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Abstract

Broad scale remote sensing promises to build forest inventories at unprecedented scales. A

crucial step in this process is to associate sensor data into individual crowns. While dozens

of crown detection algorithms have been proposed, their performance is typically not com-

pared based on standard data or evaluation metrics. There is a need for a benchmark data-

set to minimize differences in reported results as well as support evaluation of algorithms

across a broad range of forest types. Combining RGB, LiDAR and hyperspectral sensor

data from the USA National Ecological Observatory Network’s Airborne Observation Plat-

form with multiple types of evaluation data, we created a benchmark dataset to assess

crown detection and delineation methods for canopy trees covering dominant forest types in

the United States. This benchmark dataset includes an R package to standardize evaluation

metrics and simplify comparisons between methods. The benchmark dataset contains over

6,000 image-annotated crowns, 400 field-annotated crowns, and 3,000 canopy stem points

from a wide range of forest types. In addition, we include over 10,000 training crowns for

optional use. We discuss the different evaluation data sources and assess the accuracy of

the image-annotated crowns by comparing annotations among multiple annotators as well

as overlapping field-annotated crowns. We provide an example submission and score for an

open-source algorithm that can serve as a baseline for future methods.
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Author summary

Combining RGB, LiDAR and hyperspectral sensor data from the USA National Ecological

Observatory Network’s Airborne Observation Platform with multiple types of evaluation

data, we created a benchmark dataset to assess crown detection and delineation methods for

canopy trees covering dominant forest types in the United States. This benchmark dataset

includes an R package to standardize evaluation metrics and simplify comparisons between

methods. The benchmark dataset contains over 6,000 image-annotated crowns, 400 field-

annotated crowns, and 3,000 canopy stem points from a wide range of forest types.

This is a PLOS Computational Biology Benchmarking paper.

Introduction

Quantifying individual trees is a central task for ecology and management of forested landscapes.

Compared to traditional field surveys, airborne remote sensing allows forest monitoring at broad

scales. A central task in remote sensing of forests is converting raw sensor data into information

on individual trees [1]. While there are dozens of proposed algorithms, they are often designed

and evaluated using a range of different data inputs [2–4], sensor resolutions, forest structures,

evaluation protocols [5–8], and output formats [9]. For example, [10] proposed a pixel-based

algorithm for 50 cm pan-sharpened satellite RGB data from a tropical forest in Brazil evaluated

against field-collected tree stem locations, and [11] proposed a vector-based algorithm for 10 cm

fixed-winged aircraft RGB data from oak forests in California evaluated against image-annotated

crowns. Given these differences, a comparison among algorithms is difficult to make based on

reported statistics to interpret the relative accuracy, generality and cost effectiveness.

One solution to these challenges is a benchmark dataset that can be used to evaluate a wide

variety of algorithms and data types [12, 13]. We believe a useful benchmark dataset has at least

three features [13–16]: 1) well-curated and open-source data, 2) reasonable evaluation criteria,

3) reproducible and transparent scoring. We developed a benchmark dataset of individual can-

opy crowns derived from multi-sensor imagery in the National Ecological Observatory Network

(Table 1) that provides: 1) co-registered remote sensing data from multiple sensors (LiDAR,

RGB imagery, and hyperspectral imagery) to allow comparisons of methods based on any single

sensor (e.g., for LiDAR based methods), or any combination of sensors (e.g., combining RGB

and hyperspectral), and 2) three types of evaluation data to allow assessing both ‘tree detection’,

defined as the identifying the location of individual trees using evaluation data with a point at

the crown center [5, 17], and ‘crown delineation’ defined as identifying the boundary edge of

crowns [9, 11–13] across a broad range of forest types. The benchmark is designed to allow flex-

ibility in both workflow and sensor selection. Users of the benchmark can use any combination

of algorithms and sensors so long as the final product is a 2-dimensional shape with geographic

coordinates representing the boundaries of individual canopy tree crowns.

Methods and results

Remote sensing data

The National Ecological Observatory Network (NEON) is a large initiative to coordinate data

collection across the United States at over 80 geographic sites. Annual data collection includes
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surveys by the airborne observation platform (AOP) using RGB, LiDAR and hyperspectral

sensors (http://data.neonscience.org/), as well as standardized 40m vegetation surveys at fixed

sampling plots throughout each site. The NEON AOP uses fixed-wing aircraft, flown around

1000m above ground, to survey sites during leaf-on-conditions from May-October. Sensor

data chosen for this benchmark were collected during flights from 2018 and 2019. For the pur-

poses of the benchmark dataset, we cropped sensor products to the bounds of each 40m

NEON field sampling plot. For example, the RGB image ‘SJER_052_2019’ corresponds to

NEON field plot 52 at NEON site SJER (San Joaquin, California see Table 2 for abbreviations)

with sensor data from the 2019 airborne survey. For additional detail on NEON design and

planning, see NEON’s extensive technical documents for detailed site information and sam-

pling strategy (neonscience.org).

Orthorectified camera mosaic

The RGB data were acquired with a D8900 camera with a format of 8,984 x 6,732 pixels. Indi-

vidual images were color rectified, orthorectified and mosaiced to create a single raster image

with a pixel size of 0.1 m^2. Mosaic tiles are provided as 1000m x 1000m geoTIFF files and are

named based on the UTM coordinate at the northwest origin. RGB data have high spatial reso-

lution and individual canopy trees are often visible based on the crown boundary, as well as

color differences among individuals due to taxonomy and health status (Fig 1). For more

details on NEON camera orthomosaic products see NEON technical document NEON.

DOC.005052 [18].

One challenge in creating a multi-sensor dataset is the joint georectification of data types.

To ensure spatial overlap between the LiDAR and RGB data, NEON staff overlaid the 0.1m

spatial resolution RGB tile on a 1m spatial resolution LiDAR derived surface height model.

The difference in spatial resolution can cause some distortion in rectified RGB images. These

artifacts are most pronounced at the image edge and were minimized by selecting the center-

most portion of each image when creating the RGB mosaic. Some distortion remains and can

cause a swirling effect as the image pixels are stretched to match the corresponding LiDAR ras-

ter cell. For more information see NEON technical document NEON.DOC.001211vA [18].

We did not include images with large enough distortions to interfere with canopy crown

detection but kept images with minor distortions to represent the kind of challenging condi-

tions present in applied settings.

Table 1. Summary of datasets included in the benchmark dataset. All sensor data has been cropped to the extent of

NEON field sampling plots.

Item (format) Type Description (NEON ID)

10cm RGB data (.tif) Sensor data DP3.30010.001

LiDAR point cloud (~5 pts/

m) (.laz)

Sensor data DP1.30003.001

1m gridded raster of canopy

height model (.tif)

Sensor data DP3.30015.001

1m 426 band hyperspectral

data

Sensor data DP1.30006.001

Image-annotated crowns (.

xml)

Evaluation data

(6490 trees)

Bounding box annotations made by visually assessing the

sensor data

Field-annotated crowns (.

shp)

Evaluation data

(562 trees)

Polygon annotations by visually assessing the hyperspectral

data while physically in the field next to target tree

Field-collected stems (.csv) Evaluation data

(4365 trees)

NEON collected stem points for each individual tree. Filtered

from the Woody Vegetation Structure data product (NEON

ID: DP1.10098.001)

https://doi.org/10.1371/journal.pcbi.1009180.t001
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Classified LiDAR Point Cloud

The LiDAR data are 3D coordinates (~5 points/m2) that provide high resolution information

about canopy crown shape and height. LiDAR data are stored as 1000m x 1000m.laz files (Fig

2). These files contain the x,y,z coordinates for each return, as well as metadata on return

intensity and point classification. Boundaries of individual canopy crowns are often apparent

due to gaps among neighboring trees or differences in height among overlapping canopy

crowns. For more information on NEON LiDAR data processing see NEON technical docu-

ment NEON.DOC.001292 [19]. Due to the large spatial coverage of the collection effort, the

point density of the NEON LiDAR clouds is much lower than the point density used for most

studies of crown detection models ([20, 21]; point densities of 8–1000 pt/m2).

Hyperspectral surface reflectance

NEON’s hyperspectral sensor collects reflected light in the visible and infrared spectrum

between approximately 420–2500 nm with a spectral sampling interval of 5nm for a total of

426 bands. NEON provides the orthorectified images with a pixel size of 1 m2 in 1000m x

1000m tiles that align with the RGB and LiDAR file naming convention. Hyperspectral data,

Table 2. Annotations for each data type for each of the NEON sites.

siteID Site Name State Image-annotated Evaluation

Crowns

Field-collected

Stems

Additional data or notes

ABBY Abby Road WA 160 14

BART Bartlett Experimental Forest NH 93 535 369 image-annotated training crowns

BLAN Blandy Experimental Farm VA 73 0

BONA Caribou-Poker Creeks Research Watershed AK 225 0

CLBJ Lyndon B. Johnson National Grassland TX 116 0

DEJU Delta Junction AK 0 60

DELA Dead Lake AL 87 240 295 image-annotated training crowns

DSNY Disney Wilderness Preserve FL 87 0 888 image-annotated training crowns

HARV Harvard Forest MA 171 622 329 image-annotated training crowns

JERC The Jones Center At Ichauway GA 294 159

LENO Lenoir Landing AL 75 103 554 image-annotated training crowns

MLBS Mountain Lake Biological Station VA 481 668 1921 image-annotated training crowns, 106 field-

annotated crowns

MOAB Moab UT 0 11

NIWO Niwot Ridge CO 1485 500 10,022 image-annotated training crowns

ONAQ Onaqui UT 32 0 244 image-annotated training crowns

OSBS Ordway-Swisher Biological Station FL 497 346 2126 image-annotated training crowns, 458 field-

annotated crowns

SCBI Smithsonian Conservation Biology Institute VA 73 193

SERC Smithsonian Environmental Research Center MD 94 369

SJER San Joaquin Experimental Range CA 473 57 2545 image-annotated training crowns

SOAP Soaproot Saddle CA 114 0

TALL Talladega National Forest AL 157 220

TEAK Lower Teakettle CA 1471 0 1471 image-annotated training crowns

UKFS University of Kansas Field Station KS 0 127

UNDE University of Notre Dame Environmental

Research Center

MI 186 66

WREF Wind River Experimental Forest WA 178 0

YELL Yellowstone National Park WY 0 0 873 image-annotated training crowns

https://doi.org/10.1371/journal.pcbi.1009180.t002
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especially in the infrared spectrum, is often used for differentiating tree species based on spec-

tral differences among species in leaf chemistry and canopy structure [22]. Hyperspectral data

is particularly useful in forests with high species diversity where neighboring trees are likely to

be different species and thus spectrally distinct (Fig 3)[23]. All hyperspectral data were col-

lected during the same field collection campaign as the RGB data, with the exception of the

UNDE site, in which the 2019 RGB data was not available at the time of publication and there-

fore the 2017 flight data was used instead. For more information on hyperspectral data pro-

cessing and calibration see NEON technical document NEON.DOC.001288 [24].

Fig 1. A 40m x 40m evaluation plot of RGB data from the Teakettle Canyon (TEAK) NEON site (left) and Bartlett Experimental Forest, New Hampshire (BART)

(right).

https://doi.org/10.1371/journal.pcbi.1009180.g001

Fig 2. Normalized LIDAR point cloud for evaluation plot SJER_064 from the San Joaquin Experimental Range, California (left) and MLBS_071 from Mountain

Lake Biological Station, Virginia. Points are colored by height above ground.

https://doi.org/10.1371/journal.pcbi.1009180.g002
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Ecosystem structure

NEON’s ‘Ecosystem Structure’ data product is a LiDAR derived height raster at 1m spatial res-

olution. Often known as a ‘canopy height model’ (CHM), the raster values are the normalized

height above ground for each grid cell. This data is useful for differentiating crowns in three

dimensions, as well as eliminating crowns that are under the 3m threshold used in this bench-

mark for minimum tree height. For more information on normalization and interpolation to

create the raster product see NEON technical document NEON.DOC.002387 [25].

Woody plant vegetation structure

Along with sensor data, NEON collects information on trees in fixed plots at each NEON site.

Data from two types of plots are included in this dataset: ‘distributed’ plots, which are 20m x

20m fully sampled plots, and ‘Tower’ plots, which are 40m x 40m plots with two sampled 20m

x 20m quadrants. The distinction between distributed and tower plots may be useful for users

familiar with NEON’s sampling regime, but is not necessary for most uses of the benchmark

data set. All trees in sampled areas with a stem diameter of> 10cm are mapped and recorded.

For the purposes of this benchmark dataset, the key tree metadata are the stem position, size,

and estimated tree height. For extensive information on NEON field sampling see NEON tech-

nical document NEON.DOC.000987 [26].

Evaluation annotations

The goal of this benchmark is to evaluate algorithms for canopy tree detection and delineation.

We adopt the term ‘canopy crown detection’ to differentiate between the tasks of ‘tree

Fig 3. Composite hyperspectral image (left) and corresponding RGB image (right) for the MLBS site. The composite image contains near infrared (940nm), red

(650nm), and blue (430nm) channels. Trees that are difficult to segment in RGB imagery may be more separable in hyperspectral imagery due to the differing foliar

chemical and structural properties of co-occurring trees.

https://doi.org/10.1371/journal.pcbi.1009180.g003
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detection’, defined as identifying the location of the crown center of individual trees [5, 17]

and ‘crown delineation’ or ‘crown segmentation’, often defined as identifying the boundary

edge of individual crowns [9, 27–29]. The term ‘canopy’ is often implicitly assumed in most

studies, since optical data and low density LiDAR data, can only reflect the structure in the

upper canopy ([30] but see [31, 32]). Evaluation of detection methods in this benchmark data-

set is done by assessing detections using three types of evaluation data: 1) image-annotated

crown bounding boxes for 22 sites in the NEON network, 2) field-annotated crown polygons

for two sites in the NEON network (Table 2), and 3) field-collected stem points from 14 sites

from the NEON Woody Vegetation Structure dataset. For each of these data we outline how

the data were collected and the evaluation procedure for canopy crown detection.

Image-annotated crowns

We selected airborne imagery from 22 sites surveyed by the NEON AOP. The evaluation sites

were chosen based on the availability of the three types of sensor data, as well as representation

of forest conditions across the US including the diversity of species composition, stand age,

and canopy openness. The selected sites range from Florida to Alaska, include forest types

dominated by conifers, broadleaves or a mixture of the two, and varying in density from open

oak woodlands (3.5 trees per 20m plot at the SJER site) to dense deciduous forests (34.38 trees

per plot at the HARV site). Images were annotated using the program RectLabel (Table 1). For

each visible tree, we created a bounding box (xmin, ymin, xmax, ymax) that covered the tree

crown (Fig 4). We prefer bounding boxes over polygons for image-annotated crowns for

speed of annotation, which is needed to cover the large number of images and sites to make a

benchmark on geographic generalization possible.

We carefully annotated the evaluation images by comparing the RGB, LiDAR and

hyperspectral data. Using all three products made it possible to more accurately distin-

guish neighboring trees in images by simultaneously assessing visual patterns (RGB),

using variation in spectral signatures to distinguish different species (hyperspectral), and

looking at the three-dimensional structure of the tree (LiDAR). For some sites, such as

OSBS, the crowns were most visible in the LiDAR height model, whereas for closed canopy

sites such as MLBS, the hyperspectral and RGB data were most useful. When working with

the hyperspectral data we primarily used a composite three-band hyperspectral image con-

taining near infrared (940nm), red (650nm), and blue (430nm) channels, which showed

contrasts between neighboring trees of different types (Fig 5D and 5H). We also aug-

mented the RGB data to view subtle changes in pixel values using a decorrelation stretch

(Fig 5B and 5F). The decorrelation stretch is useful in highlighting small differences within

the image color space that are not apparent in the visual RGB color spectrum. Each evalua-

tion plot overlaps with a NEON 40m x 40m plot. Within each of these plots, NEON field

crews survey a 20x20 subplot; therefore, while field data are available for most plots in the

dataset, they do not cover every tree in the image. The woody vegetation structure data

contains information on field estimated height and maximum crown diameter for the

majority of field collected stems. We annotated all trees in the 40x40 m plot, regardless of

health status, provided they were visible in the image.

Field-annotated crowns

Individual trees were annotated by visiting two NEON sites and mapping the tree crown

boundaries as polygons in the remote sensing images using a field tablet and GIS software

while looking at each tree from the ground [33]. False-color composites from the hyperspectral

data, RGB, and LiDAR canopy height model were loaded onto tablet computers that were
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equipped with GPS receivers. While in the field, researchers digitized crown boundaries based

on the location, size, and shape of the crown. Only alive trees with leaf-on vegetation were

selected. Trees were mapped in 2014 and 2015, and all polygons were manually checked

against the most recent NEON imagery. All crowns that were no longer apparent in the RGB

or LiDAR data due to tree fall or overgrowth were removed from the dataset, and minor

adjustments to crown shape and position were refined after examining multiple years of RGB

imagery. No adjustments to the polygons were made due to crown expansion.

Evaluation for image-annotated and field-annotated crowns

The evaluation procedure in this benchmark is identical for image-annotated and field

annotated crowns, since the final data format for both is a geospatial file with either

Fig 4. Screenshot of the program RectLabel used for tree annotation for the image-annotated crowns for NEON plot MLBS_071. For each visible tree crown,

we created a four point bounding box.

https://doi.org/10.1371/journal.pcbi.1009180.g004
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bounding boxes (image-annotated) or polygons (field-annotated) for each canopy

crown. To measure accuracy and precision of predicted detections, the most common

approach is to compare the overlap between predicted crowns and evaluation crowns

using the intersection-over-union metric (IoU; e.g.[34]) and a minimum matching

threshold. IoU is the area of the overlap between the predicted crown and the evaluation

crown divided by the area of the combined region. Any comparisons with a IoU score

above the minimum threshold are true positives. The metric ranges between 0 (no over-

lap) to 1 (perfect overlap) (Fig 6). In the wider computer vision literature, the conven-

tional threshold value for true positive overlap is 0.5 (e.g.[34]), but this value is arbitrary

and does not ultimately relate to any particular ecological question. We tested a range of

overlap thresholds from 0.3 (less overlap among matching crowns) to 0.6 (more overlap

among matching crowns) and found that 0.4 balanced a rigorous cutoff without spuri-

ously removing trees that would be useful for downstream analysis. Using this overlap

threshold, the benchmark code calculates recall, defined as the proportion of crowns cor-

rectly predicted, and precision, defined as the proportion of predictions that matched a

ground truth crown. If multiple predictions overlap a single ground truth crown, we

match the prediction with the highest IoU to the ground truth. Predictions that do not

overlap with any ground truth are considered false positives. To create a single summary

statistic for the entire benchmark, we calculate the mean precision and recall per image

rather than pooling results across sites. We chose this statistic to emphasize the wide

geographic variance in forest types.

Fig 5. Image-annotated tree crowns for the evaluation data set for two sites in the National Ecological Observation Network. Using the RGB, LiDAR and

hyperspectral products together contributes to more careful crown annotation. For some sites, such as MLBS (top row), the RGB and hyperspectral data are useful for

differentiating overlapping crowns. For other sites, such as OSBS (bottom row) the LiDAR point cloud, shown as a rasterized height image, is most useful in capturing

crown extent. The RGB-stretch image was produced by transforming the RGB data in the three principal components space. To create a three-band hyperspectral image,

we used channels from the red, blue and infrared spectrum to capture changes in reflectance not apparent in the RGB imagery.

https://doi.org/10.1371/journal.pcbi.1009180.g005
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Field-collected stems

NEON field crews sample all trees within a plot that are greater than 10cm DBH, regardless of

whether the tree crown can be seen in the remote sensing image data. While understory tree

detection is an important area of future work, the scope of this benchmark is focused on

crowns in the canopy that are visible from above. It is important to separate the computer

vision tasks from a particular ecological goal, such as tree enumeration, to maximize transpar-

ency in evaluation and build towards general models that can be used for a variety of ecological

Fig 6. Example evaluation from the NeonTreeEvaluation R package. Predicted boxes (see below) in red and ground truth boxes are in black. In this

image there are 10 image-annotated boxes, and 9 predictions. Each prediction matches an image-annotated box with an intersection-over-union score of

greater than 0.4. This leads to a recall score of 0.9 and a precision score of 1.

https://doi.org/10.1371/journal.pcbi.1009180.g006
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applications. Once algorithm performance is adequate for canopy crowns, additional sources

of information will be needed to estimate understory density [20].

We cleaned the raw stem plot data and filtered the data set to contain only stems estimated

to be canopy crowns using field-measured height, NEON’s crown position field measurement

of sun exposure, and visual interpretation. A stem had to meet the following criteria: 1) had

valid spatial coordinates, 2) had a unique height measurement within each sampling period

(some trees were recorded twice with different heights and were discarded), 3) was sampled in

more than one year and have height changes between years of less than 6m, 4) was classified as

alive, 5) when a NEON field record did have a recorded canopy position, that position was not

‘shaded’, 6) had a minimum height of 3m (to match the threshold in the remote sensing work-

flow), and 7) was no more than 5m shorter than the canopy height model extracted at the stem

location to prevent matching including understory trees.

Methods that perform optimally on the field-collected stems evaluation data will predict a

single bounding box that contains a single field-collected stem. For each field plot we score the

proportion of field stems that fall within a single predicted crown. Field stems can only be

assigned to one crown prediction, such that if two crown predictions overlap a single field

stem, only one crown prediction is considered a positive match. The resulting proportion of

stems with a positive match can be used to estimate the stem recall rate, ranging from 0 (no

correctly matched stems) to 1 (all stems are matched).

Training annotations

During our research on canopy crown detection algorithms [11, 35], we annotated many geo-

graphic tiles separate from the evaluation data [36]. The training sites were selected to capture

a range of forest conditions including oak woodland (NEON site: SJER), mixed pine (TEAK),

alpine forest (NIWO), riparian woodlands (LENO), southern pinelands (OSBS), and eastern

deciduous forest (MLBS). The training tiles were chosen at random from the NEON data por-

tal, with the requirement that they did not contain a large amount of missing data and they did

not overlap with any evaluation plots. Depending on the tree density at the site, we either

annotated the entire 1 km2 tile or cropped it to a smaller size to create more tractable sizes for

annotation. This data is released alongside the benchmark dataset; however, our goal is to pro-

mote the best possible crown-delineation algorithm regardless of training data, and it is not

necessary to use this training data to generate predictions. Given the large size of training tiles,

the training annotations were less thoroughly reviewed and were only based on the RGB

imagery.

Uncertainty in annotations

Differences between image-only annotators. Since the image-annotated crowns were

done by visually inspecting the images, the exact position and number of bounding boxes in

an image depends on the annotators’ interpretation of the image and identification of crowns.

Image interpretation is a standard practice for creating validation sets in remote sensing (e.g.

[37]), but depends on the skill of the annotator and always introduces uncertainty to validation

[38]. In many computer vision tasks, class boundaries are clear and definitive. However, the

combination of image quality, spatially overlapping crowns and the two-dimensional view of a

complex three-dimensional canopy makes it difficult to identify where one crown ends and

another begins. To assess this uncertainty between image annotators, a second annotator

annotated 71 evaluation plots using the same data as the primary annotator. We then com-

pared these annotations using a range of intersection-over-union (IoU) thresholds to indicate

crowns that matched between annotators (Fig 7). We found that crown matches (recall)
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among annotators ranged from approximately 70% at lower IoU thresholds to 90% at higher

IoU thresholds. This variance indicates that differences between annotators reflect differences

in crown extent, rather than differences in whether or not a tree is present. If tree detection

was the primary area of disagreement changing the IoU threshold would have minimal effect

on the recall and precision rates. This was also supported at the plot level, where the number of

trees and mean tree height determined from the LiDAR cloud were very similar across multi-

ple annotators, but there was more variation in the mean crown area (Fig 7).

Comparison among image-annotated and field-annotated crowns. To assess the ability

for image-annotated crowns to represent field validated data, we compared image-annotation

made by the primary annotator (BW) with the field-annotated crowns (SG) at two sites for

which there was overlapping remote sensing imagery (Fig 8). We compared image annotations

and field crowns using the crown recall rate, defined as the proportion of field-annotated

crowns that overlap an image-annotated crown (IoU threshold > 0.4), and the stem recall rate,

defined as the proportion of field-annotated crown centroids that are within a single image-

annotated bounding box. The primary annotator independently annotated 1553 crowns in

images that overlapped with 91 field collected crowns at Mountain Lake Biological Station

Fig 7. Intersection-over-union scores (top left), as well as plot-level inferences, between the primary annotator and a 2nd annotator. For the

IoU scores, we plotted precision and recall for 7 different intersection-over-union thresholds. As the overlap threshold decreases, the two

annotators tend to agree on ground truth tree crowns. Analysis is based on 71 evaluation images (n = 1172 trees) that were separately annotated by

two different annotators.

https://doi.org/10.1371/journal.pcbi.1009180.g007
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(MLBS) and 27 crowns at Ordway-Swisher Biological Station (OSBS). To prevent the annota-

tor identifying the obvious location of the field crown, the test image encompassed a large

area. Using field-annotated crowns as ground truth, the image annotations had a stem recall

rate of 96.7% indicating that image annotation can identify the presence of trees in all but rare

cases. There was more disagreement in the extent of crown boundaries. The image-annotated

crowns had a crown recall of 78.0% with the field-annotated crown polygons. While we antici-

pated greater accuracy for large field-annotated crowns, we found only a modest relationship

between crown area of field-annotated crowns and correct image-annotated match. In general,

errors tend to be marginally biased towards oversegmentation, where large crowns are divided

into smaller sets of branches, but both types of errors occur in relatively similar frequencies.

NeonTreeEvaluation R Package

To maximize the value of the benchmark dataset and standardize evaluation procedures, we

developed an R package (https://github.com/weecology/NeonTreeEvaluation_package) for

Fig 8. Comparison of field-annotated crowns made by one author (SG) in blue (n = 16) and image-annotated

crowns made by another author (BW) in red at Mountain Lake Biological Station, Virginia. Intersection-over-

union scores are shown in white. Only the image-annotated crowns associated with the field crowns are shown (out of

the 206 image-annotated crowns in this image). From this and similar visualizations we determined that a threshold of

0.4 was a reasonable choice for eliminating crowns that are not sufficiently overlapping to be used for ecological

analysis.

https://doi.org/10.1371/journal.pcbi.1009180.g008
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downloading the evaluation data and running the evaluation workflows. This package takes a

standard submission format of predicted crowns in either bounding box or polygons as input

and returns the evaluation scores of the detections for each of the three evaluation datasets.

This reproducible workflow will facilitate creating a transparent process for future compari-

sons among crown detection algorithms.

To demonstrate the performance of a detection method on the benchmark dataset and

allow for users to gauge their performance against published methods, we used the DeepForest

Python package to generate crown detections in the benchmark sensor data [34]. DeepForest

is a RGB deep learning model that predicts canopy crown bounding boxes [11, 23, 35]. The

prebuilt model in DeepForest was trained with the training data described above, but did not

use or overlap spatially with any evaluation data in this benchmark. Following the best prac-

tices for computational biology benchmarking described in [13], we emphasize that the Deep-

Forest algorithm was designed in conjunction with these evaluation data and it is therefore not

surprising that it performs well, with image-annotated boxes and field-annotated crown poly-

gons both at approximately 70% accuracy (Table 3, Fig 9). It is also notable that despite the

uncertainty with the crown area of the image-annotated crowns, the overall score is similar

among evaluation data types.

Discussion

This benchmark provides annotations, data and evaluation procedures for canopy crown

detection using multiple sensor types across a broad range of forest ecosystems. The inclusion

of multiple evaluation types is critical because each type of evaluation data has strengths and

limitations in evaluating model performance. Field collected stems are the most common eval-

uation data used in crown detection work due to high confidence that each stem represents a

Table 3. Benchmark evaluation scores for the DeepForest python package.

Image-annotated Crowns Field-annotated Crowns Field-collected Stems

Recall Precision Recall Recall

79.0 65.9 72.2 74.0

https://doi.org/10.1371/journal.pcbi.1009180.t003

Fig 9. Example predictions using the DeepForest algorithm. Left) DeepForest predictions in red and compared to image-annotated crowns in black from

Teakettle Canyon, California. Middle) DeepForest predictions in red are compared to field-collected stems, with matching stems in yellow and missing

stems in blue, from Jones Ecological Research Center, Georgia. Right) DeepForest predictions in red with the field-annotated crown in black from Mountain

Lake Biological Station, Virginia. The matching prediction is shown in bold while the other predictions are faded for visibility.

https://doi.org/10.1371/journal.pcbi.1009180.g009
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location of a single tree [1, 6, 17, 39]. However, the position of a tree stem can fail to accurately

represent the position of the crown as viewed from above due to a combination of spatial

errors in alignment with the image data and the tendency for trees to grow at acute angles

(tree lean is not measured in the NEON data), such that the center of the crown and position

of the stem can be offset by several meters. A second limitation of field-collected stem point

locations as evaluation data is that they are typically collected for only a portion of the trees in

the landscape covered by a remote sensing image. This makes it difficult to calculate model

precision, since it is not possible to differentiate a non-matching prediction of a tree crown

from a correct prediction of a tree crown that lacks stem data. Therefore, evaluating tree

crown algorithms without evaluating precision has the potential to reward algorithms that

include many spurious crowns. In contrast, image-annotated crowns are relatively easy to

scale, allowing the collection of data for a wide range of forest types and for annotation of

every visible crown in the image. Using image-annotated crowns supports the evaluation of

methods across a broad range of forest types and allows both recall and precision to be calcu-

lated. However, since these annotations are not generated by an observer in the field there can

be errors due to interpreting the images [32]. This problem is solved using field-annotated

crowns in which an observer annotates the remote-sensing imagery on a tablet while in the

field [33]. The main limitation to this approach is that it is labor intensive, meaning that only a

relatively small amount of validation data can be collected, making it difficult to obtain a large

number of crowns across broad scales or assess model precision. Given the tradeoffs in each

evaluation type, providing multiple criteria is a useful way of balancing the need for broad

scale model verification with rigorous evaluation of field-based measurements.

While they are often analyzed separately, this benchmark dataset includes aligned data

from RGB, LiDAR and hyperspectral sensors for a range of geographic areas because each of

these data types may be useful for canopy crown detection. Three-dimensional LiDAR data

has high spatial resolution, but lack of spectral information makes it difficult to identify tree

boundaries. RGB data has spectral information and high spatial resolution but lacks context

on vertical shape and height. Hyperspectral data is useful for differentiating individual crowns

based on differences in foliar properties driving by differences in tree species or structure, but

generally has a coarser spatial resolution. Combining sensor data may lead to more robust and

generalizable models of tree detection at broad scales, which makes having all three data types

aligned an important component of a forward-looking benchmark dataset. While the NEON

dataset differs from other airborne collected data products in image resolution and details of

data acquisition, it offers a large range of forest types and standardization of evaluation met-

rics. However, the benchmark notably lacks examples from forests outside of the United States,

including tropical forests that are of high conservation concern. Researchers interested in gen-

eralizing to areas outside of the NEON sites can use this data to first validate algorithms on a

known benchmark before applying it to novel landscapes.

This benchmark is focused on the task of canopy tree detection. This is only one step in the

broader ecological task of inferring total tree counts or functional characteristics of forests

from airborne data. There remain significant hurdles to convert canopy tree crowns into total

tree counts that include understory stems, especially across forest types. For example, NEON

uses a 10cm DBH cutoff for field stems. This size cutoff corresponds to different ecological

roles in different ecosystems and should itself not be seen as a total count. To make this bench-

mark applicable to a wide variety of applications, we have not included understory ecological

measures in the evaluation metrics since none of the sensor data directly detect understory

trees, but encourage the development of future benchmarks in this area that are designed to

facilitate applications requiring understory information. For example, simulating latent tree

size distributions from observed data is a promising avenue to interpolate canopy trees visible

PLOS COMPUTATIONAL BIOLOGY A multi-sensor benchmark dataset for individual tree crown delineation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009180 July 2, 2021 15 / 18

https://doi.org/10.1371/journal.pcbi.1009180


in airborne images to full tree size class distributions [25]. Given the current performance of

available algorithms, we believe substantial improvement is needed in canopy detection before

moving to the more difficult understory detection task.

While the annotations in this dataset are all two dimensional and some are represented

only by bounding boxes (the image-annotated crowns), there are opportunities to extend the

benchmark dataset into new formats and dimensions. For example, there has been recent

interest in object detection using input rasters, both as a replacement for traditional bounding

boxes, and as an additional step in refining pixel-based contours of object boundaries [40]. By

rasterizing the annotated bounding boxes, the dataset can be used to compare segmentation

strategies such as raster-based versus regional proposal networks [41] and matches more

directly with polygon-based approaches to annotating crowns. Furthermore, combining 2D

optical data and 3D point cloud annotations remains an active area of model development

[42]. Trees have complex 3D and 2D representations and the data provided in this benchmark

could be used to develop new evaluation procedures across dimensions.

By providing a repeatable evaluation workflow, we hope to reduce the uncertainty in novel

algorithm development and promote model and data sharing among researchers. Initial work

in [43] showed that deep learning algorithms can learn from multiple geographies simulta-

neously, without losing accuracy on the local forest type. This means that data sharing among

researchers can provide mutual benefit to all applications, even from disparate forest types. By

standardizing evaluation criteria, we hope to foster collaboration and comparative studies to

improve the accuracy, generalization, and transparency of canopy crown detection.
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