene Expression Omnibus (GEO) 
database (http://www.ncbi.nlm.nih.gov/geo/) [12] 
based on a previous study [13]. The dataset com-
prised 19 samples, including 9 ITP patients and 10 
healthy controls.

Data processing

The raw data were filtered and standardized using 
the tools available from Bioconductor version 3.7 
[14], and the processed data were transformed into 
a gene expression matrix. The RMA (Robust multi- 
array Average) method [15] of affy packet was used 
to perform background correction, normalization 
and log2 transformation of the gene expression 
data. The differential expression analysis was per-
formed using Limma (Linear Models for 
Microarray Data) package with empirical Bayesian 
method [16] to identify differentially expressed 
genes (DEGs) in ITP patients compared with healthy 
controls. The fold change more than 1.5 (FC > 1.5) 
and P-value less than 0.05 (P < 0.05) were considered 
as statistically significant differences.

Enrichment analysis of DEGs

Gene ontology (GO) [17] and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway [18] 

Table 1. Clinical characteristics of ITP patients and healthy 
controls.

Items Chronic ITP Control

Number of subjects 30 26
Gender (male:female) 16:14 13:13
Median age (range) (years) 36.60 (19–51) 32.62 (18–55)
Median platelet count (range)  

(×109/L)
8.500 (1–22) -
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enrichment analysis of DEGs were performed using 
Annotation, Visualization and Integrated Discovery 
(DAVID version 6.8, http://david.abcc.ncifcrf.gov/) 
[19]. The Gene Set EnrichmentAnalysis (GSEA) was 
used to perform GO terms enrichment analysis [20]. 
A P < 0.05 was considered statistically significant 
differences.

Construction of protein-protein interaction 
network

Protein-protein interaction (PPI) network of the 
DEGs was constructed by searching against the 
online database STRING 11.0 (http://string-db.org) 
[21]. Subsequently, cytoHubba plug-in of Cytoscape 
software v3.9.0 [22] was used to screen the hub genes 
with the top 15 degree value in the network.

Clinical samples collection

According to the diagnostic criteria of ITP recom-
mended by American Society of Hematology 2019 
guidelines [1,23], 30 chronic ITP patients admitted 
to Affiliated Cancer Hospital of Zhengzhou 
University from January 2020 to June 2020 were 
recruited in this study. Meanwhile, 26 sex- and age- 
matched healthy subjects were recruited as the control 
group. Characteristics of the ITP patients and controls 
enrolled in this study were shown in Table 1.

The written informed consent was obtained 
from all individual participants. This study was 
approved by the Life Science Ethics Committee 
of Zhengzhou University (permit No. 2020–404- 
002 on 16 April 2020).

Preparation of peripheral blood-derived T cells

According to a previous study [12], the T cells of 
heparin anti-coagulated blood from each subject 
were isolated. In brief, after collection of blood, the 
peripheral-blood mononuclear cells (PBMCs) were 
immediately separated by density gradient centri-
fugation. To prepare the total T cells, the magnetic 
activated cell sorter T-cell isolation kit (Miltenyi 
Biotech, Bergisch-Gladbach, Germany) was used 
for indirect isolation of untouched CD3+ T cells 
from the collected PBMCs, and then stored at 
−80°C for subsequent RNA and protein extraction.

RNA isolation and quantitative reverse 
transcription PCR

Total RNA from T cells was extracted using Trizol 
reagent (Invitrogen, California, USA). The reverse 
transcription was performed using the Revert Aid 
First-Strand cDNA Synthesis Kit (Thermo scientific, 
Massachusetts, USA) according to the manufacturer’s 
instructions. Quantitative reverse transcription PCR 
(qRT-PCR) master-mix was prepared using SYBR® 
Premix Ex TaqTMII (Tli RnaseH Plus) (Takaro, 
Kyoto, Japan) and qRT-PCR analysis was performed 
using CFX96TM RealTime PCR Detection System 
(Bio-Rad, California, USA). The primer sequences 
used for qRT-PCR analysis were shown in Table 2. 
Each sample was repeated three times. The relative 
expression levels of genes were calculated based on 
2−ΔΔCt method [24]. GAPDH was used as an internal 
control.

Table 2. The primer sequences used for qRT-PCR analysis.
Name Forward (5’-3’) Reverse (5’-3’)

GAPDH TCAAGATCATCAGCAATGCC CGATACCAAAGTTGTCATGGA
LCN2 GAGAACTTCATCCGCTTCTC GATACACTGGTCGATTGGG
S100A8 CGTCTACAGGGATGACCTG TTTCCTGATATACTGAGGACACTC
IL1R2 CGTCTGCACTACTAGAAATGC GCAGGAAAGCATCTGTATTCTC
TLR4 GCCTTTTCTGGACTATCAAG AATTTGAAAGATTGGATAAG
IFNG TCCAAGTGATGGCTGAACTG CTCTTCGACCTCGAAACAGC
CAMP CACAGCAGTCACCAGAGGATTG GGCCTGGTTGAGGGTCACT
CTSG AAACACCCAGCAACACATCA TATCCAGGGCAGGAAACTTG
ELANE TCCACGGAATTGCCTCCTTC TTGTGCCAGATGCTGGAGAG
LTF AGAGCCTTCGTTTGCCAAGT CATTTTGTGGCCTCGGGTTG
MMP9 TGTACCGCTATGGTTACACTCG GGCAGGGACAGTTGCTTCT
MPO GCAATGGTTCAAGCGATTCTT- CGGTATAGGCACACAATGGTGAG
PADI4 CCATCCTGCTGGTGAACTGT GAAGTCCTTGGGGGTCTTCG
S100A12 GGAGGGAATTGTCAATATC ATCTTGATTAGCATCCAGG
S100A9 TTTGCTCCCCTTAATCCAGCC CCTGGCAATTAGGGCAGTCG
SLPI AATGCCTGGATCCTGTTGAC AAAGGACCTGGACCACACAG
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Protein isolation and western blot analysis

The protein was extracted using the M-PER 
Mammalian Protein Extraction Reagent supplemen-
ted with Phosphatase Inhibitor Cocktail and 1X Halt 
Protease (Thermo Scientific, Massachusetts, USA). 
The protein concentration was evaluated using 
Pierce BCA Protein Assay Kit (Thermo Scientific, 
Massachusetts, USA).

The Blot system (Invitrogen, California, USA) was 
used to perform SDS-PAGE (10%) with MES run-
ning buffer, 4–12% Bis-Tris Plus gels, 1X LDS sam-
ple buffer and reducing agent. The protein was 
transferred to PVDF membranes (EMD Millipore, 
Massachusetts, USA). The membranes were blocked 
using Superblock T20 (PBS) Blocking Buffer 
(Thermo Fisher, Massachusetts, USA) and incubated 
using TBST (Beyotime Institute of Biotechnology, 
Jiangsu, China) containing 5% (w/v) skimmed milk 
powder at room temperature for 2 h, and then over-
night with the primary antibody at 4°C.

Primary antibodies were diluted as follows: TLR4 
1:1,000 (Cell Signaling Technology, Boston, USA), 
S100A8 1:1,000 (Cell Signaling Technology, Boston, 
USA) and β-actin 1:1,000 (Cell Signaling Technology, 
Boston, USA). The membranes were imaged using an 

Odyssey infrared imaging system (Li-COR 
Biosciences, Nebraska, USA). Immunoreactivity was 
determined using the enhanced chemiluminescence 
method (Pierce Chemical, Texas, USA). The experi-
ment was repeated for three times.

Statistical analysis

The data were expressed using mean ± standard 
deviation (SD). The difference between the two 
groups was tested by Student’s t-test. All analyses 
were performed using SPSS software 25.0 (IBM, 
New York, USA) [25]. A P < 0.05 was considered 
statistically significant difference.

Results

Identification of DEGs in peripheral 
blood-derived T cells in ITP patients

To identify the DEGs associated with ITP disease 
in peripheral blood-derived T cells, the DNA 
microarray data collected from a previous study 
were re-analyzed. A total of 20,186 genes were 
obtained and normalized (Table S1). Differential 
expression analysis showed that 97 DEGs, 

Figure 1. Identification of differentially expressed genes (DEGs) in ITP samples compared with healthy controls. (a) Heatmap showed 
expressed patterns of DEGs between the ITP samples and healthy controls based on Z-score. Red to green represented expression 
levels from low to high. (b) Volcano plot of DEGs in ITP patients compared with healthy controls. The Y axis represented log2 FC and 
the X axis represented -log10 (P value). Red square represented up-regulated genes and green circle represented down-regulated 
genes.
FC, fold change of ITP/control. 
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including 63 up- and 34 down-regulated were 
identified in ITP patients compared with healthy 
controls (Figure 1aandb, Table S2).

Functional enrichment analysis of DEGs

To explore the potential function of DEGs, the GO 
function and KEGG pathway enrichment analysis 
were performed. The results of GO analysis showed 
that the DEGs were associated with multiple immune- 
related terms, such as inflammatory response, immune 
response, and innate immune response (Figure 2aandb, 
Table S3). KEGG pathway analysis showed that there 
were 12 significantly enriched pathways (P < 0.05), 
including ‘Neutrophil extracellular trap formation’, 
‘IL-17 signaling pathway’, and ‘Transcriptional misre-
gulation in cancer’ (Figure 2c, Table S3).

Construction of PPI network and identification of 
hub genes

To identify the hub genes involved in ITP, the 
PPI network of all DEGs was constructed. The 
network contained 76 nodes and 533 

interactions (Figure 3a, Table S4). Subsequently, 
the top 15 genes ranked by degree value were 
selected as hub genes, including 14 significantly 
up-regulated DEGs (TLR4, MMP9, S100A12, 
MPO, ELANE, CAMP, S100A8, S100A9, LCN2, 
CTSG, LTF, IL1R2, SLPI, and PADI4) and one 
significantly down-regulated DEG (IFNG) 
(P < 0.05) (Figure 3bandc). Among these hub 
genes, TLR4 had the highest degree score, indi-
cating that the gene had the highest correlation 
with other genes in the network. In addition, the 
S100 gene family members, including S100A8, 
S100A9, and S100A12 displayed a high degree 
(Figure 3d).

Validation of the hub genes by qRT-PCR

To verify the reliability of DNA microarray data-
set, the mRNA expression levels of 15 hub genes 
were measured by qRT-PCR. The results showed 
that 14 hub genes, including TLR4, MMP9, 
S100A12, MPO, ELANE, CAMP, S100A8, S100A9, 
LCN2, CTSG, LTF, IL1R2, SLPI, and PADI4 

Figure 2. Functional enrichment analysis of differentially expressed genes (DEGs). (a) Gene ontology (GO) term enrichment analysis 
of DEGs using GSEA software. (b) GO term enrichment analysis of DEGs using DAVID bioinformatics resources. (c) Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs. The size of circle represented the gene number. From blue to 
red represented the P value from low to high.
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were significantly up-regulated, while one hub 
gene IFNG, was significantly down-regulated in 
ITP patients compared with controls (P < 0.05) 
(Figure 4), which is consistent with the microarray 
analysis data. In addition, we found the S100 
family genes, including S100A8, S100A9, and 
S100A12 had higher fold change than other hub 
genes (Figure 4), indicating that the S100 genes 
play important roles in ITP disease.

The protein levels of TLR4 and S100A8

As TLR4 exhibited the highest degree score in PPI 
network, and S100A8 exhibited the largest fold 
change in qRT-PCR, the protein expression levels 
of these two genes were further verified by western 
blot analysis. The results showed that the protein 
levels of TLR4 and S100A8 were significantly up- 
regulated in ITP patients compared with controls 
(P < 0.05) (Figure 5 a and b).

Figure 3. Construction of protein-protein interaction (PPI) network of differentially expressed genes (DEGs). (a) The PPI network 
generated in this study. Red rectangle represented up-regulated DEGs and green rectangle represented down-regulated DEGs. (b) 
Hub genes screened from protein-protein interaction network based on degree score. Orange to red represented the degree from 
low to high. (c) The expression levels of the 15 hub genes in DNA microarray data. (d) Histogram showed the degree of the 15 hub 
genes. **P < 0.01, *** P < 0.001 represented statistically significant difference.

Figure 4. The mRNA levels of the 15 hub genes in ITP patients and healthy controls. **P < 0.01, ***P < 0.001 represented statistically 
significant difference.
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Discussion

In the present study, through bioinformatics 
analysis of microarray data, a total of 97 
DEGs, including 63 up-regulated and 34 down- 
regulated were identified in peripheral blood- 
derived T cells in chronic ITP patients com-
pared with healthy controls. PPI network ana-
lysis of all DEGs identified 15 top hub genes 
ranked by degree score, including 14 up- 
regulated and one down-regulated genes. 
Among these hub genes, TLR4 had the highest 
score and S100 family genes, including S100A8, 
S100A9, and S100A12 had higher fold change 
than other hub genes, especially S100A8 had 
the highest fold change in qRT-PCR. The pro-
tein levels of TLR4 and S100A8 were also sig-
nificantly up-regulated in ITP patients.

Toll-like receptors (TLRs), as phylogenetically 
conserved receptors, can promote the transition 
of naive T cells to Th0, Th1, or Th2 phenotype, 
thereby regulating innate and adaptive immune 
responses [26,27]. Accumulating evidence has 
shown that TLR4, which expressed in various 

T cell subsets, including CD4+ T cells, CD8+ 

T cells, Tregs and natural killer (NK) T cells [28], 
is an important contributor to the development of 
multiple autoimmune diseases, such as systemic 
lupus erythematosus (SLE), rheumatoid arthritis 
(RA) [29], and experimental autoimmune ence-
phalomyelitis (EAE). For instance, increased 
TLR4 causes lupus-like disease and autoimmune 
glomerulonephritis [30,31]. RA can induce the 
expression of TLR4 and thymoquinone amelio-
rates the disease by downer-gulating TLR4 [32]. 
The expressed TLR4 in T cells plays an essential 
role in EAE development [33]. Recently, a report 
demonstrated the knockout TLR4 can inhibit 
thrombocytopenia and hemorrhage caused by 
Dengue virus in mice [34]. Reportedly, TLR4 
may play a role through the TLR4-cytokine-CD4+ 

T lymphocyte cell pathway in the pathogenesis of 
ITP [35]. In this study, we found TLR4 had the 
highest degree score in PPI network and was sig-
nificantly up-regulated in T cells isolated from ITP 
patients, which further confirms the role of TLR4 
in ITP.

Figure 5. Determining the protein levels of TLR4 and S100A8. (a) The protein levels of TLR4 and S100A8 in ITP patients and healthy 
controls. (b) Quantification of protein levels of TLR4 and S100A8. *P < 0.05 represented statistically significant difference.
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The S100 family proteins, as the calcium- 
binding proteins, are the alarmins of multiple 
autoimmune and auto-inflammatory diseases, 
such as RA and SLE [36]. Some S100 family 
proteins, such as S100A8, S100A9, and 
S100A12, were found to regulate inflammation 
and proliferation in RA disease [37]. In RA and 
osteoarthritis patients, three S100 proteins, 
including S100A8, S100A9, and S100A12 are 
the most up-regulated biomarkers [38]. S100A8 
and S100A9 are significantly induced by RA 
disease in inflammatory granulocytes and 
macrophages [39]. S100A12 facilitates the 
damage and erosion of joints and is associated 
with the pathological process of joint inflamma-
tion [40]. SLE can increase the levels of S100A8, 
S100A9, and S100A12 in serum and the combi-
nation of the three proteins can be used as 
biomarkers for lupus nephritis caused by SLE 
[41]. Sui et al proved that the plasma levels of 
S100A8 and SA100A9 were significantly 
increased in acute immune thrombotic thrombo-
cytopenic purpura patients compared with 
healthy controls [42]. In the present study, we 
found that S100A8, S100A9, and S100A12 had 
higher fold change compared with other hub 
genes, especially S100A8 with the largest fold 
change in qRT-PCR. Furthermore, the protein 
level of S100A8 was also significantly up- 
regulated in IPT patients than that in controls, 
indicating that S100A8 played crucial roles in the 
pathological process of ITP disease.

In conclusion, through an integration approach 
of bioinformatics analysis and the clinical verifica-
tion, two core genes, TLR4 and S100A8 were iden-
tified in peripheral blood-derived T cells in 
chronic ITP patients, which might be involved in 
the pathogenesis and progression of ITP. Further 
studies are needed to analyze the expression char-
acteristics of TLR4 and S100A8 in different T cell 
subsets during the development of ITP. 
Collectively, the key genes identified here provided 
insights into the better understanding of ITP.
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