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Introduction

Epidermis forms a barrier between the dry external environment 
and the interior of the body, preventing water and ions from exit-
ing and toxins, antigens and bacteria from entering.1 Residing 
in the extracellular lipid membranes of the stratum corneum 
(SC), this vital barrier requires an acidic environment in order 
to remain functional and competent against various insults.2 The 
acid pH not only limits the growth of pathogenic skin flora,3 but 
also is required for the enzymatic lipid processing that results in 
an effective permeability barrier.2

The mechanisms behind this “acid mantle” have long been 
debated. Originally, exogenous sources of acid were thought to 
cause this drop in SC pH.3,4 However, more recent evidence has 
emerged that identifies endogenous sources as the primary mode 
of SC acidification. A sodium/proton pump, NHE1, has been 
implicated in acidifying the border between stratum granulosum 
and SC.5 Another significant mechanism contributing to the acid 
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The function of the epidermis is to form an effective barrier 
between the dry, external environment and the interior of the 
body. The barrier specifically resides in the extracellular lipid 
membranes of the stratum corneum (SC) and an acidic pH is 
necessary to maintain its competency against various insults. 
The purpose of this review is to explore the mechanisms which 
are postulated to contribute to the acidification of the stratum 
corneum, including both exogenous and endogenous sources. 
However, recent research as pointed to several endogenous 
mechanisms as the major source of acidification, including a 
sodium/proton pump (NHe1) and free fatty acid conversion 
from phospholipids by secretory phospholipase A2 (sPLA2). 
sPLA2 has been shown to play a central role in the formation of 
the SC “acid mantle” in the early maturation of the epidermis 
postnatally. Many aspects of this enzyme family are complex 
and still being elucidated in research and the most recent 
findings on the localization and functions of sPL A2-iB, -iiA, -iiC, 
-iiD, -iie, -iiF, -iii, -v, -X and -Xii in the epidermis are presented 
here. Given their role in inflammatory dermatoses, such as 
psoriasis and atopic dermatitis, understanding this complex 
enzyme family can lead to novel, life-changing therapies.
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mantle is free fatty acid conversion from phospholipid by a secre-
tory phospholipase A

2
 (sPLA

2
).6 Lastly, urocanic acid generation 

via histidase is postulated to be another endogenous source of 
acid,7 although this has been disputed.1

Studies of the neonatal acidification processes in murine epi-
dermis demonstrate the central role sPLA

2
 plays in forming the 

acid mantle at the beginning of life.8 Maintenance of an acidic SC 
in adults, however, appears to require additional mechanisms.9

This (secretory phospholipase A
2
 family) enzyme plays a sig-

nificant and varied role in many mammalian cells and the indi-
vidual localization and function of the various sPLA

2
 members 

identified in skin (sPLA
2
-IB, -IIA, -IIC, -IID, -IIE, -IIF, -III, -V, 

-X and -XII) still must be defined.10 More importantly, given the 
role of sPLA

2
s in inflammatory dermatoses such as atopic der-

matitis and psoriasis,11,12 further discoveries could lead to novel, 
life-changing therapies.

Function of Acidification

The identification of the SC “acid mantle” was first recognized by 
Heuss in 1892.13 Subsequently, there have been numerous stud-
ies confirming this observation using progressively more sophis-
ticated methods.14-21 Using tape stripping to remove sequential 
layers of the SC, Ohman and Valhquist demonstrated that SC pH 
was inhomogenous, distributed with a progressively neutral pH 
from the apex to the base of the SC.20 Later studies using fluores-
cent lifetime imaging revealed discrete microdomains of acidity 
within larger areas of neutral pH at the base of the SC.5 It is here 
that the process of SC acidification begins in the neonatal period, 
as well as the period after barrier abrogation.22 The increasing 
acidity seen in the upper SC layers derives from an increasing 
number of uniformly acidic microdomains rather that the increas-
ing acidity of a fixed number of individual microdomains.5,22

It has long been recognized that SC acidification functions as a 
defense against microbial invasion, as it was shown that an acidic 
pH inhibits the colonization of pathogens such as Staphylococcus 
aureus and Streptococcus pyogenes while encouraging the growth 
of normal skin flora.3,23 In addition, the loss of acidic pH coupled 
with the initiation of the inflammatory cycle in epidermal barrier 
disruptions can create a vicious cycle of inflamed and colonized 
skin. An alkaline environment, as in the urea-soaked skin of dia-
per dermatitis, is an important initiating factor of bacterial and 
yeast infections,24 due to the increased growth of pathogens and 
epidermal barrier abnormality.
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SC integrity, which is attributed to 
increased serine protease activity 
at a neutral pH.2 Inhibiting serine 
proteases maintains CD density, 
preserving the integrity of the SC. 
Together, these two pathways can 
explain why the loss of SC acidifica-
tion leads to loss of SC integrity and 
cohesion, as well as the abnormality 
of epidermal lipid barrier function.

Mechanisms of Acidification

There are many mechanisms that 
have been postulated to contribute to 
the acid mantle of the skin (see Fig. 1). 
Originally, exogenous mechanisms 
have long been thought to be the 
main contributors to acidification. 
For example, eccrine gland-derived 
products, such as lactic acid4 is one 
of many exogenous sources thought 
to further decrease SC pH. Free fatty 
acids of pilosebaceous origins also 
were thought to be an exogenous 
contributing mechanism.3,30 The sig-
nificance of this mechanism is ques-
tionable, as a normal SC acid mantle 
is seen in asebia mice, which show 
a profound hypoplasia of sebaceous 

glands.8 Microbial metabolites also were postulated to contribute 
to an acidic pH.30 However, the microbial colonization of neona-
tal skin is not seen to increase concurrently with early acidifica-
tion. In addition, acidification has been shown to begin from the 
deeper levels of the SC, not the surface, which would be expected 
if these exogenous pathways were indeed the source of the acid 
mantle.8 This evidence seems to minimize, if not exclude, these 
exogenous mechanisms from contributing to SC acidification.

More recently, studies have identified that endogenous mecha-
nisms are essential in the formation of an acidic SC. Endogenous 
mechanisms such as the Sodium-Hydrogen antiporter (NHE1) 
and activation of the sPLA

2
 family of enzymes are the best-stud-

ied of these mechanisms.
When either the sPLA

2
 or NHE-1 pathways are compro-

mised, the bulk SC pH rises, indicating that other acidifying 
mechanisms cannot completely compensate for them. NHE-1, 
one of the essential contributors to the acid mantle, is from a fam-
ily of ion transporters that is important in intracellular regulation 
and maintenance.31 NHE-1 has been shown to be expressed in 
keratinocytes and melanocytes.32 NHE-1 acidifies the extracel-
lular microdomains present at the SG-SC interface, where initial 
processing of lipids by β-glucocerebrosidase and acid sphingomy-
elinase occur.5 Impairment of lipid processing and alteration of 
barrier function occurs within 2 hours of pharmacological inhibi-
tion of NHE1, moreover NHE1 knockout mice lack these acidic 
domains in the lower SC and suffer impaired barrier function.5 

In recent years, SC acidity has been shown to be required 
for formation of a competent permeability barrier.25 It has 
been shown to be important in the formation of a permeabil-
ity barrier to protect the moist interior of the body from the 
dry external environment. This barrier consists of the external 
lipid membranes between the corneocytes of the SC.26 This 
lipid is excreted from lamellar bodies (LB) in SG keratinocytes 
but does not form lipid bilayers and function as an effective 
permeability barrier until it is processed into various lipid 
species, including ceramide. Ca2+ and K+ control lipid secre-
tion;27 however H+ controls post-secretory lipid processing.25 
Several studies have shown that an acidic SC is required in 
order for the formation of a functionally competent perme-
ability barrier, as without an acidic environment, the extra-
cellular processing of lipids that is required for the formation 
of an effective permeability barrier cannot occur. A signifi-
cant delay in barrier recovery is seen when acutely disrupted 
skin sites are immersed in neutral pH buffers.25 Specifically, 
two key enzymes, β-glucocerebrosidase and acid sphingomy-
elinase, which metabolize spingomyelin and glucosylceramide 
to ceramide, require on an acidic pH for optimal enzymatic 
activity.28,29 The activity of β-glucocerebrosidase is reduced in 
skin with a neutral pH and activity is restored after re-acidi-
fication of the epidermis.2 Abnormalities of SC integrity and 
cohesion also occur in a neutral pH environment.2 Accelerated 
corneodesmosome (CD) degradation accompanies this loss of 

Figure 1. endogenous and exogenous pathways of acidification and functional consequences in the 
stratum corneum. Acidification in the SC is the result of several mechanisms. Specific functions of the SC 
are dependent on this process to maintain the epidermal permeability barrier.
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the most significant in neonatal SC acidification. Skin surface 
pH is neutral at birth in both humans and animals.37-39 Although 
a fully developed cornified envelope and abundant extracellular 
lamellar bilayers are present,40,41 the lack of acidification in neo-
natal skin is associated with, impaired barrier homeostasis has 
been shown in the neutral SC of neonates, even though basal 
barrier function has been shown to be normal.42

Examining the mechanisms involved in the development of 
acidification in the first week of birth in neonatal rats elucidated 
that sPLA

2
 is largest contributor to the drop in SC pH. sPLA

2
 

activity increases 66.4% between day 0 and 4 after birth and 
progressively extends from the deep layers of the SC to all SC 
layers by day 5.8 Application of a sPLA

2
 inhibitor delayed the 

development of the acid mantle, accounting for a two-third to 
one pH unit of bulk acidification.36 Evidence points to sPLA

2
 as 

the major pathway of acidification, whereas other mechanisms 
contribute and prevent the complete blockade of acidification. 
Interestingly, concurrent inhibition of NHE1 and sPLA

2
 did not 

increase neonatal SC pH above levels achieved with either inhibi-
tor alone, suggesting the existence of yet unidentified mecha-
nisms of acidification.8

Recently, several studies have shown that activation of LXR, a 
nuclear hormone receptor, can accelerate SC acidification in neo-
natal rodents, in part because of an increase in sPLA

2
 activity.43 

This accelerated drop in epidermal pH was accompanied by an 
improvement of SC integrity and barrier homeostasis. This study 
provides some insight to sPLA

2
 regulation, although it is possible 

LXR can also be modulating other pathways of acidification.
Peroxisome proliferators-activated receptors (PPARs) are 

members of the same subfamily of nuclear hormone receptors 
as LXR and isotypes PPARα, PPARβ/δ and PPARγ have all 
be shown to be expressed in keratinocytes.44 Topical treatment 
with PPAR activators not only stimulates keratinocyte differ-
entiation,45,46 it improves permeability barrier homeostasis after 
an acute disruption.47 Topical PPARα application is shown to 
accelerate neonatal acidification, as well as accelerate the kinetics 
of barrier recovery following acute disruption by tape stripping. 
Activation of only the PPARα isoform was shown to increase 
sPLA

2
 activity.48 Concurrent inhibition of sPLA

2
 with the appli-

cation of a PPARα activator blocked the ability of the PPARα 
activator to acidify the neonatal SC. However, the inhibitor of 

Additionally, this important com-
ponent of the acidification process 
is directly regulated by changes in 
external pH, as alkalinization is 
shown to be a major stimulus for 
NHE1 expression.33 Defects of acidi-
fication in the lower domains of aged 
epidermis have recently been attrib-
uted to decreased NHE1 expression.9 
This pathway plays a significant role 
in contributing to the SC pH, pos-
sibly being the mechanism provid-
ing the initial acidification required 
for lipid processing and permeability 
barrier formation.

Phospholipid to free fatty acid conversion by sPLA
2
 has emerged 

as another significant mechanism of lowering SC pH. PL disap-
pear during cornification34 and the processing of PL results in a 
family of nonessential fatty acids within the SC interstices, which 
are required for normal barrier homeostasis.6 The specific phos-
pholipases responsible for this phenomenon have not been fully 
elucidated, but the application of inhibitors of the 14 kDa family 
of secretory phospholipases result in a blockade of PL processing, 
altering epidermal barrier homeostasis.6,35 A more recent study has 
shown that the inhibition of sPLA

2
 specifically alters barrier func-

tion via disrupting SC acidification, providing direct evidence in its 
role in contributing to the acid mantle.36 The consequences of the 
disruption of acidification, such as the loss of SC integrity, cohesion 
and delayed barrier recovery, are shown to occur with the blockade 
of the sPLA

2
 pathway. Furthermore, these abnormalities can be pre-

vented during sPLA
2
 inhibition with the co-application of the end 

products of PL hydrolysis, non-essential FFA such as PA (C16:0) or 
stearic acid (18:0).36 An acidic pH alone is not sufficient to reverse 
the barrier abnormalities, showing that the PL-derived generation 
of FFA is not only significant as an acidification mechanism, but 
also important in the formation of the barrier (see Fig. 2).

Finally, in vitro studies have shown acidification via urocanic 
acid generation from histidine by the deiminating enzyme histi-
dase.7 It is questionable whether this pathway is truly essential for 
acidification of SC. Although levels of histidase would be expected 
to rise in conjunction with neonatal SC acidification, a recent study 
has shown that this is not the case.1 Additionally, this study showed 
histidase deficient mice do not exhibit a higher pH compared to 
control mice and flaky tail mice (ft/ft), deficient in the processing 
of filaggrin, actually show a lower SC pH. Two other endogenous 
mechanisms of acidification, free fatty acid generation by isoforms 
of secretory phospholipase A

2
 (sPLA

2
) and sodium/proton pump 

antiporter-1 (NHE-1), are upregulated in ft/ft mice.1 This compen-
satory response is sufficient to appropriately acidify the SC, dem-
onstrating that the filaggrin-histidine-urocanic acid cascade is not 
essential in the formation of the acid mantle.

The Importance of sPLA2: Neonatal Studies

Among the variety of pathways that contribute to epidermal acid-
ification, it can be shown that sPLA

2
 conversion of PL to FFA is 

Figure 2. The downstream effects of the phopholipid to free fatty acid pathway in the stratum corneum 
interstices.  Lamellar bodies deliver both phospholipid and sPLA2 to the SC. This pathway, mediated by 
sPLA2, plays a functional, as well as structural role, in the maintenance of the barrier. 
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acidification. There have been many studies attempting to 
shed some light on the many different roles of sPLA

2
, but 

unfortunately, there are many contradictory reports and very 
little unrefuted findings in this area (see Table 1). One hurdle 
to establishing definitive data is the difference of sPLA

2
 local-

ization and function between humans and mice. For example, 
murine sPLA

2
-IIA is expressed almost exclusively in the small 

intestine, whereas human sPLA
2
-IIA is found in numerous tis-

sues.50 This suggests that the enzyme in the human and mouse 
models are not functional orthologs of each other, therefore 
conclusions drawn in a murine model cannot necessarily apply 
to the human model.

In a study analyzing different subtypes expressed in the 
different layers of epidermis during various stages of develop-
ment, murine epidermis expressed groups I, II, V, X and XII 
sPLA

2
s,51 although expression between the basal and supra-

basal layers was dependent on calcium conditions. sPLA
2
-IIF, 

-V and -XII were expressed suprabasally, according to in vivo 
immunohistochemical studies. Their presence in the upper SC 
suggested that they also might have a role in SC acidification, 
in addition to sPLA

2
-IB that has previously been thought to 

function in that regard.6,52 However, the sPLA
2
-IB inhibitor 

used in that study, p-bromophenacyl bromide, also alkylates 
the active site histidine that is conserved in all sPLA

2
s and 

most likely inhibits multiple sPLA
2
s.53 A more recent study 

has shown that in filaggrin-deficient ft/ft mice, sPLA
2
-IIA is 

upregulated along with NHE1 expression, while sPLA
2
 forms 

-IIF and -X do not,1 contrasting with a previous study that 
demonstrated that sPLA

2
-IIA does not contribute to acidifica-

tion and barrier function and sPLA
2
s-X is the main isoform to 

be secreted from keratinocytes.54 To assign more definitive roles 
to these isoforms, more enzyme-specific sPLA

2
s antibodies and 

inhibitors are needed, which in part will enable the identi-
fication of specific sPLA

2
s present within LB. Cytochemical 

studies show that sPLA
2
 activity is codelivered with ceramide 

precursors and phospholipids (PL) in lamellar bodies at the 
SG-SC interface,55 but more specific EM localization and anti-
body studies are lacking.

In addition to SC acidification, members of the sPLA
2
 fam-

ily have been postulated to mediate inflammation, hyperpro-
liferation and even stimulate melanocyte dendricity. The basal 
compartment exhibits a different expression profile than the 
suprabasal layers, showing the presence of sPLA

2
-IIA, -IID, 

-X. sPLA
2
-IIC is found throughout the epidermis.51 This 

result, as well as other studies in references 56 and 57, sug-
gest that sPLA

2
-IIA functions in the hyperproliferation of 

keratinocytes. sPLA
2
-X has been shown to release arachidonic 

acid from adherent cells,58 suggesting this enzyme may play a 
role in eicosanoid formation. sPLA

2
-X also functions in the 

release of lysophophatidylcholine (LPC), stimulating melano-
cyte dendricity.59 sPLA

2
-IIA and -IID may also have the ability 

to release arachidonic acid,58 therefore it is hypothesized that 
these basally located sPLA

2
s may play a role in inflammatory 

hyperproliferation.
A recent study has shown a possible inflammatory role for 

sPLA
2
-III in skin, as transgenic mice overexpressing sPLA

2
-III 

sPLA
2
 also regulates Ca2+ influx;49 therefore, another mechanism 

could be preventing the PPARα activator from restoring acidify-
ing processes. Although it seems like sPLA

2
 plays a prominent 

role in acidification, there is still much to be uncovered about the 
specific regulation of this enzyme.

Declining SC Acidification in Aging

SC acidification is defective in both moderately aged humans and 
mice, although the contributing mechanisms are not fully eluci-
dated. Studies have shown that in humans over 50 years old, the 
surface pH of SC increases progressively over time.9 This was also 
found in a mouse model (aged 12–15 months), where researchers 
were able to assess that the difference begins at the SG-SC inter-
face and diverged further throughout the epidermis.9 Delayed 
barrier recovery rates are seen in aged mice in comparison to 
young mice and recovery rates in aged skin became compara-
ble to young skin with external acidification treatment. Similar 
abnormalities seen in neonatal skin lacking an acidic SC are also 
seen in aged skin, including abnormal SC integrity and delayed 
formation of mature lamellar membranes. In contrast to studies 
on NHE1 in aging skin, loss of sPLA

2
 activity and/or expression 

has not been adequately examined in aged epidermis.
However, NHE1 levels show a developmental decrease with 

aging and seem to contribute to the loss of acidification in aged epi-
dermis.9 The actions of NHE1 are localized to the lower SC, which 
is contiguous with the acidification defect seen in aged epidermis.5,9 
In addition, the protein levels of NHE1 are seen to decrease after 
birth, in contrast to increasing levels of sPLA

2
 function postna-

tally.8 The evidence is highly suggestive of the role NHE1 plays 
in contributing to the loss of acidification in aging. However, the 
extent to which loss of NHE1 contributes to a higher pH still needs 
to be quantitated and in uncovering that, the specific role of sPLA

2
 

in the aging epidermis is not yet defined.

The Secretory Phospholipase Family

Secretory phospholipase A
2
 is a subtype of the larger phos-

pholipase A
2
 family. These enzymes catalyze the hydrolysis 

of the sn-2 ester bond of phospholipid substrates, producing 
free fatty acids and lysophospholipids.10 These products have 
a wide variety of functions across many mammalian tissues, 
including the formation of eicosanoids, which are important 
mediators of vascular tone, tissue homeostasis and inflamma-
tion. There are 12 groups of phospholipases A

2
 (I–XII) and 

are subdivided into different categories based on substrate 
specificities, cellular location and calcium sensitivity: group IV 
cytosolic phospholipases A

2
, group VI calcium-independent 

phospholipases A
2
, groups VII and VIII platelet-activating fac-

tor acetyl hydrolases and low molecular weight secreted phos-
pholipases A

2
 (sPLA

2
-IB, -IIA, -IIC, -IID, -IIE, -IIF, -III, -V, 

-X and -XII).10

sPLA
2
s play a part in normal skin function, maintaining 

barrier homeostasis through contributing to the acid man-
tle. However, it is still not clear exactly which of the many 
sPLA

2
 subtypes is responsible for FFA release and subsequent 
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exhibit severe dermatitis.60 It also showed upregulation of 
sPLA

2
-IID and -V in these transgenic mice, suggesting that 

these two isoforms are involved in inflammatory processes. 
Surprisingly, there was a marked absence of sPLA

2
-X in the 

skin of transgenic and normal mice, as previous studies sug-
gested sPLA

2
-X is the major isoform expressed in mouse 

skin. This same study provided evidence of sPLA
2
-III in nor-

mal epidermis for the first time,51,60 in addition to its role in 
inflammation.

There is much to be discovered about the sPLA
2
 family 

of enzymes. Hopefully, with the development of more spe-
cific inhibitors and more sensitive technology, their function 
and localization can be definitively pinpointed. With that 

Table 1. Localization and function of sPLA2 subtypes in the epidermis.

sPLA2 subtype Function/localization in epidermis Citation

iB

expressed in suprabasal keratinocytes (SG-SC junction) (M/H)
Gurrierri, et al. 2003; Mazereeuw-Hautier, et al. 2000; 

Haas, et al. 2005

inflammation (M) Li-Stiles, et al. 1998

SC acidification (M/H)
Fluhr, et al. 2001; Mazereeuw-Hautier, et al. 2000; 

Mao-Qiang, et al. 1996

iiA

expressed in keratinocytes throughout epidermis (M) Gurrierri, et al. 2003

Located in the upper SC (H) Haas, et al. 2005

Growth factor for keratinocytes (M/H) Grass, et al. 1996; rys-Sikora, et al. 2003

inflammation (M)
Sjursen, et al. 2000; Li-Stiles, et al. 1998; Kudo, et al. 

1993; vadas et al. 1993

No inflammatory role in vivo (M) Sato, et al. 2009; Grass et al. 1996

PAF-mediated arachidonic acid release (H) Jorgensen, et al. 2010

iiC expressed in keratinocytes throughout epidermis Gurrierri, et al. 2003

iiD

expressed in keratinocytes throughout epidermis (M) Gurrierri, et al. 2003

expressed mostly basal layers (H) Haas, et al. 2005

Localized around nucleus (H) Haas, et al. 2005

PAF-mediated arachidonic acid release (H) Jorgensen, et al. 2010

inflammation (M) Sato, et al. 2009

ie
expressed in suprabasal keratinocytes (M) Sato, et al. 2009; Gurrierri, et al. 2003

Undetectable in dermis (H) Haas, et al. 2005

iiF expressed in suprabasal keratinocytes (M/H) Sato, et al. 2009; Haas, et al. 2005; Gurrierri, et al. 2003

iii
inflammation (M) Sato, et al. 2009

expressed in keratinocytes (M) Sato, et al. 2009

v

Hyperproliferation (H) rys-Sikora, et al. 2003

expressed in basal layers (H) Haas, et al. 2004

PAF-mediated arachidonic acid release (H) Jorgensen, et al. 2010

inflammation (M/H) Sato, et al. 2009; Murakami, et al. 2002

X

expressed in keratinocytes throughout epidermis (M) Gurrierri, et al. 2003

Major subtype, constitutively expressed (H) Schadow, et al. 2001; Haas, et al. 2005

No expression in skin (M) Sato, et al. 2009

inflammation (eicosanoid formation) Saiga, et al. 2001

Stimulation of melanocyte dendricity (H) Scott, et al. 2007

Xii
expressed in suprabasal keratinocytes (M) Gurrierri, et al. 2003

Undetectable in dermis (H) Haas, et al. 2005

*(M), murine; (H), Human.

knowledge, they can be used as therapeutic targets in many 
inflammatory diseases of the epidermis.

sPLA2 in Psoriasis and Atopic Dermatitis

The important role of sPLA
2
s in the epidermis is demonstrated 

by its involvement in atopic dermatitis and psoriasis. Psoriasis 
is a disorder characterized by epidermal hyperproliferation, 
altered keratinocyte maturation and inflammation. An early 
study showed that overexpression of sPLA

2
IIA in the skin of 

transgenic mice result in hyperkeratosis and epidermal hyper-
plasia, resembling the classic psoriasis phenotype.61 More 
recently, studies have shown a dramatic change in the location 
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of negative downstream consequences, including lipid deple-
tion.63 It is not clear what the role of sPLA

2
 plays in the patho-

genesis of this disease, but it was found that sPLA
2
s-IIF and 

-IID are upregulated in the skin of mice with induced AD.12 
Another study showed the upregulation of sPLA

2
-IIE mRNA 

in epidermis of mice with AD, however, there are no protein 
studies yet available on this finding.64,65 These results suggest 
the role of these sPLA

2
s in the inflammatory process in AD. 

However, it is yet to be seen whether their pathogenic mecha-
nism contributes to lipid dysfunction, cytokine dysfunction via 
arachidonic acid release or perhaps even antimicrobial dysfunc-
tion. More recent studies suggest that sPLA

2
-IIA, -IID or -V 

play a role in platelet-activating factor arachidonic acid release 
and could be potential targets for anti-inflammatory interven-
tions in AD and other dermatoses.66

Determining the in vivo biological functions of sPLA
2
s is a 

daunting challenge. However, determining those functions can 
lead to novel and targeted treatments for atopic dermatitis and 
psoriasis, as well as other common inflammatory skin diseases.
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of sPLA
2
-X in psoriatic skin. It disappears from its usual location 

in the basal compartment of the SC into the papillae and lower 
portions of the dermis.11 Its release from HaCat keratinocytes 
is also stimulated by TNFα and IFNγ, which are prominent 
cytokines in psoriatic skin.11 sPLA

2
-IID is seen to be massively 

upregulated throughout the psoriatic epidermis and dermis,11 
suggesting its role in inflammatory processes. Additionally, 
increased expression of sPLA

2
-IIA in the basal epidermal layer 

and the dermis was seen, which supports previous claims that 
the IIA isoform is involved in hyperproliferation.56,57 Increased 
sPLA

2
-IIA levels could possibly contribute to the sustained acti-

vation of mitogen-activated protein (MAP) kinase, resulting in 
delayed terminal differentiation and hyperproliferation of kera-
tinocytes.62 sPLA

2
-V was found to be completely downregu-

lated in psoriatic skin, indicating a lack of involvement in this 
particular skin disease, although it could play a role in other 
inflammatory disorders. These findings are just the beginning 
of elucidating what effect these enzymes have on the psoriatic 
disease process and if they could be effective targets for therapy.

Atopic dermatitis (AD) is another common skin disorder that 
is marked by inflammatory dysregulation. Its chronic cycles of 
pruritus, dermatitis and lichenification are characterized by an 
elevated pH and impaired barrier homeostasis, leading to a host 
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