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In this paper, we present an implementation of social learning for swarm
robotics. We consider social learning as a distributed online reinforcement
learning method applied to a collective of robots where sensing, acting
and coordination are performed on a local basis. While some issues are
specific to artificial systems, such as the general objective of learning efficient
(and ideally, optimal) behavioural strategies to fulfill a task defined by a
supervisor, some other issues are shared with social learning in natural sys-
tems. We discuss some of these issues, paving the way towards cumulative
cultural evolution in robot swarms, which could enable complex social
organization necessary to achieve challenging robotic tasks.

This article is part of a discussion meeting issue ‘The emergence of
collective knowledge and cumulative culture in animals, humans and
machines’.

1. Introduction

Swarm robotics is about collectives of robots that coordinate to collectively
accomplish a task, even though interactions between robots are local [1,2].
A robot swarm is composed of robots with limited communication and compu-
tation capabilities, which allows us to limit the construction cost, but also
requires us to design individual behaviours that result in a self-organized
collective. It is important to note that swarm robotics refers to a particular
class of collective robotics, but not to a particular kind of collective behaviour
(e.g. actual swarming is only one possible collective behaviour among
many others).

Swarm robotics is considered as a promising candidate for a large range of
applications ranging from agriculture, emergency and rescue, warehouse manage-
ment, surveillance, exploration and environmental monitoring (see [3] for a review
of targeted applications). Recent advances in software and hardware may shortly
lead to a surge in the deployment in industrial applications, as envisioned by
Dorigo and colleagues [4], even if research in this field is relatively young.

As early as the 1990s, Maja Mataric showed that it was possible to accom-
plish a certain number of classical tasks with several robots without oversight
control, such as homing, foraging, and moving in groups [5]. Each robot inter-
acts with its immediate neighbours, either physically or by exchanging
messages, and the actions taken individually combine to create an organization
at a macroscopic scale, which is neither observable nor measurable by a single
robot. The rules that produce a particular behaviour are constructed by hand by
trial-and-error, and are sometimes inspired by behaviours observed in social
insects or groups of animals.

Work conducted at Harvard under the direction of Radhika Nagpal uses these
same principles, and has shown that it is possible to program robots to self-assem-
ble into a certain predefined shape [6] or to collectively build a 3D structure,
transporting bricks to relevant locations [7]. Very recently, swarm robotics has
become increasingly popular, as illustrated by the recent publication of several
works on this topic in major journals [8-11]. In particular, the work of [12]
shows that the material limitations in terms of communication distance between
robots can be advantageous when the environment is dynamic and requires a fast
detection of environmental changes.
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However, it is not always easy to identify which self-
organized collective behaviours will be effective in solving a
problem, nor to define and program the individual behaviours
that will allow a global organization to emerge at the swarm
level. Indeed, a swarm of robots is a complex system by
definition, involving individuals whose interactions are diffi-
cult to model (e.g. because of the complexity of physical
interactions between robots [8,13]). Machine learning—in par-
ticular, reinforcement learning methods inspired by natural
evolution [14-16]—can automate the design of individual be-
havioural strategies, provided that it is possible to measure
the performance of the swarm on the desired task (e.g. the effi-
ciency measured in a foraging task in terms of the quantity of
resources retrieved). This is a classical approach in robotics,
where learning is performed in a centralized way by an omnis-
cient computer, which allows us to propose a solution as a
behavioural strategy followed by each robot. The learned strat-
egy is then deployed in an operational situation without any
further learning, as global monitoring and evaluation are no
longer available. Despite the various problems of using
controlled environments during learning [10], this form of
prior-to-deployment learning has been successfully applied
to several problems, from training builder robots for construc-
tion [7] to autonomous high sea boats for surveillance [17] and
outdoor UAVs reconstructing a communication network after a
natural disaster [18].

The approach we present in this paper focuses on a par-
ticular case of learning for swarm robotics, where learning
starts when robots are deployed in real life, and not before,
thus removing the necessities for a controlled laboratory
environment. This is a class of problems where the conditions
for performing a task are not known a priori, and where learn-
ing is supported only through local communication between
robots [19].

The learning algorithm is then built on interactions
between robots: each robot performs actions that depend on
its immediate experience of the world and can copy all or
part of the decision strategies put in place by the robots it
encounters. The best-rated strategies are thus diffused in the
swarm, in a process that resembles social learning as
observed in nature [20], but in a robotic context.!

While social learning in nature relies on imitation between
individuals according to observable characteristics (age,
health, majority, etc.), the goal here is to use learning to maxi-
mize performance on a task initially defined by the human
designer (e.g. foraging, patrolling, group movement, etc.).
Moreover, the goal is to discover behavioural strategies that
maximize the swarm performance, and not just the individual
performance. This is actually a major challenge of social learn-
ing in swarm robotics, as swarm performance is not directly
accessible by individual robots.

In this paper, we aim at providing an introduction to social
learning in swarm robotics as a particular type of machine
learning method, both presenting the general concepts and
the details of a practical implementation, as well as presenting
future challenges and inspirations for the field. The paper out-
line is as follows: we first describe the basic principles of social
learning for swarm robotics (§2), which we illustrate with a
foraging task where the algorithmic implementation of social
learning in a robot swarm is thoroughly described and ana-
lysed (§3). Then, we discuss the current challenges of social
learning in swarm robotics, and how these artificial learning
methods relate to social learning in nature (§4).

The class of problems that can be addressed by social learning
in swarm robotics is framed by three constraints on locality:

— local interaction: robots are situated in the environment. As
such, each robot has a local experience of the environment,
both in terms of accessible information and possible actions.
As robots are physical entities, this also implies that complex
dynamics can emerge from local interactions, such as robots
colliding with each other when the density of robots is
too high, which can be detrimental (e.g. robots are stuck)
or beneficial (e.g. robots physically align with one another,
which can be used for collective motion [8]).

— local communication: robot-to-robot communication is
limited in radius, whether because of technical limitations
(short-range communication apparatus) or by design (con-
strained communication can be beneficial in dynamic
environments [12]). Moreover, there may be limitations in
terms of the quantity of information that can be transferred.
This means that diffusion over the swarm takes time,
as message hopping from one robot to another is not
instantaneous. Even if all robots are packed together, com-
putational limitations make it unlikely that all robots can
share all information at the same time. On the positive
side, local communication means that social learning can
be conducted by exchanging information (such as par-
ameter values of a decision module) rather than solely
relying on imitation through observation.

— local performance self-assessment: there is no central
coordinator that estimates and communicates a particular
robot’s contribution to the group. This means that each
robot carries its own self-assessment mechanism, which
is used to estimate the robot’s contribution to the task
from the swarm perspective. This self-assessment func-
tion is provided by the human supervisor before
deployment, and is used by each robot thereafter. It is
designed to reward individual strategies that are relevant
to global performance, but may be partly inaccurate due
to the limited perception of each robot. As an example,
maximizing the foraging performance at the individual
level is (generally) aligned with maximizing foraging at
the level of the swarm. However, too many foraging
robots in too small an area can lead to an overcrowding
effect, implying that some robots are better off standing
aside so that the swarm as a whole is more efficient.

The third aspect of locality is where the artificial diverges
from the natural. While in nature the ‘performance’ of a par-
ticular individual may be evaluated in terms of her/his
ability to survive and reproduce, this is not the case here.
In swarm robotics, performance assessment is explicitly cal-
culated by an ad hoc evaluation function, designed prior to
deployment by a human supervisor with a task in mind.
Hence, a robot may be measured as efficient with respect to
its participation to the accomplishment of the task, without
its own integrity being taken into account. This has a major
implication for the dynamics of social learning, as the very
definition of successful behavioural strategies now depends
both on their ability to diffuse over the population, and
their ability to perform well on a user-defined task.

Figure 1 illustrates a mock up scenario where four robots
navigate the environment and use local sensing and
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Figure 1. (a—e) A sequence of snapshots following four robots in a bounded arena. Robots (coloured dots) move in the arena and can exchange information when close
enough (communication range for each robot is shown by a dotted circle). Robots are numbered from 1 to 4, each with a particular colour (#1 is green, #2 is red, #3 is blue and
#4 s grey). (a) Robots start from different locations, then move around (b—e), possibly crossing the path of other robots (red and green robots in (b), green and blue in (c), green
and grey, as well as red and blue in (d)). At the time of the final snapshot (e), the green robot experienced more opportunities for communication with other robots, whether or
not this robot was the best for the task at hand (which is not specified here). (f) A typical swarm of robots used at Sorbonne Université, based on the popular Harvard's Kilobot
robotic platform [26]. Each robot is about 3.3 cm in diameter and can communicate with neighbours at a distance of up to twice its diameter. (Online version in colour.)

communication. Robots navigate across the arena, possibly
fulfilling a task assigned by the human supervisor and inter-
acting with one other robot when they are close enough. In
this example, we leave aside the specification of a particular
task to focus on the interactions between robots. At each
interaction event, robots exchange chunks of information
with respect to their behavioural strategy and their current
status, which can be anything from their self-assessed per-
formance with respect to the task at hand, to the number of
encounters in the past minute. Robots could observe and imi-
tate one another, but can also simply send and receive control
parameter values used by their decision-making module. A
robot’s task performance may improve over time because
its control parameters have been updated with (hopefully
better) values from previous encounters.

The green robot, which started from the left of the arena,
can be seen as experiencing more opportunities for social
learning than any of the three other robots. It also means
that this robot’s behavioural strategy had more opportunity
to spread to other robots, which is even more likely to
occur if this particular behavioural strategy results in high
task performance. Depending on the measured efficiency of
the three other robots, the green robot’s strategy may
spread to all robots if it is estimated to be comparatively
more efficient on the task. On the other hand, it will still
retain a selective advantage if its efficiency is comparatively
average, just because of the larger number of interactions
(i.e. comparatively more opportunities for diffusion). In the
general case, this entails two kind of selection pressures for
the diffusion of a particular behavioural strategy:

— an implicit selection pressure that is exogenous and results
from interactions of the robots with the environment and
with one another. This defines the natural fitness of a robot,
as understood in biology, in terms of the ability of a robot
(aka, the vehicle) to diffuse its own behavioural strategy to
other robots, which in the present example is achieved by

copying control parameters (see [27,28] for a study of
social learning in swarm robotics and natural selection).

— an explicit selection pressure that results from the robot’s
self-assessment. In this case, self-assessment is performed
by using an objective function initially provided by the
human supervisor, and which uses information available
to the robot to compute its estimated performance with
respect to the user-defined task. This results in a quanti-
tative score (e.g. number of harvested items) that can be
used to artificially favour or limit the diffusion of the
behavioural strategy within the swarm.

As the number of robots in a swarm is finite and (gener-
ally) fixed, the way that strategies compete with one another
to invade the swarm is similar to the way that Dawkins’
memes compete to spread in a population of individuals [29],
with successful memes hopping from one robot to another.
In the particular case of swarm robotics, diffusion of memes
is driven both by the ability to maintain a social network and
by the ability to fulfill a task that may have nothing to do
with survivability and/or ability to interact with other
robots (e.g. exploration benefits from robots going their
separate ways, which hinder interaction between robots).

While the basic principles are presented here, there are
of course different ways to implement social learning in
swarm robotics. We refer the interested reader to [19] for a
comprehensive review.

3. Case study: social learning for foraging

In this section, we present a practical example of social learning
in swarm robotics. We describe a simulation performed in a
pseudo-realistic environment with simple physics [30].> Robots
are equipped with distance sensors for local sensing and com-
munication. This roughly corresponds to the use of infra-red
devices, which are used to return the distance to nearby obstacles
and provide a basic communication apparatus. Each robot uses a
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control function that maps sensory inputs to motor outputs. Sen-
sory inputs provide information about the distance and type of
obstacles nearby (wall, object or robot). Motor outputs are
used to set the speed of the left and right motor of a two-wheel
robot. Parameters of the control function are learned using an
artificial social learning algorithm. This function computes the
left and right motor outputs from sensory inputs: the distance
and type of obstacles nearby (wall, object or robot).

In this particular example, we use the horizontal infor-
mation transfer (HIT) algorithm (see [31] for a full
description). With this algorithm, each robot sends a subset
of its control parameters along with the current estimation of
its performance. The material can be accepted or rejected by
the recipient by comparing one’s own self-assessed perform-
ance with that received from the other robot. If accepted, the
new material is incorporated into the robot’s control function,
which essentially means that control parameters are updated
with new values. In addition, a mutation event is designed to
occur (with low probability) while copying parameter values,
which can possibly result in behavioural innovations.

We study a typical foraging task in swarm robotics: robots
must capture items, which are spread in the environment.
Whenever an item is captured, a new item appears at a
random location so that the number of items remains constant
over time. A robot’s performance self-assessment is defined as
the number of captured items during a period of time (e.g. the
past few minutes). For this experiment, we do not use mutation
so as to put the emphasis on the dynamics of diffusion of be-
havioural strategies throughout the population (see Annex
for a discussion on the effect mutation). A robot’s behavioural
strategy results from a decision-making module that provides
motor values as output, computed from sensory inputs (closest
wall, robot or object within range). We use a Perceptron (a type
of artificial neural network) as control function. A Perceptron is
equivalent to a nonlinear weighted combination of input
values. There are 98 control parameters per robot.> As shown
in the previous section, the Perceptron’s weights (i.e. the con-
trol parameters) can be exchanged between robots during an
encounter, along with the self-assessed performance estimation
of each robot. Hence, imitation is performed directly by copy-
ing the control parameters rather than by observing of
behaviour, and relies on performance self-assessment to do so.

Figure 2a,b show the results compiled from 32 independent
experiments. For each experiment, both robots’ and items’
initial positions are randomly picked, as well as random initial
values for each robot’s control parameters. The set-up is illus-
trated in figure 24, with 100 robots and 150 objects that can be
collected. The number of objects remains stable over time as a
new object appears at a random location whenever a robot cap-
tures an existing object. Figure 2b shows the average reward per
robot over time, compiled from all 100 robots over all 32 inde-
pendent runs. Reward for one robot is computed as the number
of objects captured by a robot in the past 400 time steps.
The average performance of individual robots is initially
close to zero as initial behavioural strategies perform random
movement, and gradually increases to reach a plateau.

All 32 independent runs follow the same dynamics, with
qualitatively comparable behavioural strategies, though
actual control parameter values may vary at the end of the
simulation due to equivalent symmetries in the nature of the
neural networks-based controller used. Figure 2c,d focus on
the social learning dynamics for one typical run. Figure 2c
tracks the diversity of behavioural strategies, using control

parameter values as a proxy. Due to random initialization, [ 4 |

diversity is close to or equal to its maximum value before learn-
ing starts, and decreases through time due to diffusion of
efficient behavioural strategies, ending with a unique par-
ameter value for each of the control parameters among the
whole population of a given run. In this particular run, it can
be seen that diffusion of parameter values is not monotonically
decreasing, as a first plateau is reached and maintained for
some time. Diversity then decreases again until a final plateau
is reached, close to the minimal value for diversity (and
maximal value for performance). Figure 2d completes this
analysis by focusing on a particular (randomly chosen) control
parameter for this same experiment: the current values for this
parameter among all robots of the swarm are grouped by
interval and tracked through time. Here, values in the range
[-0.7, —0.6] compete with others and finally invade the
whole population, ultimately ending up with one unique
value in this range (not visible here).

Actual behaviours for this typical run are shown in
figure 3. At the very beginning, robots fail to either meet
with one another or to capture objects other than by chance
(figure 3a). At the end of learning, robots wander around,
covering large areas and following non-linear trajectories
(figure 3b). Trajectories from typical behavioural strategies
are illustrated in figures 3c,d. Each figure part displays the tra-
jectory of one robot and shows its interaction with other
robots and objects (e.g. the robot turns toward a detected
object). These two figure parts illustrate the result of both
the implicit exogenous selection pressure (robots meet with
one another as it favours diffusion of behavioural strategies)
and the explicit endogenous selection pressure (robots are
drawn to items as this increases their total reward).

While this experiment illustrates social learning in a robot
swarm in ideal conditions,* it is important to note that the be-
havioural outcome depends on the task and the environment
at hand. First, behavioural strategies would be different for
another task (e.g. collective object transport, or search and
rescue). Second, swarm density may completely change the
swarm dynamics, even if the environment and task remained
the same (see [32] for a discussion on the impact of social
network topology on collective cognition).

As discussed in the previous sections, the goal with social
learning in swarm robotics is to optimize the efficiency of
the swarm as a whole, as performance is ultimately measured
with respect to a user-defined task (see [19] for a comprehen-
sive review of recent works). Swarm robotics is distributed by
definition, which raises the question of providing an accurate
estimation of the contribution of each individual to the per-
formance of the collective. Such contribution is evaluated
individually, by each robot, based on its immediate percep-
tion of the surroundings, which implies that evaluation
may be partial. By carefully defining a performance function
before deployment, it may be possible to accurately evaluate
the benefit of one robot’s action, but unless the environment
is perfectly known (which it is not) this is generally unattain-
able. To use our previous example of a foraging task, having
all robots looking for items makes sense, but could be detri-
mental in a cluttered environment where robots would
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Figure 2. (a) The arena (1000 x 500 units) with 150 robots of diameter 5 (small black circles) and 100 items of diameter 20 (larger green circles). Each robot has
3% 16 distance sensors distributed uniformly around the body of the robot, each with a range of 16 units (rays not shown). (b) Experimental results for 32
independent runs: average reward through time. (c) Diversity of parameter values for all control parameters throughout learning in a typical experiment. Diversity
is computed as (1/(N: x Np)) >~ , Ny, with a swarm of A, robots, each robot's behaviour produced by a decision-making module with N, control parameters,
and with N, the number of different unique parameter values v for parameter p across the whole swarm. Maximum diversity (=1.0) is attained when each robot
has a unique value for each of its control parameters with respect to (w.r.t.) the whole swarm. Minimal diversity (=1/(N, X N,)) is attained when all robots in the
swarm share the same parameter values for each of the control parameters. (d) Example of diffusion of an arbitrarily chosen parameter (parameter no. 74) in a
typical experiment. Colours show the distribution of values in the population at different time steps for the selected parameter. The maximum value of 1.0 on the V-
axis means all 150 robots use the same value for this control parameter no. 74. w.r.t., with respect to. (Online version in colour.)

spend their time avoiding collisions with each other and
competing for resources. This corresponds to the problem
of estimating the individual's marginal contribution in a
group, which is well known in the field of collective intelli-
gence in Al [33]. Compared to natural systems, swarm
robotics decision making is designed rather than learned: it
is thus possible to define rules so that individuals behave
the way we would want them to [34]. For example, an indi-
vidual’s score could depend on how well its neighbours are
faring, thus indirectly favouring altruistic behaviours.

Now, let us consider social learning from a broader
perspective, where the distinction between artificial and natu-
ral collective systems is less evident. Current swarm robotics
social learning algorithms implement cumulative culture evol-
ution, by repeating the process of introduction, transmission
and improvement of new behavioural strategies. However,
this is a rather crude implementation compared to what is
observed in nature [35-37], as all robots in the swarm are
both physically and logically identical: all robots are inter-
changeable and would take a similar decision if presented
with the same sensory stimulus. Implementing or learning a

complex social structure (e.g. leader election or partner choice
[38]) as well as introducing physically distinct types of robot
hardware may benefit a robot swarm'’s ability to handle chal-
lenging environments and problems, by enabling cooperation
and division of labour (see [39] in this issue for a discussion
on the benefits of a multi-level social structure in social
learning). Also, individual robots are currently limited to dis-
playing reactive behaviours (feed-forward neural networks
or decision trees, see [19]) and basic social interactions based
on direct information transfer (sharing control parameters in
one form or another). Transitioning towards more cognitive
decision making (e.g. learning and combining model-free
and model-based decision making [40]) could enable more
complex coordinated behaviours (see also [41] for similar con-
cerns within a small group of robots). For example, capabilities
such as shared-intentionality or reason-giving similar to what
humans do (see [42] in this issue) could enable more subtle
ways of interacting and performing social learning.

In this section, we focused on challenges that are specific to
social learning that, if solved, would improve the outcome of
social learning.” For the sake of completeness, we should also
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Figure 3. (a) Initial trajectories of 150 robots in the first time steps of learning (0—400 time steps, items are not displayed). (b) Trajectories of 150 robots at the
end of the simulation (13 600—14 000 time steps). (c,d) Two examples of robot trajectories produced after learning, for an arbitrary selected focal robot (small black
circle) and its trajectory during the last 100 time steps (black or red line—red denotes time steps where the focal robot shared information with a nearby robot).
The figures also show other robots (small grey dots) and items (large green dots—Ilighter green denotes an item that has been captured by a robot during the

100 time steps).

mention that major challenges are yet to be addressed in swarm
robotics in general, i.e. not limited to learning. The interested
reader is referred to [4,47,48] for recent discussions on hard-
ware, software or operational issues raised in swarm robotics.

5. Conclusion

This paper discussed the deployment of social learning algor-
ithms in robot swarms. This is a rather particular instance of
machine learning methods that is applied to distributed

robotics systems where sensing, decision making and per-
formance evaluation are performed locally. As presented
throughout this paper, the formulation of social learning in
swarm robotics aims at achieving a task after robots are actually
deployed. However, this artificial instantiation of social learning
also shares a lot with its natural counterpart. In particular,
cumulative culture evolution enables the emergence of complex
social behaviours (e.g. division of labour or cooperation) by
gradually accumulating useful behavioural skills.

The main motivation behind investigating social learning
in swarm robotics stems from the fact that many real-world

6000207 “LLE § 05 Y "Subi] ‘lyd  Gis/[euanol/bao BuiysijgndAraposiefos H



(a) swarm performance w.r.t. foraging (tsf = 0.8, mut = 0)

4.0

—— median

35¢

interquartile range

3071
25+
2071
1.5+

average reward

1.0+
05+
0

0 7000
time step

14000

(¢) swarm performance w.r.t. foraging (tsf = 1, mut = 0)

4.0

—— median

357 interquartile range
307
257
207

157

average reward

1.0 7
057
0

0 7000
time step

14 000

() swarm performance w.r.t. foraging (tsf = 0.8, mut = 105)

4.0

—— median
3.5 1 . .
interquartile range
3.0 t
2.5 ¢
2.0 1

157

average reward

1.0 T
0.5 1

0 7000
time step

14000

(d) swarm performance w.r.t. foraging (tsf = 1, mut = 107°)
4.0

—— median
3.5 . .
interquartile range
3.0
2.5 1
2.0 1

1.5 1

average reward

1.0 1
0.5 7
0

0 7000
time step

14 000

Figure 4. Comparison between setups with different transfer and mutation settings. Transfer accounts for the proportion of control parameter values that are exchanged
between robots. tsf = 0.8 and tsf = 1.0 respectively signify that 80% and 100% of the parameter values are sent during an encounter between robots. Mutation accounts
for the probability that an individual’s control parameters are re-initialized. Mutation is either deactivated (mut = 0), or set to 10>, which corresponds to resetting one
robot among 150 every 400 time steps (on average). (a—d) Results for four different settings, each with their own transfer volume and mutation rate, using
32 independent runs per setup. Panel (a) is identical to what was presented earlier in figure 2. mut, mutation rate; tsf, transfer volume; w.r.t., with respect to.

situations cannot be modelled beforehand. This can be the
case for several applications where swarm robotics is
expected to play a role [4], such agriculture robotics (e.g.
small robots for monitoring, pest destruction or pollinating)
or biomedical applications (e.g. drug delivery and bio-
sensing), for the mere reason that real-world physics is
extremely challenging to model, even in a simple controlled
setting [10]. As recently noted by several authors [49-52],
dense robot swarms, where many physical collisions occur,
can be considered from a statistical physics perspective as
an active matter. The benefits of physical interactions may
then be identified and exploited (e.g. particle alignment
[53]) while learning to solve the task.

A final remark should be made about the use of robotics
systems beyond engineering. If we leave aside the engineer-
ing raison d’étre of swarm robotics, we are left with an
artificial system that implements social learning under
realistic constraints. Robots, just like animals, sense, act and
communicate with their neighbours, and each robot may
discover new behaviours or copy behaviours from others.
Similar to the use of computational and robotics simula-
tions for studying natural evolution [54], the study of social
learning in nature may benefit from a modelling and simu-
lation tool more closely matching real world conditions
[55,56]. It would nicely complement observation, mathe-
matical modelling and computational simulation of social
learning processes.

This Annex complements results presented in §3. We quickly
discuss the effect of mutation, which was inactivated pre-
viously in order to emphasize the diffusion of information
over innovation for which de novo mutation plays an impor-
tant role. Figure 4 shows a comparison between different
setups, each with a particular transfer volume and mutation
rate. While transfer refers to the amount of information that is
sent from one robot to another during an encounter, mutation
refers to the amount of perturbation that may spontaneously
occur in the population.

Figure 4a—d provides two insights. First, a transfer volume
of a=0.8 without mutation (figure 4a) shows a reduced var-
iance between runs compared to a=1.0 without mutation
(figure 4c), even though transferring larger volume with
a=1.0 shows initial faster learning. Similarly, a mutation rate
of o=107 also reduces the variance between runs using a simi-
lar transfer volume (figures 4a versus b, and 4c versus d). Indeed,
both transfer and mutation may generate novel behavioural
strategies, which can be beneficial in terms of efficiency, or at
least mitigate a pool of poor random initial strategies. Transfer
with a < 1.0 enables recombination of part of the existing control
parameter sets, though it slows down convergence speed (figure
4a,b versus 4c,d). Similarly, mutation with probability >0
allows for the introduction of new control parameter values,
which makes it possible to diversify the reservoir of parameter



values initially present in the swarm, and possibly lead to new
and more efficient behavioural strategies.

The interested reader is referred to [31] for a comprehen-
sive analysis of the effect of transfer and mutation on
convergence speed and performance.
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Endnotes

The general algorithmic idea of social learning in swarm robotics
was introduced in [21,22] where the term ‘embodied evolution’ is
used to refer to the nature of the method. The term ‘embodied’ is
to be understood here as referring to the implementation of the evol-
utionary algorithm within the robots, rather than evolutionary
learning being conducted by an external computer that orchestrates
learning and monitors performance for every robot in a centralized
manner. The first actual use of the term ‘social learning’ in swarm
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