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Abstract

The COVID-19 pandemic has impacted all aspects of our lives, including the

information spread on social media. Prior literature has found that informa-

tion diffusion dynamics on social networks mirror that of a virus, but applying

the epidemic Susceptible-Infected-Removed model (SIR) model to examine

how information spread is not sufficient to claim that information spreads like

a virus. In this study, we explore whether there are similarities in the simu-

lated SIR model (SIRsim), observed SIR model based on actual COVID-19

cases (SIRemp), and observed information cascades on Twitter about the virus

(INFOcas) by using network analysis and diffusion modeling. We propose

three primary research questions: (a) What are the diffusion patterns of

COVID-19 virus spread, based on SIRsim and SIRemp? (b) What are the diffu-

sion patterns of information cascades on Twitter (INFOcas), with respect to

retweets, quote tweets, and replies? and (c) What are the major differences in

diffusion patterns between SIRsim, SIRemp, and INFOcas? Our study makes a

contribution to the information sciences community by showing how epidemic

modeling of virus and information diffusion analysis of online social media are

distinct but interrelated concepts.
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1 | INTRODUCTION

On December 31, 2019, The World Health Organization
(WHO) reported the first confirmed case of SARS-CoV-2
virus, frequently known as “COVID-19”. To date, the
virus has spread to more than 150 countries, with over
three million confirmed cases globally. Modeling and
examining diffusion dynamics of COVID-19 pandemic
network is critical to provide information that health

professionals and associated stakeholders can leverage to
make effective decisions (Xie et al., 2020).

Extant literature has found that information diffu-
sion dynamics on social networks mirror that of a virus
(Abdullah & Wu, 2011; Lerman, 2016; Seki &
Nakamura, 2016; Ver Steeg, Ghosh, & Lerman, 2011).
(Abdullah & Wu, 2011) show that trending topics on
Twitter spread in similar patterns with an epidemic
Susceptible-Infected-Removed model (SIR), in which
I and R both started at 0 but as I began to increase at a
certain reproductive rate, S and R would be impacted.† These authors contributed equally to this work
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(Seki & Nakamura, 2016) assert that the SIR model can
be applied to examine the decline of diffusion activities
on Friendster online social network, and found that
the decline started when popular users left Friendster
(labeled as R in SIR model). However, applying the epi-
demic SIR model to examine how information spread
is not sufficient to claim that information spreads like
a virus (Lerman, 2016; Wu, Huberman, Adamic, &
Tyler, 2004). There are different mechanisms that
influences how information spread from one user to
another, but does not influence how a virus spread
from one person to another, and vice versa (Lerman &
Ghosh, 2010; Mønsted, Sapieży�nski, Ferrara, &
Lehmann, 2017).

In this study, we examine in parallel the epidemic
and information diffusion, and the mechanisms by
which both diffusion processes contribute to COVID-
19's spread. Specifically, we compare COVID-19
virus's (a) SIR -modeled and (b) empirically observed
diffusion patterns with (c) information cascades of
retweeting, quote tweeting, and replying behaviors on
Twitter social network to understand the relation-
ships between information and virus diffusion. To do
this, first, we create an SIR simulation (we call this
SIRsim) of COVID-19's diffusion with respect to
empirically validated parameters such as reproductive
rate (R0), incubation period, and symptom length
range. Secondly, we create an SIR model from actual
confirmed cases with data gathered from Johns Hop-
kins University (JHU-CSSE, 2020) (we call this
SIRemp). Thirdly, we construct information cascades
from on our collected Twitter data (we call this INFOcas)
based on three dimensions: retweets, quote tweets, same
as retweets but with comment included), and replies to
tweets. For the information cascades, we also categorize
each piece of information to either Susceptible (new
tweet about the virus), Infected (retweets, quoting of
retweets, or replying to tweets), or Removed (tweet not
shared by others after a period of time). Consistent with
the aspects of the study, we propose three primary
research questions:

RQ1: What are the diffusion patterns of COVID-19
virus spread, based on SIRsim and SIRemp?

RQ2: What are the diffusion patterns of information
cascades on Twitter (INFOcas), with respect to retweets,
quote tweets, and replies?

RQ3: What are the major differences in diffusion pat-
terns between SIRsim, SIRemp, and INFOcas?

Our study makes a contribution to the informa-
tion sciences community by showing how epidemic
modeling of virus and information diffusion analysis
of online social media are distinct, but interrelated
concepts.

2 | RELATED WORK

2.1 | Information diffusion on social
networks

With the advent of social networking sites and online
microblogs such as Twitter, individuals can create and
exchange information with larger amounts of people in
lesser amounts of time. These online social networks are
thus instrumental for researchers to examine what types
of information diffuses between individuals and what
underlying mechanisms facilitate the diffusion. In the
context of social networks, information diffusion is formally
defined as a process by which a piece of information is pas-
sed down from one node to another node through an edge
(Gruhl, Guha, Liben-Nowell, & Tomkins, 2004; Guille,
Hacid, Favre, & Zighed, 2013). Two seminal models have
been widely adopted to examine diffusion dynamics with
network structure considered, namely independent cas-
cade models (Goldenberg, Libai, & Muller, 2001) and lin-
ear threshold models (Granovetter, 1978). Independent
cascade models assume that each node has a certain fixed
probability to spread, or “infect” a piece of information to
a neighboring node. On the other hand, linear threshold
models posit that a node would be “infected” by a piece of
information if a certain threshold of neighboring nodes
have also been infected by that information. Both models
have been widely used to detect influential topics (Gruhl
et al., 2004) and influential users (Yang & Leskovec, 2010)
in online social networks and the impacts they have on
diffusion rate. (Gruhl et al., 2004) focus on the spread of
topics on blogs based on RSS (rich site summary) feeds
and found that topics were either consistently popular
(called “chatter”) or only popular for a short time (called
“spikes”). The authors also observed that topics with high
chatter also contained larger and more frequent spikes.
(Yang & Leskovec, 2010) demonstrate that an influential
node can be detected with respect to how many nodes
have been influenced by that particular node before.

2.2 | Epidemic models for information
diffusion

In addition to the independent cascade model and linear
threshold model, scholars studying information diffusion
from a wide range of disciplines have also found the util-
ity of modeling diffusion as an epidemic process. In par-
ticular, the SIR model has been frequently used to
explain how information in an online social network
becomes “infectious” and passes from one node to
another. SIR is known as a compartmental model.
Because it categorizes an individual to be in one of three
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states at a certain point in time, susceptible (S), infected
(I), or removed (R) (Kermack & McKendrick, 1927). An
individual may transition their state due to influence
from another individual in the same network, in which
the transition is linear (S!I, I!R). At the first transition
point, S!I occurs because a susceptible individual was in
contact with an infected individual and therefore got the
virus. The infection assumed at this transition point is at
a constant rate of β per time unit. At second transition
point, I ! R transition occurs when an infected individ-
ual either recovered from the virus and got immunity
from it, or has been removed (i.e., has died). At this tran-
sition, the model assumes that recovery rate is fixed at γ
per time unit. These assumptions are stated in the follow-
ing set of equations of (S), (I), (R) at time (t):

dS
dt

= −β �S tð Þ

dI
dt

= βS tð Þ−γ � I tð Þ

dR
dt

= γ � I tð Þ

(Abdullah & Wu, 2011) examine how trending news
spread on Twitter by sorting users into three compart-
ments, S for users who saw tweets from an infected user,
I for users who tweet about a news topic, and R for users
who no longer tweet about a topic after a predefined time-
frame of 4 h. The authors also assume fixed infection rate β
and recovery rate γ in their epidemic simulation and
observed model with Twitter data, and found a strong fit
between the models. In addition to news, scholars have also
examined whether false rumors and disinformation diffuse
on social networks in a manner similar to how an infec-
tious disease spread (Jin, Dougherty, Saraf, Cao, &
Ramakrishnan, 2013; Nekovee, Moreno, Bianconi, &
Marsili, 2007). Research by (Nekovee et al., 2007) conceptu-
alizes rumor spreading as a epidemic transition process
between ignorants, spreaders, and stiflers. They found that
rumor spread rate is higher in scale-free networks than in
random graphs. Their finding is consistent with (Lerman &
Ghosh, 2010)'s observation that information cascades on
Twitter follow a power-law distribution. (Jin et al., 2013)
also refine the SIR model to examine rumor diffusion by
adding exposed E and skeptical Z individuals, and found
that the rate of rumor infection (I) increases as the rate of
E decreases, and the susceptible (S) rate decreases as
Z increases. Other works have also found SIR models to be
useful in explaining diffusion of content on other social net-
working platforms such as Flickr (Cha, Mislove, Adams, &
Gummadi, 2008) and Digg (Ver Steeg et al., 2011).

On the other hand, several studies observe that there
are clear differences in SIR epidemic model and informa-
tion diffusion process. (Goel, Munagala, Sharma, &
Zhang, 2015) do not find strong correlation between the
SIR model and observed retweet cascades as the epidemic
model do not take into account users' characteristics.
Similarly, (Liu & Zhang, 2014) point out that information
diffusion process includes variables not in SIR model
such as content of the information, strength of ties
among individuals, and other social factors. In light of
diverse findings on the extent to which SIR models can
explain information diffusion on social networks, we
examine whether there are similarities in our simulated
SIR model (SIRsim), observed SIR model based on actual
COVID-19 cases (SIRemp), and observed information cas-
cades on Twitter about the virus (INFOcas).

3 | OUR FRAMEWORK AND
METHODOLOGY

We empirically test whether there are similarities
between the information diffusion process on Twitter
about COVID-19 topics and the diffusion of the virus
itself between individuals. To do this, we develop three
different networks. The first two networks are created to
capture the diffusion of the COVID-19 virus in the
entire population, via an SIR simulated model (SIRsim)
and an observed model based on reported data about
infected (I), and removed (R) cases (SIRemp). The third
network is constructed from information cascades on
Twitter (we call this INFOcas), where infected (I) are
tweets that interacted with the original tweets about
COVID-19 by either retweeting, quoting, or replying,
and removed (R) include tweets that are no longer inter-
acted with for a defined period. We describe the datasets
used and the process of constructing each network in
the following sections. All data collected and code used
in this work are available on FigShare (Dinh &
Parulian, 2020).

3.1 | SIR simulation model (SIRsim)

We implement a SIR simulation model of COVID-19 on
NetLogo,1 an open-source environment for agent-based
modeling. We extended an existing model2 on virus
spread on Netlogo, and refined model parameters based
on official sources' information about COVID-19 spread
and shown in Table 1. We keep the parameters constant
throughout the simulation, and set the duration of the
simulation to 88 days. We choose the duration of 88 days
to reflect the timeframe between December 17, 2019 to

DINH AND PARULIAN 3 of 10



March 14, 2020. We choose December 17, as opposed to
December 31, as the first date of COVID-19 to take into
account the 14 days (see Table 1 for virus symptom
length) of symptoms leading up to the confirmation of
the infected case. The initial population for our model
includes the entire world population, at 7.7 billion
people.3

Figure 1 shows the NetLogo interface of our SIRsim
model, with additional parameters included to simulate
the transitions of agents from (S!I), and I!R). Adhering
to the SIR model, S agents represent the carriers of the
virus, I agents are those infected by the carriers, and
R are agents who are removed due to death. Due to

computational limitations that poses difficulty to repre-
sent each individual as an agent, we group 5 million peo-
ple in each agent (#-people-per-agent setting). Thus, our
model contains 1,540 agents interacting with one
another. The first agent represents patient zero, and is
originated the city of Wuhan in our world map (x-axis:
205, y-axis: -10). We assign agents to move around
36 major cities across the world (e.g., New York City, Paris,
Tokyo, Moscow) (see Table A1 in Appendix). All agents ini-
tially started in S state, except for patient zero, who then
spreads the disease by contacting with agents from other cit-
ies through two modes of traveling: driving (parameter
mode = “human”) or flying (parameter mode = “plane”).
We set these parameters through the use of patches (pixel)
feature, enabling each agent to move certain distances
depending on the patch size. The circumference of our sim-
ulated “world” is 711 pixels, and with the given circumfer-
ence of 24,901 miles,4 each patch covers about 35 miles in
our model. To simulate driving, we calculate the average
mileage driven per day5 (36.9 miles), and then derive a
movement of 1.05 patches per day for each agent. To simu-
late flying, each agent has a random chance to create an air-
plane and fly to any other major cities. While our model
accounts for many parameters that are reflective of actual
virus spread dynamics, we do not take into account any
virus control strategies such as quarantine or social
distancing.

We repeat the simulation over 100 iterations to
ensure reliability of experimental results. Each iteration
result is presented as a network that contains multiple
types of nodes, susceptible, infected, and removed. An edge
can form between any two node types, and node type can
change over time (e.g., from susceptible to infected if there
is an edge between the two nodes), except for when a
node has been labeled as removed.

TABLE 1 Parameter settings for SIRsim

Parameter Setting Source

Fatality Rate 3.4% WHO Director-General's
media briefing on COVID-
19 (Ghebreyesus, 2020)

Avg. Reproductive
Ratio (R0)

1.95% (Ghebreyesus, 2020)

Avg. R0 Range 1.1 (Ghebreyesus, 2020)

Avg. Incubation
Period

5.1 (Lauer et al., 2020)

Incubation Period
Range

1.3 (Lauer et al., 2020)

Symptom Length
(Lowest)

2 days (CDC, 2020); (Lauer
et al., 2020)

Symptom Length
(Highest)

14 days (CDC, 2020); (Lauer
et al., 2020)

Duration of
Simulation

97 days Virus started from Dec. 8,
2019 (Wu &
McGoogan, 2020)

FIGURE 1 NetLogo simulation interface for SIRsim
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3.2 | SIR model from empirically-
validated cases (SIRemp)

We gather actual cumulative cases of COVID-19 from Johns
Hopkins Center for Systems Science and Engineering (JHU
CSSE)'s data repository. This repository contains global con-
firmed cases, death cases, and recovered cases from January
22 to March 14, 2020, for over 185 countries (JHU-CSSE,-
2020). To our knowledge, this data repository is the most
comprehensive so far, with triangulation of cases counts
from 18 sources (e.g., WHO, China CDC, Italy Ministry of
Health, WorldoMeters). We analyze this dataset within the
assumptions of SIR model, where S are individuals in the
population that are not yet infected nor immune to the
virus, I is equivalent to “confirmed cases” in the dataset,
and R is equivalent to “deaths cases”. We do not include
the “recovered” cases in our model as the data does provide
whether these cases are re-entered into the “confirmed
cases” in latter time-frames. In the original dataset, there is
no inclusion of S, given that susceptible nodes include all
members of the world population.

3.3 | Information diffusion on Twitter
(INFOcas)

The third dataset we use for this research is Twitter
data that contains information about COVID-19. We
collect tweets during the period of December 31, 2019
to March 14, 2020 with a maximum of 10,000 samples
(limit set by firehose) for each day from Crimson Hexa-
gon firehose.6 We collect 675,228 tweets that include
either or all of the hashtags #coronavirus, #covid19,
#ncov. We construct information cascades based on
three primary behaviors that occurs between tweets in
our dataset: (1) retweet, (2) quote tweet, and (3) reply.
We exclude all tweets content originated from
European countries, in recognition of General Data
Protection Regulation (GDPR).7 Based on the SIR
model, we define the conditions for infected nodes, and
removed nodes below. Our approach does not consider
susceptible nodes because in this context, susceptible
tweets are all tweets that exist on Twitter.

3.3.1 | New information

An original tweet that has yet to be retweeted or inter-
acted with is counted in this category. There are 14,139
tweets in this category.

3.3.2 | Infected (I)

If a tweet interacts with an S tweet through either ret-
weeting, quoting, or replying, the tweet is counted in
this category. (a) Retweet is an action of reposting an
original tweet, and without changing the original tweet
content. Our sample contains 419,739 retweets.
(b) Quote tweet is an action to forward the message
with additional information related to the original
tweet. Quoting is usually used if the user wants to add
a new comment about the related event but still pre-
serving the original content. Our sample contains
17,569 quote tweets. (c) Replying entails commenting
on the original tweet, using Twitter's “reply” function.
Reply tweets are aggregated into a “thread” of discus-
sions under the original tweet. There are 22,594 tweets
that are in the replies category. Cascade statistics are
shown in Table 2.

3.3.3 | Removed (R)

If an original tweet has not been retweeted, quoted, or
replied to by other tweets in a defined period. We used
the average delta time between each activity on the origi-
nal tweet as our incubation period. Therefore, if there is
no user interaction with the tweet between the average
time frame from the latest spread, we consider the tweet
is removed. Average delta time statistics for each type of
cascade (retweet, quote tweet, and reply tweet) can be
seen in Table 2. There are 69,216 tweets in total that are
in this category.

An information cascade is determined by the period
other tweets (I) interact with an original tweet (S) on this
dataset. Given an original tweet (T0) on time t0 the cas-
cade c on time t1 (ct1) is equal to:

TABLE 2 INFOcas cascades and

network descriptives
Retweet Quote tweet Reply tweet

Cascades statistics # of cascades 419,739 17,569 22,594

Avg. Δ time 0 day-04:54:29 0 day-14:55:33 0 day-08:42:30

S.D 1 day-00:42:14 2 days-17:55:19 1 day-19:27:15

Network statistics # of nodes 303,486 15,962 19,016

# of edges 389,717 15,651 17,712

Density 4.23e-06 6.14e-0.6 4.89e-05
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ct1 = t1− t0

For each type of information cascade, we analyze the
cascade growth by aggregating the S, I, and R tweet for
each day.

4 | RESULTS

4.1 | SIRsim and SIRemp

Our first research question asks about the diffusion pat-
terns of COVID-19 based on both a simulated SIR model
(SIRsim) and actual number of cases from empirically-
validated sources (SIRemp). For SIRsim, across

100 iterations of our simulation, we find the average
counts of susceptible agents to be 7,299.4 million, average
counts of infected to be 384.9 million, and average counts
of removed to be 15.0 million. Thus, the proportion of
healthy, but susceptible agents is 94.8% (S) in our model.
There are only 5% (I) of agents that are infected by the
virus, and only 0.19% (R) are removed due to death. As
shown in Figure 2, the distribution of infected (blue line,
left) and removed (red line, left) agents per day, non-
cumulatively, and find an increasing pattern for both
trendlines. The proportions of removed cases is much
lower than infected cases, and this is shown in the net-
work visualization in Figure 3.

We then compare these results to SIRemp, which
finds that as of March 14, 2019, there were 156,102
infected cases, and 5,819 removed cases (deaths only). By
proportion with the world population, therefore, infected
cases is 0.002%, and removed cases is a minimal percent.
By comparison, the empirically-validated results show
substantially lower proportions of infected and removed
agents, and in turn, higher proportion of susceptible
agents. We also analyze the distribution of infected (blue
line, right) and removed cases (red line, right) for SIRemp,
and finds multiple spikes in the blue line, but flat distri-
bution for the red line. The spikes in infected counts are
due to inclusion of cases from countries such as the U.S,
South Korea, Italy. In comparison to the distributions
from SIRsim, the distribution of removed cases in SIRemp
is relatively static throughout.

4.2 | Twitter cascades: INFOcas

Table 2 (network statistics) shows the sizes of the three
network cascades within INFOcas, retweet, quote tweet,
and reply tweets. We find that retweet cascade is 19 times
larger in size than the quote tweet cascades, and 16 times
larger than the reply cascades. This finding is consistent
with the notable differences in the number of cascades

FIGURE 2 Distribution of Infected and Removed agents for

SIRsim (left) and SIRemp (right) models

FIGURE 3 SIRsim network. Blue nodes = infected cases, Red nodes = removed (death) cases
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present in each network, in which retweet network has
23 times more cascades than quote tweet network, and
19 times more cascades than reply tweet network.

Figure 4 presents the rapid growth in tweet activities,
with stark increase in retweets, quote tweets, and reply
tweets during mid-January. We find that the growth dis-
tributions for all three tweet types follow a logarithmic
curve. In addition, the number of infected users, equiva-
lent to individuals spreading the information, is much
higher compared to the new information consistent on
the three observations. We also observe that the cascade
growth for retweets is substantially higher than growth
for quote tweets and reply tweets.

Table 3 shows the coefficients and parameters for
each linear fit of the number of tweets to the day-period.
As we can see from the table, the slope of a retweet is the
highest, followed by the quote tweet and reply tweet. The
slope for removed information is the lowest compared to
the infected and new information and consistent for all
cascade types. This indicates that as the number of new
information is introduced each day, some portion of the
information stops spreading.

4.3 | Correlations between SIRsim,
SIRemp, and INFOcas

We aggregate the data from SIR-simulation over 100 itera-
tions (SIRsim) and CSSE's real-infection data (SIRemp)
and analyze correlation with Twitter's information

growth (INFOcas) for the same time period. Table 4
shows the correlational values in terms of Pearson's cor-
relation, for each SIR state.

For the cascades of infected nodes, we find the highest
correlation between SIRsim and INFOcas -retweets
(r = 0.86). The second-highest correlation is between
retweets and quote tweets (r = 0.83). Another notable cor-
relation is between SIRsim and quote tweets (r = 0.76).
SIRemp has low correlations with all other types of cas-
cades, with correlations ranging from 0.31 to 0.47.

FIGURE 4 Retweet, Quote tweet, and Reply tweet growth for each day during the COVID-19 outbreak period. x-axes represent the

day, y-axes represent the number of tweets. New information represents the original source of information, infected represents an interaction

with another user, and removed represents the end of the information spread after a defined period

TABLE 3 Linear-log regression summary for INFOcas

Intercept
(β0)

Coefficient
(β1) r2

Retweets

New Information −7570.42 2414.83 0.89

Infected −23000 7847.59 0.82

Removed −3736.46 1176.49 0.87

Quote tweets

New Information −660.72 216.79 0.87

Infected −1533.84 500.18 0.89

Removed −181.96 56.84 0.85

Reply tweets

New Information −537.23 178.34 0.79

Infected −1513.02 487.25 0.88

Removed −217.06 68.34 0.79
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In terms of the removed nodes cascades, there is also
high correlation observed between INFOcas -retweets
and quote tweets (r = 0.83). Retweets also have high cor-
relation with reply tweets (r = 0.74). These two correla-
tions show that retweet cascades are most correlated to
quote tweets and reply tweets with respect to tweets that
are no longer interacted with, and thus can no longer
spread that particular tweet content in the network.
Correlation between INFOcas and SIRsim is relatively
lower (r = 0.58-0.69), showing that there is a weaker rela-
tionship between the simulated and observed Twitter's
removed cascades. Similarly, there is a weak relationship
between SIRemp and all INFOcas cascades, especially
with reply tweets (r = 0.28).

5 | DISCUSSION AND
CONCLUSION

Our study focuses on the diffusion patterns of COVID-19
virus itself and the information shared online about the
virus. To capture the diffusion patterns of the virus, we cre-
ate an SIR model (SIRsim) based on empirically-validated
transmission dynamics of COVID-19 (e.g., reproductive
ratio, incubation period), and then compare with actual
confirmed cases of COVID-19 from January 22 to March
14, 2020 (SIRemp). To examine diffusion patterns of infor-
mation discussed online about COVID-19, we construct
three cascades (INFOcas) based on retweets, quote tweets,
and reply tweets on Twitter that mentioned COVID-19
from the period of December 31st to March 14, 2020.

Our first research question asks about the diffusion
patterns of COVID-19 virus, based on epidemiological
assumptions of SIR. From our SIRsim model, we find the
proportions of infected cases to be only 5% of the entire
world population, and the proportions of removed (dead)

cases is only 0.19% of the population. Our model accounts
for 88 days since the first case of the virus, and the upward
trajectory beyond linear growth suggests to us that rate of
infection and deaths may increase logarithmically. This is
consistent to current findings on COVID-19 that finds
the distributions of infected cases follow a logarithmic
distribution (Cao et al., 2020; Maier & Brockmann, 2020).
(Cao et al., 2020) finds the logarithmic growth rate is
suitable considering that COVID-19 is relatively in the
early stage, and thus growth is slowly increasing. We
also find notable differences in the simulated model and
the actual confirmed cases of COVID-19 (from SIRemp).
In fact, the distribution of removed cases in SIRemp is
flat, as opposed to the increasing distribution observed
in SIRsim. There are two reasons for the mismatch in
simulated and actual distributions of SIR cases. The first
is that our model does not take into account preventive
measures such as social distancing, self-quarantine, and
shelter-in-place which are found to be effective in “flat-
tening the curve” (Lewnard & Lo, 2020; Parmet &
Sinha, 2020). The second reason may be that the quanti-
fication of infection and death rates need further modifi-
cations, specifically because there is still limited testing
(Ioannidis, 2020), and reporting delays (Gardner,
Zlojutro, & Rey, 2020).

The second research question asks about the diffusion
patterns of information cascades on Twitter about
COVID-19. We construct retweet cascade, quote tweet
cascade, and reply cascade (we call these INFOcas) to
fully capture the different types of interactions between
users on Twitter. All three cascades show strong fit with
linear-log distribution, suggesting a power-law decay in
the diffusion of new information about COVID-19 over
time. With this finding along with the cascade length of
each tweet type, we expect that retweet cascade decays at
the fastest rate, given that its cascade length is only

TABLE 4 Correlations between

INFOcas, SIRsim, SIRemp in terms of

Infected and Removed nodes

Infected nodes Retweet Quote tweet Reply tweet SIRsim SIRemp

Retweet 1 0.83 0.75 0.86 0.41

Quote tweet 0.83 1 0.65 0.76 0.39

Reply tweet 0.75 0.65 1 0.58 0.31

SIRsim 0.86 0.76 0.58 1 0.47

SIRemp 0.41 0.39 0.31 0.47 1

Removed nodes Retweet Quote tweet Reply tweet SIRsim SIRemp

Retweet 1 0.83 0.79 0.66 0.53

Quote tweet 0.83 1 0.74 0.69 0.51

Reply tweet 0.79 0.74 1 0.58 0.28

SIRsim 0.66 0.69 0.58 1 0.57

SIRemp 0.53 0.51 0.28 0.57 1
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approximately 4 hours. On the other hand, we find quote
tweets' average cascade length to be about 3 days, which
means that each original tweet that has been interacted
with via quotes has longer duration in terms of activity.
This is also observed for reply tweets, where the average
cascade length is about 2 days.

The third research question focuses on the correlation
in diffusion patterns between SIRsim, SIRemp, and
INFOcas to address the connection between epidemic
and information diffusion dynamics. Based on the exami-
nation of infected cascades, we find the stronger positive
correlation between SIRsim and INFOcas -retweets
(r = 0.86), and quote tweets (r = 0.76). On the other
hand, we observe low correlations between SIRemp and
all three INFOcas types (r = 0.31-0.41). This shows that
the distribution of infected agents are more correlated
between INFOcas and SIRsim, and not so much with
SIRemp. With the rapid spread dynamics seen in SIRsim,
this correlation shows that tweets about COVID-19 gets
retweeted most quickly, then followed by quote tweets,
and then reply tweets. The correlation between SIRsim
and SIRemp is relatively low (r = 0.47), which may indi-
cate that either the simulated model potentially overesti-
mates the infection rate, or that the actual reported cases
may underestimate the infection rate. For the removed cas-
cades, we find strongest correlations between INFOcas cas-
cades, specifically between retweets and quote tweets
(r = 0.83), retweets and reply tweets (r = 0.79), and quote
tweets and reply tweets (r = 0.74). We find weaker correla-
tions between INFOcas and SIRsim (r = 0.58-0.69), and
weakest correlations between INFOcas and SIRemp
(r = 0.28-0.53). This result is consistent with our observa-
tion that the removed distribution on SIRemp is more uni-
form and flat compared to other distributions. It is also
expected that the removed distribution for INFOcas would
be different from SIRsim, given that the likelihood of
tweets to transition from infected to removed is notably
higher.

Overall, we find complex relationships between dif-
fusion dynamics about COVID-19 from the simulated
virus spread model, the actual reported cases of the
virus spread, and the information shared and discussed
online. Our study demonstrates how epidemic model-
ing, in combination with examining information cas-
cades about the virus can help capture the many
activities surrounding the COVID-19 pandemic. In
future work, we hope to expand our data collection to
more recent dates, given the constantly-changing nature
of the pandemic. Additionally, we aim to improve our
simulated epidemic model (SIRsim) to include addi-
tional control variables that reflects prevention strate-
gies, namely social distancing, self-quarantine, and
shelter-in-place.

ENDNOTES
1 http://ccl.northwestern.edu/netlogo
2 Netlogo model #4286
3 World population, https://www.worldometers.info/world-
population/

4 https://www.space.com/17638-how-big-is-earth.html
5 https://www.fhwa.dot.gov/ohim/onh00/bar8.htm, updated March
29, 2018

6 Crimson Hexagon, https://forsight.crimsonhexagon.com/
7 General Data Protection Regulation (GDPR), https://gdpr-info.eu/
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APPENDIX A

TABLE A1 List of 36 major cities used in SIRsim model, and

their associated coordinates (in pixels)

Major City
x-coordinate
(in pixels)

x-coordinate
(in pixels)

Tokyo 257 6

New Delhi 135 -13

Seoul 232 7

Shanghai 216 -7

Mumbai 127 -33

Mexico City -221 -28

Beijing 208 14

Sao Paulo -112 -113

Jakarta 194 -85

New York City -165 20

Karachi 115 -19

Osaka 247 3

Manila 219 -39

Cairo 44 -9

Dhaka 159 -23

Los Angeles -254 5

Moscow 49 64

Buenos Aires -137 -143

Kolkata 151 -24

London -22 50

Bangkok 180 -42

Lagos -9 -55

Istanbul 40 16

Rio de Janeiro -104 -112

Tehran 83 4

Guangzhou 205 -21

Kinshasa 15 -78

Shenzhen 202 -23

Lahore 127 -3

Rhine-Ruhr -4 48

Tianjin 211 9

Bengaluru 133 -44

Paris -14 38

Chennai 136 -43

Hyderabad 134 -37

Wuhan 205 -10
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