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Abstract: Pain can be induced by tissue injuries, diseases and infections. The interactions between
the peripheral nervous system (PNS) and immune system are primary actions in pain sensitizations.
In response to stimuli, nociceptors release various mediators from their terminals that potently
activate and recruit immune cells, whereas infiltrated immune cells further promote sensitization of
nociceptors and the transition from acute to chronic pain by producing cytokines, chemokines, lipid
mediators and growth factors. Immune cells not only play roles in pain production but also contribute
to PNS repair and pain resolution by secreting anti-inflammatory or analgesic effectors. Here, we
discuss the distinct roles of four major types of immune cells (monocyte/macrophage, neutrophil,
mast cell, and T cell) acting on the PNS during pain process. Integration of this current knowledge
will enhance our understanding of cellular changes and molecular mechanisms underlying pain
pathogenies, providing insights for developing new therapeutic strategies.

Keywords: peripheral nervous system; pain; immune response; inflammation

1. Introduction

Pain can be induced by tissue injury or different types of diseases that affect the
somatosensory system, resulting in noxious (hyperalgesia) or non-noxious (allodynia)
symptoms, which is an important defense mechanism to avoid harmful stimuli. Terminal
nerves of somatosensory neurons (also known as nociceptors) innervate into the skin,
cornea, internal organs, joints, bones, muscles, and deep visceral tissues, which are highly
expressing a set of molecular sensors including transient receptor potential channel sub-
types (TRPs), G protein coupled receptors (GPCRs) and sodium channel (Nav) [1,2]. Upon
sensing noxious stimuli (e.g., mechanical, thermal and chemical), these nociceptors can
quickly generate action potentials that are transmitted to the central nervous system (CNS)
where the signals are processed. Nociceptor sensitization (or peripheral sensitization) at
the site of the injury is therefore considered to be the primary cause of pain and the most
appropriate targeting system for pain therapies [3,4].

Pain syndromes can be divided into acute and chronic stages. Acute pain plays a vital
protective and adaptive role in warning the individual to avoid further injury and driving
immune responses against infections or pathogens during healing. The inflammatory
mediators produced by the immune system such as cytokines, lipid mediators, and growth
factors directly activate nociceptive primary sensory neurons in the peripheral nervous
system (PNS) evoking a pain response [4,5]. On the other hand, chronic pain is detrimental
and arises from nerve damage caused by surgery, trauma, metabolic disorders (e.g., diabetic
mellitus) or autoimmune diseases (e.g., multiple sclerosis) [6]. Chronic pain is a long-
lasting syndrome and has substantial impacts on patients’ quality of life and high economic
burdens on individuals and society [7]. Although alterations in the dorsal spinal cord and
brain are one of the key mechanisms of chronic pain maintenance, peripheral sensitization is
essential in the transition from the acute to the chronic stage [5,8]. Notably, emerging studies
have revealed that bidirectional signaling between the immune and nervous systems
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contribute to the initiation and maintenance of chronic pain [2]. Altogether, our current
knowledge of nociceptor–immune interactions have provided some molecular insights for
developing better therapies for pathological inflammation-associated pain.

In this review, we discuss the interplay between immune cells (macrophages and/or
monocytes, mast cells, neutrophils, and T cells) and the PNS in both acute and chronic pain,
and their distinct functions in pain induction and modulation.

2. Peripheral Responses to Pain

Like the counterparts in the CNS, the PNS is also composed of neurons and glial cells,
in which clusters of nociceptive sensory neurons are located in different ganglion in the
trunk and the head that relay information about the environment to the CNS. The most
common types of ganglion are the dorsal root ganglion (DRG) in the trunk, and others in
the cranial including trigeminal and glossopharyngeal ganglia [9]. These sensory neurons
(first-order primary afferent neurons) are classified to unmyelinated c-fibers and myelinated
Aδ/β -fibers that transduce different types of pain signals, including mechanical, thermal,
or chemical stimuli (Figure 1a). Free peripheral nerve endings function as receptive sites
extend from neuronal cell bodies in the DRG or cranial nerve ganglion. Notably, their
sensory neurons are pseudo-unipolar neurons that have one axon with two processes: one
peripheral axonal branch innervates the tissues in the body to receive sensory information
and the other axonal branch sends nerve impulses to excite second-order postsynaptic
neurons in the dorsal horn of the spinal cord [3,5]. Subsequently, axons from second-order
neurons project into thalamic nuclei in brain, where the third-order neurons transmit
the pain signaling to the primary sensory cortex [10] (Figure 1b). The glial cells in the
PNS mainly comprise Schwann cells and satellite glial cells (SGCs). The SGCs surround
the somata of sensory neurons and usually consist of a single layer of cells connected to
each other by gap junctions [11]. Schwann cells are the most abundant cell types in the
PNS, which support axonal outgrowth by producing a variety of growth factors, such as
nerve growth factor (NGF), glial cell line derived neurotrophic factor (GDNF), and brain-
derived neurotrophic factor (BDNF) [12,13]. Schwann cells consist of two major phenotypes,
myelinating Schwann cells and nonmyelinating Schwann cells [12]. Myelinating Schwann
cells wrap larger axons in a 1:1 ratio to form the myelin sheath, nonmyelinating Schwann
cells embed smaller axons, forming a remark bundle [13] (Figure 1c).

After noxious stimuli, peripheral neurons/nerves and glial cells undergo significant
pathological changes before central properties that contribute to the pain initiation and
development through their interaction with immune signals. Noteworthy, signaling path-
ways between primary sensory neurons, SGCs, Schwann cells and immune cells are highly
intertwined. For example, activated Schwann cells mediate the breakdown of the blood–
nerve barrier via the secretion of matrix metalloproteinase 9 (MMP-9), which promotes
the recruitment and infiltration of immune cells (e.g., macrophages and T cells) from the
vasculature to the injury sites. [14,15]. Sensory neurons also produce neuropeptides at their
peripheral endings that not only serve as attractions to induce the invasion of circulating
immune cells but also modulate the activity of innate and adaptive immune cells [2,16]. A
dense cluster of immune cells produce pronociceptive mediators directly acting on periph-
eral nociceptors to promote sensitization of pain signaling and the recruitment of immune
cells and vice versa. In addition, reactive SGCs and immune cells (e.g., macrophages)
work cooperatively to promote peripheral sensitization by releasing proinflammatory
cytokines such as IL-1β, IL-6, and TNF [17–21]. In contrast, SGCs and macrophages are
also involved in the regeneration of DRG axons and remyelination of Schwann cells [21,22].
The four major heterogeneous immune cell types (macrophages and/or monocytes, mast
cells, neutrophils, and T cells) resident in or infiltrating the PNS have specific functions in
pain modulation and sensitization, which are further discussed below.
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Figure 1. An overview of peripheral nervous system (PNS) in the sensory pathways leading from the skin to the brain. (a)
The peripheral nerve endings comprise both unmyelinated c-fibers and myelinated Aδ/β -fibers in the skin that sense a
stimulus, where chemicals such as inflammatory mediators and neuropeptides released from the injury site or the nerve
endings activate the receptors and channels on the adjacent peripheral nerve terminals, subsequently resulting in initiating
an action potential at the initial segment of the axon. (b) The axon of the peripheral sensory neuron (first order neuron)
enters the spinal cord and contacts second-order neuron in the gray matter, where an action potential is generated at the
initial segment of this neuron and travels up the sensory pathway to a region of the brainstem and thalamic nuclei. The
sensory signal reaches the third-order neurons from the thalamus, and these project pain signaling to several cortical and
subcortical regions (red arrows). (c) Schematic of organization of dorsal root ganglion (DRG). Sensory neuronal bodies are
separated and wrapped satellite glial sheath. Myelinated Schwann cells envelop large diameter axons of sensory neurons,
whereas nonmyelinated Schwann cells ensheath small diameter axons forming a remark bundle (upper left in (b)).

3. Macrophages/Monocytes in the PNS
3.1. Recruitment and Activation of Monocytes and Macrophages

Monocytes are a population of plastic and heterogeneous blood cells that infiltrate
the site of injury, where they alter their phenotype to either a proinflammatory or anti-
inflammatory phenotype in response to environmental changes [23,24]. Upon injury or
infection, monocytes can infiltrate into the DRG and sciatic nerve, where they differentiate
into macrophages that exhibit increased staining for CD68. Both peripheral monocytes
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and macrophages play active roles in the modulation and pathogenesis of pain, with
distinct mechanisms that are shaped by the causes and the context of pain [25–29]. In addi-
tion to monocyte-derived macrophages in nerve injury, there are also resident phagocytic
macrophages that account for 9% of the cell populations in the PNS, which can rapidly
migrate to the site of injury in response to stimuli [30,31]. The recruitment of macrophages
is orchestrated by chemokine (C-C motif) ligands (CCLs) and inflammatory cytokines.
The chemokine monocyte chemoattractant protein-1 (MCP-1), also known as CCL2, is
significantly upregulated in small-diameter neurons of the DRG and induces peripheral
sensitization via activation of its receptor CCR2 on TRPV1-expressing nociceptors [32,33].
In nerve injury or chemotherapy-induced neuroinflammation, the expression levels of
CCL2 are increased, which promotes the infiltration and activation of CCR2-positive
monocytes/macrophages in the DRG. Intrathecal administration of MCP-1 neutralizing
antibodies reduced paclitaxel induced macrophage infiltration into the DRG [34–36]. Con-
sistently, infiltration of macrophages to the nerve injury sites was significantly impaired in
CCR2-deficient mice, indicating that CCL2 is a primary pro-recruitment molecule [37,38].
Chemokine (C-X3-C motif) ligand 1 (CX3CL1) was also reported to play a role in attracting
macrophages. Levels of CX3CL1 were increased in the DRG after nerve injury, whereas
blocking CX3CL1 inhibited the recruitment of macrophages to the DRG and attenuated
allodynia in paclitaxel-induced neuropathy [39,40]. Moreover, CX3C chemokine receptor 1
(CX3CR1)-deficient mice exhibited significantly reduced monocytes/macrophages in both
inflammatory and neuropathic pain models [29,38,40,41]. Notably, macrophage recruit-
ment was not completely abolished even in the absence of chemokine signals, suggesting
the involvement of other regulators such inflammatory cytokines. Shubayev et al. found
the expression level of tumor necrosis factor alpha (TNF-α) was positively correlated with
the number of macrophages in periphery nerves. Mechanistically, in response to stimuli, ac-
tivated Schwann cells produce TNF-α that further induces matrix metalloproteases (MMP9)
to disrupt the blood-nerve barrier facilitating the invasion from circulating immune cells
including macrophages [14] (Figure 2). Consistently, TNF-α deficient mice with sciatic
nerve transection exhibited poor macrophage recruitment [15]. Besides TNF-α, interleukin
15 (IL-15) can also activate MMP-9 expression. Intraneural administration of IL-15 into
the sciatic nerve increased the infiltration of macrophages into the nerve and promoted
the development of mechanical hyperalgesia [42–44]. Another proinflammatory cytokine,
IL-1β, exhibited the highest levels around the site of injury even before the activation of
macrophages, whereas administration of a function-blocking antibody against IL-1β into
the injured sciatic nerve reverted the inhibited recruitment of macrophages and phagocyto-
sis [45,46]. Interestingly, infiltrated macrophages can also release inflammatory mediators
including CCL2, TNFα, IL-1α, and IL-1β, and in turn, these mediators can further boost
up the attraction and recruitment of macrophages to the injury sites [46,47]. For example,
Jia et al. found that paclitaxel could induce high level expressions of NLRP3 inflamma-
somes in the infiltrated macrophages within DRG and sciatic nerve, which promoted
IL-1β production and mechanical allodynia in a chemotherapy-induced neuropathic pain
model [48].
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Figure 2. Interactions between distinct parts of the PNS with immune cells (neutrophils, macrophages, mast cells and T cells).
Upon stimuli, injury initiates the release of inflammatory mediators (cytokines and chemokines) that cause degranulation
of mast cells close to the nerve terminal, resulting in proinflammatory production. Nociceptive nerve terminals secrete
neuropeptides through antidromic activation of neighboring nerve terminal branches to attract immune cells. Activated
Schwann cells and neutrophils mediate breakdown of the blood–nerve barrier via the secretion of matrix metalloproteinase
9(MMP-9), promoting infiltration of immune cells including macrophages, T cells to the DRG and peripheral nerve ending.
These cells, once activated, release a battery of inflammatory mediators (growth factors, cytokines, and chemokines) that act
on receptors expressed on adjacent nociceptor nerve terminals, leading to nociceptor sensitization. Macrophages exhibit
functions in mediating phagocytosis and tissue repair. Both macrophages and neutrophils inhibit nociceptive effects by
releasing opioid peptides at injury sites.

3.2. Pathological Role of Macrophages in Pain

The correlation between the infiltration of monocytes/macrophages and the develop-
ment of pain is well established. However, the strongest evidence of the involvement of
monocytes/macrophages in the induction or/and maintenance of pain comes from mono-
cyte/macrophage depletion studies. Depletion of peripheral macrophages by intravenous
injection of clodronate liposomes partially attenuated paclitaxel-induced or nerve injury-
induced thermal and mechanical hyperalgesia in the DRG [26,36,49,50]. Additionally,
monocyte/macrophage depletion with liposome-encapsulated clodronate (clophosome)
delayed the progression of diabetes-induced mechanical allodynia [51]. Peng et al. ab-
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lated peripheral monocytes in transgenic mice in a temporally controlled fashion, which
demonstrated the critical roles of infiltrated monocytes in initiating neuropathic pain and
in promoting the transition from acute to chronic pain after peripheral nerve injury [52].
Notably, clophosome could not effectively ablate resident macrophages in the DRG, mean-
ing the possible contribution of DRG macrophages cannot be ruled out in these studies.
A recent study found that PNS-resident macrophages were self-maintaining and exhib-
ited similar gene expression profiles to activated microglia in aging or neurodegenerative
conditions [53]. Specifically, the depletion of macrophages in the DRG, but not at the
peripheral nerve injury site, prevented the initiation of neuropathic pain and attenuated
ongoing nerve-injury-induced mechanical hypersensitivity [54]. The cell-specific depletion
of proliferating monocytes and macrophages in a model of inflammatory pain impaired the
development of mechanical and thermal hypersensitivity caused by incision and pathogens,
and also decreased proinflammatory mediators at the injury sites [28].

Production of proinflammatory mediators from monocytes/macrophages, such as
cytokines (TNF-α, IL-1β), chemokines (CCL2), growth factors (NGF), and lipids (PGE2
and PGI2), is a key mechanism of nociceptor sensitization (Figure 2). Macrophage inflam-
matory protein (MIP)-1α, also known as CCL3, is an inflammatory chemokine secreted
from macrophages, which promotes the development of neuropathic pain via the upregu-
lation of IL-1β [55]. Mammalian toll-like receptors (TLRs), a family of 12 evolutionarily
conserved membrane proteins expressed in macrophages, promote the synthesis of pro-
inflammatory cytokines and chemokines upon activation [56]. The activation of TLR4
resulted in the release of both TNFα and IL-1β, whereas stimulation of TLR 3, 9, and 7
induced the production of IL-1α and 1β [56]. Interestingly, macrophage-derived TLR9
signaling showed sex-specific differences, with the promotion of chronic pain only in male
mice, but not in female mice, in chemotherapy-induced peripheral neuropathy (CIPN) [57].
Neurotrophic growth factors, such as nerve growth factor (NGF), are key players in driving
peripheral nerve sprouting and nociceptive signal transduction in both inflammatory and
neuropathic pain. Macrophages are an important source of NGF production following
inflammation and nerve injury [2,58]. In a model of arthritis, depletion of macrophage via
clodronate liposomes reduced NGF production and pain behaviors [59]. On the other hand,
macrophage-derived NGF was found to be substantially increased more than four weeks af-
ter injury, suggesting prolonged interaction between macrophages and nociceptive neurons
might contribute to the maintenance of chronic pain [60]. Moreover, NGF not only acts on
periphery nerve fibers, but also involves a feedback mechanism that increases membrane
ruffling, calcium spiking, phagocytosis, and growth factor secretion by macrophages [61].
Stimulation of P2X4 receptors in macrophages triggered Cyclooxygenase (COX)-dependent
release of lipid mediator prostaglandin E2 (PGE2), which regulates inflammation and pain
hypersensitivity by promoting sensory neuron hyperexcitability [62]. Apart from regulat-
ing the release of pain mediators, macrophages are also involved in controlling metabolic
factors. For instance, reactive oxygen species (ROS) could be generated by macrophages to
engage TRPA1 in nociceptors [63]. Activation of macrophage angiotensin II type 2 receptor
triggered neuropathic pain via oxidative stress and subsequently stimulated TRPA1 in
nociceptors [64]. In the CIPN model, CX3CR1+ monocytes migrated to peripheral nerves,
where they produced ROS to elicit pain via the activation of TRPA1 [29].

3.3. The Role of Macrophages in Modulating Pain

Unlike the CNS, the neurons in the PNS have strong regenerative capacity via
the recruitment and polarization of macrophages, a vital process for tissue repair [65].
Macrophages can be polarized into different phenotypes, including M1 and M2, resulting
in distinct states of pain induction or modulation. The M1 macrophages exhibit a classi-
cally activated phenotype and produce proinflammatory mediators that promote pain,
whereas the M2 macrophages are immunosuppressive cells that secrete anti-inflammatory
cytokines and growth factors to promote tissue repair and resolution of pain [66,67]. Both
M1 and M2 macrophages are maintained in a dynamic equilibrium and can undergo rapid
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phenotypic switching in response to signaling molecules in the microenvironment [68,69].
Nevertheless, proinflammatory macrophages have complex cytokine profiles and their role
in the context of nerve injury is controversial. The M1 macrophages with pro-inflammatory
features are often referred to as harmful, however, multiple studies suggest that these me-
diators play important roles in removing distal degenerating axons and myelin debris by
phagocytosis, which enables the reorganization of Schwann cells and lays the foundation
for the repair of injured axons [45,70–73]. In vitro, the exposure of Schwann cells and neu-
rons to conditioned media from M1-primed macrophages appeared to enhance Schwann
cell proliferation, reduce axonal outgrowth, and compromise neuronal survival [66,74].

In general, M1 macrophages undergo dynamic switching to M2 macrophages over
time without increasing the number of subtypes. These M2-like macrophages can secrete
anti-inflammatory cytokines such as IL-10, TGF-β, and specialized pro-resolving mediators
(SPM) [75]. Moreover, depletion of monocytes prior to transient inflammatory pain induced
by IL-1β or carrageenan prolonged the resolution of inflammatory pain from two days to
over one week. The resolution of the inflammation-induced hyperalgesia was dependent
on IL-10 produced by monocytes/macrophages [76]. A perineural injection of IL-4-induced
M2 macrophages attenuated mechanical hypersensitivity via the release of opioid peptides
including metenkephalin, dynorphin A, and b-endorphin [77], which further supported the
existence of pain-modulating macrophages. Furthermore, activation of G protein-coupled
receptor (GPR37) enhanced phagocytosis and promoted M2-like macrophage polarization
with increased release of IL-10 and IL-1β, which helped to reverse the inflammatory
pain. Consistently, macrophage depletion with clodronate delayed the recovery from heat
hyperalgesia and mechanical allodynia in zymosan-induced inflammatory pain [78,79].
In a nerve injury model, macrophages were found to not only clear debris postinjury, but
also played critical roles in regulating Schwann cell differentiation and remyelination of
regenerated axons [80].

4. Neutrophils in the PNS
4.1. Recruitment and Activation of Neutrophils

Neutrophils are short-lived and mostly polymorphonuclear leukocytes that are gener-
ated by myeloid precursors in the bone marrow. After inflammation or damage, neutrophils
are one of the first immune cells recruited to the affected tissues within a few hours, and
are essential in the fight against infection, as well as clearing cellular debris in both septic
and aseptic processes [81]. Early studies reported that leukotriene B4 (LTB4) and com-
plement component 5a (C5a) recruited neutrophils to the site of inflammation to induce
pain sensitization [82,83]. During neurogenic inflammation, noxious stimuli activate noci-
ceptors that promote axon reflexes and generate action potentials that propagate through
neighboring nerve terminals, triggering a rapid and local release of neuropeptides (SP,
CGRP, VIP, or GRP) at peripheral branches. The neuropeptides released by sensory neurons
serve as chemotactic effectors for neutrophil attraction, and also act as antimicrobicidal
components [16,84,85]. Other mediators such as chemokines (CXCL1) and cytokines (TNF,
IL-17) also function to facilitate chemotaxis to promote the infiltration and accumulation of
neutrophils in peripheral nerves and the DRG [86–88] (Figure 2). On the contrary, a few
studies revealed a suppressive role of nociceptors in recruiting and activating neutrophils in
multiple models of infection and inflammation. In S. pyogenes-induced necrotizing fasciitis,
ablation of nociceptors led to increased neutrophil recruitment together with more well-
circumscribed abscesses, smaller necrotic lesions, and improved control of infection [89].
Similarly, cutaneous S. aureus infection activated nociceptor neurons resulting in mechani-
cal and thermal hyperalgesia, whereas nociceptor ablation led to increased infiltration of
neutrophils at the infection sites and in draining lymph nodes [90]. Baral et al. also revealed
that nociceptor sensory neurons (TRPV1+) in the lung responded to noxious or harmful
stimuli resulting in coughing, pain, and bronchoconstriction, whereas specific ablation of
TRPV1+ neurons promoted the recruitment and surveillance of neutrophils, facilitating
cytokine induction and lung bacterial clearance [91]. Consistently, TRPV1−/− mutants also
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exhibited increased neutrophil recruitment in a post-myocardial infarction inflammatory
model [92]. The differential mechanisms underlying neutrophil recruitment and activity
may be context dependent, where local immune responses related to nociceptors can lead
to sterile inflammation or pathogenic inflammation.

4.2. The Pathological Role of Neutrophils in Pain

Studies using various inflammatory pain models have attempted to reveal the function
of neutrophils, although their roles are still controversial. Early reports suggested that neu-
trophils can promote the sensitization of primary afferent neurons by releasing cytokines
and chemokines that act as a positive feedback to activate neutrophils, triggering a comple-
mentary alternative pathway to amplify nociceptive responses [10,83]. Inhibition of neu-
trophil recruitment by fucoidin attenuated mechanical allodynia in carrageenan-induced
inflammatory pain. Depletion of neutrophils with vinblastine sulfate or anti-neutrophil an-
tibody decreased mechanical hyperalgesia in incision models [87]. Similarly, C5a-induced
hypernociception was reduced in neutrophil-depleted rats [83]. In humans, neutrophils
increasingly accumulate in the joints of patients with inflammatory pain such as arthritis,
and their recruitment was found to be associated with the development of hyperalgesia.
However, antibody-induced neutropenia had no effects on the mechanical and thermal
hypersensitivity in complete Freund’s adjuvant (CFA)- and zymosan-induced pain [93,94].
By depleting different populations, Ghasemlou et al. revealed that lymphocyte antigen
6 complex locus G (Ly)6G+CD11b+ neutrophils did not contribute to the development of
thermal or mechanical pain hypersensitivity in either incisional pain or a CFA-induced
inflammatory model, whereas proliferating CD11b+Ly6G− myeloid cells were necessary
for mechanical pain hypersensitivity [28].

In neuropathic pain models, robust infiltration of neutrophils was observed at periph-
eral nerve injury sites peaking within the first few hours after damage, whereas neutrophils
were barely detectable in intact nerves. Neutrophils release mediators that sensitize no-
ciceptors in acute stage and recruit immune cells (e.g., macrophages and T cells) to the
injury site, where they secrete a myriad of proinflammatory mediators that maintain the
neuropathic pain [95,96]. Depletion of circulating neutrophils reduced the development of
thermal hyperalgesia in a partial sciatic nerve transection model [97]. Genetic ablation of
mediators or receptors regulating neutrophil adhesion and migration improved mechanical
hyperalgesia in experimental neuropathic pain [98,99]. In a chronic constriction injury
model, damaged peripheral nerves induced the migration of neutrophils to the ipsilateral
side of the DRG, resulting in the release of chemokine CCL2 leading to peripheral nocicep-
tor sensitization [100]. Depletion of circulating neutrophils by an anti-neutrophil antibody
during injury in a herpetic neuralgia model significantly attenuated hypersensitivity via
the inhibition of TNF in the DRG [101] (Figure 2).

4.3. Neutrophils in the Resolution of Pain

Neutrophils at the site of inflammation can secrete analgesic mediators such as opioid
peptides (b-endorphin, met-enkephalin, and dynorphin-A), which can activate opioid
receptors on peripheral sensory neurons resulting in the inhibition of nociceptive trans-
mission [102]. Local injection of corticotropin releasing factor (CRF) evoked the release of
opioid peptides from neutrophils to attenuate CFA-induced inflammatory-hyperalgesia
in rat [103]. Interestingly, Lindbord et al. found that neutrophils can function similarly to
infiltrating monocyte-derived macrophages during Wallerian degeneration (WD), which
is an essential preparatory process for the axonal regeneration. Ablation of neutrophils
substantially attenuated myelin removal after peripheral injury in both WT mice and CCR2
null mutants, replacing CCR2+ microphages as the primary phagocytic cells [104]. In addi-
tion, neutrophils can induce macrophage polarization by suppressing NF- κB activation
upon injury, exerting anti-inflammatory effects [105].
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5. Mast Cells in the PNS
5.1. Location of Mast Cells in PNS

Mast cells are granulated immune cells that reside in close proximity to nerve fibers in
connective tissues, particularly CGRP– and substance P+ neurons [106,107]. Within 24 h
following injury, mast cells participate in innate host defense and immune reactions via
degranulation to release a broad range of proinflammatory cytokines and chemokines [108].
Due to the unique localization of mast cells, it has long been postulated that a tight in-
teraction between peripheral nociceptors and mast cells is involved in pain induction
under different contexts. It has been shown that N-cadherin plays an essential role in
the synapse-like structures involved in peripheral nerve terminal-mast cell communica-
tion [109]. Folgueras et al. found that metalloproteinase MT5-MMP (MMP-24) promoted
the interaction between sensory fibers and mast cells via regulating N-cadherin, which
led to thermal nociception and inflammatory hyperalgesia [110]. In humans, increased
numbers of nerve mast cells were frequently reported in inflammatory diseases, and could
be correlated to the severity of pain symptoms in patients with arthritis, allergic disease,
and fibromyalgia [111–113].

5.2. The Role of Mast Cells in Pain

The strongest evidence of the involvement of mast cells in regulating peripheral sen-
sitizations comes from depletion studies. Mast cell-deficient mice (KitW-sh/W-sh) were
hyporesponsive to vertically applied punctate heat stimuli, and had attenuated pelvic pain
associated with neurogenic cystitis [114,115]. In rodents, administration of a secretagogue
compound 48/80 induced degranulation of mast cells and caused immediate hyperalgesia
and excitation of meningeal nociceptors, whereas mast cell-deficient mice (KitW-sh/W-sh)
could abrogate thermal and mechanical hyperalgesia induced by secretagogue compound
48/80 [116]. Mast cells have also been found to be important contributors to the devel-
opment of cutaneous and deep hyperalgesia, and hypoxia-reperfusion-induced pain in
transgenic sickle mice primarily through promoting the release of neuropeptides [117].
Mechanistically, degranulation of mast cells triggers the rapid secretion of histamine, sero-
tonin, nerve growth factor, cytokines, and leukotrienes upon exposure to stimuli, which
exert their various effects on nervous system or/and immune cells contributing to pain
sensitization [118–121]. For example, histamine can promote release of neuropeptides (e.g.,
CGRP) and glutamate (excitatory neuronal transmitter) from nerve endings. Adminis-
tration of antagonists of histamine receptors (H1–H5) reduced mechanical and thermal
hyperalgesia as well as inflammation responses [122]. Particularly, antagonists targeting
H2 receptor have been proved to be an effective treatment for painful bladder syndrome
under clinical trials [123]. On the contrary of the analgesic effects of serotonin (5-HT)
in CNS, 5-HT produced from mast cells in periphery contributes to the generation and
maintenance of pain [124,125]. Growth factor, NGF, synthesized by mast cells, can directly
bind to its receptor TrKA in TRPV1 neurons, evoking thermal and mechanical allodynia.
In turn, NGF stimulates mast cells to release pronociceptive mediators, which results in a
noxious microenvironment facilitating chronic hypersensitivity [126,127].

5.3. Recruitment and Degranulation of Mast Cells

The degranulation of mast cells and release of inflammatory mediators can be evoked
by the activation of a variety of cell surface receptors, such as Fcε receptors and G-protein
-coupled receptors [128]. It has been shown that Fcε receptors activate sphingosine kinases
to promote generation and secretion of sphingosine-1-phosphate (S1P), a ligand for G-
protein-coupled receptors, from mast cells. S1P plays critical roles in recruiting mast
cells to the injury sites and further enhancing their degranulation in an autocrine manner
by directly binding to G-protein-coupled receptors [129]. Notably, a few antagonists
targeting S1P receptors have been developed, exhibiting strong analgesic effects in multiple
neuropathic pain models [130,131]. Other studies found the MAS-related G protein-coupled
receptor member B2 (Mrgprb2) was highly enriched in mast cells, and Mrgprb2 mutant mice
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exhibited abolished mast cell activation by secretagogues [132,133]. Using a postoperative
pain and CFA-induced pain model, Green et al. demonstrated that the mast cell-specific
receptor Mrgprb2 mediated mechanical and thermal hyperalgesia and was required for
the recruitment of innate immune cells at the injury site. Mechanistically, neuropeptide
substance P (SP), an endogenous agonist of Mrgprb2, was able to activate human mast
cells, leading to the release of multiple proinflammatory cytokines and chemokines via the
human homolog MRGPRX2, which facilitates immune cell infiltration. Surprisingly, the SP-
mediated inflammatory responses were independent of its canonical receptor, neurokinin-1
receptor (NK-1R). These results identified Mrgprb2/X2 as an important neuroimmune
modulator and a potential target for the treatment of inflammatory pain [134] (Figure 2).
In the enteric nervous system, CGRP released from enteric sensory neurons promoted
the activation and degranulation of mast cells leading to intestinal immune diseases [135].
Similarly, CGRP-mediated vasodilation and mast cell degranulation were found to be key
mechanisms in driving migraine in a mouse model [136]. Pannexin 1 (Panx1) is a large-pore
membrane channel expressed in neurons, glial cells and immune cells, which promotes
central or primary sensitizations upon the activation [137,138]. A recent study revealed that
Panx1 plays a critical role in the degranulation of mast cells during hypersensitivity reaction
promoted by ovalbumin, whereas the absence of Panx1 prevented histamine release or
sustained Ca2+ signal increase [139]. It is well noted that pharmacological inhibition or
genetic ablation of Panx1 attenuated hypersensitivity in nerve injury models [138,140].
However, whether Panx1 contributes to the degranulation of mast cells in peripheral
nerves remains to be determined.

6. T cells in the PNS
6.1. Subtypes of T Cells

The T cell is a type of lymphocyte originating from hematopoietic stem cells, and
is characterized by the expression of a unique surface molecule, T cell receptor (TCR).
Similar to other immune cells, T cells infiltrate into the sciatic nerve and dorsal root ganglia
(DRG) after peripheral nerve injury, where they induce the release of proalgesic mediator
leukocyte elastase (LE), leading to mechanical allodynia [25,120,141–143]. T cells can be
grouped into different subtypes including T-helper cells (CD4+) and cytotoxic T cells
(CD8+), which exhibit distinct functions in regulating pain. T-helper cells contain type 1
(Th1), type 2 (Th2), type 17 (Th17), and regulatory T cells (Treg cells), which play roles
in modulating the innate and adaptive immune response. Each subsets of T cells are
exhibiting unique transcriptional factors and cytokine production profiles. For example,
Th1 cells express STAT4 and release IL-2/INFγ; Th2 cells express GATA3 and promote
release of IL-4 and IL-10; Th17 cells express RoRγT and release IL-17; and Treg express
FOXP3 and produce TGF β and IL-10 [144].

6.2. Recruitment and Polarization of T Cells

Neurotransmitters (glutamate) and neuropeptides (CGRP, SP, VIP) released by noci-
ceptors are key mediators of T cells. These mediators are expressed at peripheral nerve
endings in response to stimuli, and significantly affect the adaptive immune response in-
cluding T cells. Silencing of nociceptors interrupted neuro-T cell interactions and inhibited
amplified adaptive immune responses [90,145,146]. Similar to neutrophils, infiltrating T
cells come from the endoneurial vasculature and rely on recruited phagocytic cells (e.g.,
marcophages), as ablation of these cells by clodronate lipsome prevented T cells (CD4+) in-
vading the injury sites. These studies suggested that early stage recruitment and activation
of other immune cells are prerequisite for T cell infiltration [27,28]. It is interesting to note
that activation of distinct receptors expressed in T cells (e.g., inotropic and metabotropic
glutamate, SP, and CGRP receptors) can drive infiltration and the differential phenotypic
polarization of T cells in response to pain and immune defense against infection [147]. In
an in vitro study, coculture of naive CD4+ T cells with superior cervical ganglion neurons
favored Foxp3+ Treg cell polarization, which produce immunoregulatory cytokines, TGF-
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β, and IL-10. The study also reported that the generation of Tregs could be induced by
neuropeptide CGRP released from nociceptive neurons [147]. Activation of CGRP inhibited
Th1 cells, but promoted Th2 cells in contact hypersensitivity of the skin [148]. In a mouse
model of inflammatory arthritis, SP was also shown to drive the polarization of Th17 cells,
a subset of effector memory T cells that produce IL-17 [149,150].

The interaction between T cells and the nervous system is bidirectional. For exam-
ple, vasoactive intestinal peptide (VIP) drives CD4+ T cells to produce proinflammatory
cytokines including IL-5, and in turn, IL-5 activates sensory neurons to enhance sensiti-
zations [146]. Meningeal T cells can trigger the production of brain-derived neurotrophic
factor (BDNF) via the secretion of IL-4, which promotes brain neurogenesis [151]. The
secretion of IL-31 by Th2 cells could directly activate receptors on sensory neurons inducing
itch neuronal hyperexcitation in an inflammatory skin disease model [152].

6.3. The Role of T Cells in Pain

Many studies have revealed the distinct roles of T cell subtypes in regulating neu-
ropathic pain. Early studies reported that Th1 cells promoted pain hypersensitivity by
releasing proinflammatory cytokines (IL-1β, TNF-α, and IL-17), whereas type 2 cells re-
duced mechanical allodynia and thermal hyperalgesia by producing anti-inflammatory
cytokines (IL-4 and IL-10) in neuropathic models [95,144]. Consistently, reduction of T
cells markedly attenuated hyperalgesia and allodynia induced by nerve injury in rodent
models [95,153]. Adoptive transfer of toxic T cells via intrathecal injection enhanced
pain sensitization, whereas injection of Treg cells attenuated neuropathic pain following
chemotherapy [154]. It is interesting to note that naïve DRG contains low populations of
both CD4+ and CD8+ T cells, with a greater proportion of the latter [141,154,155]. The
T cells infiltrating to the DRG after injury are mostly CD4+, suggesting a shift to CD4+
from a predominantly CD8+ population [142,156]. Consistently, genetic ablation of CD4+
T cells in mice or intravenous administration of CD4 antibodies reduced hyperalgesia and
allodynia following neuropathic pain induction, which could be abolished by adoptive
transfer of CD4+ T cells [27,157].

In inflammatory pain models, T cells appeared to be dispensable or even beneficial to
the pain response. Intraplantar CFA injections significantly increased T cells in the inflamed
tissue, whereas T cell-deficient mice (Tcrb−/−, Tcrd−/−, Rag1−/−, and Rag2−/−) showed no
change in pain hypersensitivity, suggesting that T cells are not involved in the development
of inflammatory pain [28,158,159]. Consistently, no significant differences in thermal or
mechanical allodynia was found between Tcrb−/− or Tcrd−/− mutants and WT mice in
a postoperative pain model [28,159]. Moreover, T cells facilitated the resolution of pain
response after inflammation. A few studies revealed the deficiency of T cells resulted in
prolonged mechanical allodynia in mice [160–163]. In addition, T cell-deficient mice (Cd-1
nude, Rag1 null mutant, and Cd-4 null mutant) had pronounced deficiencies in opioid-
mediated analgesia with increased hypersensitivity, whereas restoration of CD4+ T cells in
Rag1−/−, Rag2−/−, or nude mice normalized the resolution of inflammatory pain [164]. In
antigen- and collagen-induced models of arthritis, the depletion of CD8+ T cells worsened
pain hypersensitivity [165].

7. Clinical Implications and Future Perspectives

Pain syndromes frequently occur in various disease conditions causing negative im-
pacts on patients’ quality of life both physically and physiologically. Mounting evidence
shows that neuroimmune interactions play critical roles in peripheral sensitization, which
is highly associated with the initiation and maintenance of pain, and the transition from
acute to chronic pain. Modulation of these interactions and mediators have been considered
as promising strategies for the treatment of pain and the underlying diseases. Despite
preclinical and clinical studies of a number of immune mediators that act on nociceptor
sensitization and pain responses, little knowledge has been translated into pain-relieving
therapies. For example, CCR2 or CSF1R antagonists have been applied to target myeloid
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cells for treating neuropathic pain, but little improvement was observed [166]. Moreover,
TRPV1 antagonists exhibited adverse effects such as hyperthermia, and NGF antagonists
attenuated pain in animal models, but caused nerve damage and joint destruction [167].
Targeting macrophages can be even more challenging, as there are at least two distinct
subpopulations, M1 or M2, which play critical roles in both promoting and resolving
pain, respectively. Similarly, N1 or N2 neutrophils have potential roles in stimulating
and suppressing immunity. Currently, there are no specific molecular markers that have
been isolated in these subpopulations for study. It is important to point out that acute
inflammation not only induces pain, but can also promote the resolution of pain by trig-
gering immune responses against pathogens and by producing specialized pro-resolving
mediators (SPMs).

In future studies, the identification of specific targets of neuroimmune interactions
and their mediators that act on nociceptors could offer alternative pain treatments without
off-target or adverse effects. Neuroimmune signaling is a double-edged sword under
different contexts, which presents several big challenges: (1) How do we modulate immune
signaling molecules without altering neuroprotective and neuroregenerative potential? (2)
Can we remodel pathological immune actions to be neuroprotective and neuroregenerative
by nuance manipulation? A greater and more precise understanding of mechanisms under-
lying neuroimmune signaling in humans is warranted, especially in clinical populations
suffering from chronic pain.
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