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A B S T R A C T   

Introduction: The development of deep learning (DL) models for auto-segmentation is increasing and more models 
become commercially available. Mostly, commercial models are trained on external data. To study the effect of 
using a model trained on external data, compared to the same model trained on in-house collected data, the 
performance of these two DL models was evaluated. 
Methods: The evaluation was performed using in-house collected data of 30 breast cancer patients. Quantitative 
analysis was performed using Dice similarity coefficient (DSC), surface DSC (sDSC) and 95th percentile of 
Hausdorff Distance (95% HD). These values were compared with previously reported inter-observer variations 
(IOV). 
Results: For a number of structures, statistically significant differences were found between the two models. For 
organs at risk, mean values for DSC ranged from 0.63 to 0.98 and 0.71 to 0.96 for the in-house and external 
model, respectively. For target volumes, mean DSC values of 0.57 to 0.94 and 0.33 to 0.92 were found. The 
difference of 95% HD values ranged 0.08 to 3.23 mm between the two models, except for CTVn4 with 9.95 mm. 
For the external model, both DSC and 95% HD are outside the range of IOV for CTVn4, whereas this is the case 
for the DSC found for the thyroid of the in-house model. 
Conclusions: Statistically significant differences were found between both models, which were mostly within 
published inter-observer variations, showing clinical usefulness of both models. Our findings could encourage 
discussion and revision of existing guidelines, to further decrease inter-observer, but also inter-institute 
variability.   

Introduction 

In radiotherapy treatment planning, segmentation of target volumes 
and organs at risk (OARs) is a time-consuming process. Moreover it is 
prone to intra- and inter-observer variations [1]. In recent years, 
research on the use of deep learning (DL) models to automate this pro-
cess has increased [2–6]. The primary outcome of these models is to save 
time, while also decreasing inter-observer variability. Most of the per-
formed studies include only a quantitative analysis, while some others 
also include a qualitative analysis, such as scoring on clinical usefulness 
by the intended user, which is relevant with regard to the possibility of 
clinical use [7,8]. Also, more DL models become commercially available 
[2,6]. Most of these commercially available models will be trained with 
external data, not originating from the institute where it will be applied. 

However, there is limited information on the use of a DL model trained 
on external data. In this study, an externally trained model was 
compared to an in-house trained model, to examine the possible dif-
ference in performance and reflect the effect of using a commercially 
available model, based on the same delineation guidelines. A model is in 
this study defined as a DL architecture trained on a specific dataset. The 
models evaluated in this study consist of the same DL model architec-
ture, but were trained on different datasets from two institutions, while 
evaluated on the same in-house collected dataset. Furthermore, eventual 
differences found in performance of the two models were further 
examined. 
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Materials & Methods 

Patient data 

The patient dataset for evaluation of the models consists of 15 left- 
and 15 right-sided, randomly selected breast cancer patients. All pa-
tients were treated for locally advanced breast cancer between January 
2019 and February 2022. For clinical treatment, contouring of target 
volumes was performed by radiation oncologists (ROs) and of organs at 
risk (OARs) by radiotherapy technologists (RTTs) with varying experi-
ence, following ESTRO guidelines [9,10]. All clinically delineated con-
tours were checked and adjusted if necessary by an experienced 
radiation oncologist (RO) before inclusion for evaluation. The RO was 
also involved in these tasks concerning the training data of the in-house 
model. In total, 11 regions of interest (ROIs) were included in the 
evaluation for both the left and right side, involving target volumes 
(breast (CTVp), axillary lymph node levels 1–3 (CTVn1, CTVn2 and 
CTVn3) and supraclavicular lymph nodes (CTVn4)) and organs at risk 
(OARs) (heart, left/right lung, esophagus, thyroid and humeral head). 

DL models 

In this study, the models were trained using a framework provided by 
RaySearch Laboratories AB in RayStation version 9B, while the evalu-
ation was performed in version 10B-SP1 (RaySearch Laboratories AB, 
Sweden). This framework consists of multiple sub-models, each based on 
the architecture of an adapted version of U-net [11]. Model training was 
performed both in-house, on an in-house collected dataset, as well as 
externally, using data of St. Olavs Hospital and Ålesund Hospital in 
Norway for target structures and internally collected data of RaySearch 
Laboratories for OARs. All data collected and included for training fol-
lowed ESTRO guidelines for targets [9,10] while OARs delineations 
followed atlases of Feng et al. and Kong et al. [12,13]. While the external 
model consists of one common model for both left- and right sided 
breast-cancer, two separate models were trained with the in-house data, 
resulting in 3 models in total. The in-house models were trained using 
160 patients in total (80 for each side). However, not all patients con-
tained delineations of all regions of interest (ROIs), with for instance 82 
thyroid and 147 lung delineations. The external model was trained on a 
dataset containing 170 left-sided patients, with only a few cases that did 
not contain all ROIs. More details on training and the used datasets can 
be found in [14] and [15]. 

Evaluation 

In this study a quantitative analysis was performed to compare the 
outcomes of the in-house and external models with the manual de-
lineations. For a qualitative analysis of the models, we refer to previous 
work [14] and [15]. In our former qualitative study, it was found that 
the in-house models trained for left- and right-sided breast cancer pa-
tients perform equally well [15]. Therefore, the results of both models 
were analyzed as one cohort in this study. The Dice similarity coefficient 
(DSC), surface DSC (sDSC) (tolerance τ = 3 mm) [16] and 95th 
percentile of the Hausdorff Distance (95% HD) were measured for the 
overlap between the automatically and manually generated contours for 
both models. In addition, the overlap between the automatically 
generated contours of the two models was measured. The Wilcoxon 
signed rank test was used to test for differences between both models 
when compared to manual delineations, with a p-value ≤ 0.05 consid-
ered significant. Besides, visual inspection was performed to check for 
abnormalities and investigate the origin of found differences. In addi-
tion, the values for DSC and 95% HD were compared with inter-observer 
variations (IOV) which are present for manual delineations of these 
structures, taken from various studies performed after the ESTRO 
guidelines were published [14,17–19]. 

Results 

The resulting DSC scores and values of the 95% HD can be found in 
Table 1. For the OARs, the mean DSC values were within a range of 0.63 
to 0.98 and 0.71 to 0.96 for the in-house and external model, respec-
tively. For target volumes, these values ranged from 0.57 to 0.94 and 
0.33 to 0.92. Differences of mean 95% HD values of both models, when 
compared with manual delineations, were within a range of 0.08 to 3.23 
mm for all structures, except for the CTVn4 with a difference of 9.95 
mm. Benchmarked against the IOV values, for the external model both 
metrics are outside the IOV for CTVn4. For the thyroid, this is the case 
for the DSC value found for the in-house model, and the 95% HD values 
of both models. The sDSC scores can be found in Table 2, and show mean 
values in a range of 0.70 to 0.98 and 0.65 to 0.99 for the in-house and 
external model, respectively. One exception is the found mean value of 
0.43 for the CTVn4 for the external model. For all metrics, values were 
within the same range when considering the overlap between the two 
models as observed between the automatic and manual delineations. 

Fig. 1 shows transversal slices of an example patient, visualizing 
delineations generated manually and by the two DL models. For a 
number of ROIs, a significant difference is found between the two 
models for all three metrics. However, not all significant differences may 
be clinically relevant. For example, both models show high quantitative 
scores on all three metrics for CTVp, heart and both lungs, in the same 
order of magnitude as the IOV values. Visual inspection of the de-
lineations of heart and lungs reveals the small differences in contour 
mainly appear on the outermost cranial and caudal slices in a low dose 
region, implying a low clinical impact in most cases. Furthermore, since 
it only involves one or a few slices, necessary corrections are easily 
made. Also, significant differences were found for the CTVn3, with a 
relative large difference for the sDSC scores, compared to the afore-
mentioned ROIs. However, the DSC scores and 95%HD values are within 
the range of the IOV values and further visual inspection did not reveal 
any systematic difference. In contrast, the differences for the CTVn4, 
esophagus and thyroid stand out more and require further investigation. 
First, the CTVn4 was visually inspected and it was noted that the 
external model always segments a larger volume than the in-house 
trained model (12 ± 3.2 cm3 vs 2.4 ± 1.0 cm3, respectively), as is 
shown in Fig. 2. When inspecting the esophagus, it appeared that there 
was always a significant difference in length of the delineated structure, 
which explains the high 95%HD value (Fig. 3). When only considering 
the overlapping part, a median DSC score of 0.78 (range 0.55 – 0.89) and 
0.86 (range 0.71 – 0.92) was found for the in-house and externally 
developed model, respectively. The median 95%HD decreased for both 
models to respectively 3.24 mm (range 1.41 – 12.6) and 1.87 mm (range 
1.00 – 7.21 mm). Lastly, for the thyroid it was observed that for 24 out of 
30 patients the two lobes were not connected in the contours for the in- 
house model, in contrast to 10 patients for the external model, whereas 
the manual delineations always contain this connection (Fig. 4). 

Discussion 

Two DL models for automatic segmentation of target and OARs 
volumes for both right- and left-sided loco-regional breast cancer were 
evaluated on an in-house collected dataset. The first model was also 
trained on in-house collected data, while the other one was trained 
externally, using the same delineation guidelines. When comparing the 
automatically generated with manual delineations, statistically signifi-
cant differences were found for most structures when comparing 
different metrics. However, for all structures except CTVn4 and the 
thyroid these values were within the found IOV. 

The external model was trained and evaluated for target volumes in 
the study of Almberg et al. [14]. For some ROIs, as CTVn2-4, better 
quantitative results were presented in their report, when compared to 
the quantitative analysis of the in-house developed model [15]. How-
ever, since the in-house developed model was benchmarked against the 
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Table 1 
Metrics (mean ± std) and corresponding inter-observer variation (IOV) for all ROIs for the in-house and external model, compared to the manual delineations and each 
other. Significant difference of metrics between the two models, when compared to manual delineations, is indicated with an asterisk. Inter-observer variations are 
acquired from 1: Almberg et al. [14], 2: Chung et al. [17], 3: Francolini et al. [18], 4: Leonardi et al. [19].    

DSC score [-] 95%HD [mm]   

In-house vs 
manual 

External vs 
manual 

In-house vs 
external 

IOV (mean) In-house vs 
manual 

External vs 
manual 

In-house vs 
external 

IOV 
(mean) 

CTVp mean ±
std 

0.94 ± 0.02 0.92 ±
0.02 

* 0.93 ± 0.02 0.941, 0.852, 
0.943 

9.38 ± 9.04 8.80 ±
4.64  

8.01 ± 8.94 5.711, 
8.942 

median  

(range) 

0.95  

(0.89, 0.97) 

0.92  

(0.87, 
0.94)  

0.93 
(0.86, 0.95) 

7.81 
(2.45, 55.2) 

7.77 
(2.40, 
28.2)  

6.47 
(3.16, 54.8) 

CTVn1 mean ±
std 

0.79 ± 0.05 0.76 ±
0.08 

* 0.79 ± 0.07 0.741, 0.692, 
0.723 

11.3 ± 4.65 13.3 ±
7.26  

10.1 ± 3.61 14.601, 
13.582 

median  

(range) 

0.79  

(0.64, 0.88) 

0.78 
(0.52, 
0.87)  

0.80 
(0.52, 0.84) 

10.1 
(4.47, 21.9) 

11.4 
(5.00, 
33.3)  

9.33 
(5.48, 20.6) 

CTVn2 mean ±
std 

0.71 ± 0.07 0.69 ±
0.07  

0.67 ± 0.09 0.621, 0.472, 
0.773, 0.554 

9.42 ± 4.33 10.1 ±
3.61  

11.3 ± 4.13 16.211, 
18.742 

median  

(range) 

0.74  

(0.53, 0.82) 

0.69 
(0.53, 
0.83)  

0.68 
(0.46, 0.86) 

8.48 
(2.24, 22.2) 

9.95 
(4.58, 
21.3)  

10.1 
(6.08, 23.1) 

CTVn3 mean ±
std 

0.74 ± 0.06 0.67 ±
0.10  

0.72 ± 0.09 0.671, 0.562, 
0.793, 0.584 

7.01 ± 2.72 8.71 ±
3.07 

* 7.67 ± 3.33 9.391, 
9.872 

median  

(range) 

0.74  

(0.58, 0.82) 

0.69 
(0.4, 
0.82)  

0.74 
(0.47, 0.86) 

6.44 
(3.61, 14.9) 

8.25 
(3.00, 
16.9)  

6.74 
(3.74, 18.8) 

CTVn4 mean ±
std 

0.57 ± 0.13 0.33 ±
0.11 

* 0.30 ± 0.08 0.721, 0.452, 
0.753, 0.694 

6.45 ± 3.08 16.4 ±
3.88 

* 16.5 ± 2.57 6.131, 
11.822 

median 
(range) 

0.57  

(0.22, 0.79) 

0.33 
(0.01, 
0.54)  

0.29 
(0.18, 0.35) 

5.46 
(2.83, 18.0) 

15.7 
(9.43, 
23.2)  

16.6 
(10.5, 21.8) 

Heart mean ±
std 

0.94 ± 0.02 0.93 ±
0.02 

* 0.93 ± 0.02 0.951, 0.912 7.46 ± 3.79 9.48 ±
4.67 

* 11.1 ± 3.74 6.691, 
13.002 

median  

(range) 

0.94  

(0.90, 0.96) 

0.93 
(0.88, 
0.96)  

0.94 
(0.88, 0.96) 

7.00 
(3.00, 23.0) 

8.00 
(3.00, 
19.1)  

10.0 
(6.00, 19.0) 

Lung 
(left) 

mean ±
std 

0.98 ± 0.01 0.96 ±
0.02 

* 0.96 ± 0.02 0.982 2.56 ± 2.37 4.63 ±
3.55 

* 4.65 ± 3.21 2.192 

median  

(range) 

0.98  

(0.95, 0.99) 

0.97 
(0.91, 
0.99)  

0.97 
(0.90, 0.98) 

1.87 
(1.00, 13.4) 

2.91 
(1.00, 
10.8)  

3.61 
(1.00, 12.7) 

Lung (right) mean ±
std 

0.98 ± 0.01 0.96 ±
0.03 

* 0.97 ± 0.03 0.992 2.14 ± 1.29 5.37 ±
5.54 

* 5.32 ± 5.04 2.332 

median  

(range) 

0.99  

(0.96, 0.99) 

0.98 
(0.88, 
0.99)  

0.98 
(0.90, 0.99) 

2.00 
(1.00, 6.16) 

1.83 
(1.00, 
20.8)  

5.05 
(2.83, 9.27) 

Thyroid mean ±
std 

0.63 ± 0.17 0.71 ±
0.17 

* 0.68 ± 0.09 0.811, 0.722 8.23 ± 7.19 7.05 ±
7.31 

* 5.36 ± 1.91 3.911, 
5.372 

median  

(range) 

0.67  

(0.00, 0.82) 

0.75 
(0.00, 
0.87)  

0.69 
(0.47, 0.81) 

5.66 
(2.83, 41.4) 

4.18 
(2.00, 
39.1)  

5.05 
(2.83, 9.27) 

Esophagus mean ±
std 

0.70 ± 0.10 0.32 ±
0.07 

* 0.27 ± 0.04 0.831, 0.782 9.58 ± 6.98 161 ±
22.4 

* 161 ± 18.0 2.961, 
7.082 

median  

(range) 

0.71  

(0.45, 0.88) 

0.32 
(0.18, 
0.45)  

0.27 
(0.18, 0.35) 

7.77 
(1.73, 36.8) 

160 
(116, 
226)  

160 
(133, 201) 

Esophagus 
(overlap) 

mean ±
std 

0.77 ± 0.08 0.85 ±
0.05 

* 0.77 ± 0.07 0.831, 0.782 3.81 ± 2.38 2.29 ±
1.44 

* 4.44 ± 2.22 2.961, 
7.082 

median  

(range) 

0.78 
(0.55, 0.89) 

0.86 
(0.71, 
0.92)  

0.78 
(0.53, 0.87)  

3.24 
(1.41, 12.57) 

1.87 
(1.00, 
7.21)  

3.80 
(1.41, 11.4)  

Humeral head mean ±
std 

0.85 ± 0.06 0.85 ±
0.09  

0.83 ± 0.13 – 8.18 ± 3.76 8.26 ±
4.81  

9.88 ± 3.68 – 

median  

(range) 

0.86  

(0.68, 0.95) 

0.86 
(0.52, 
0.96)  

0.83 
(0.70, 0.94)  

7.45 
(1.00, 19.7) 

7.50 
(1.00, 
21.0)  

10.0 
(3.00, 18.57)   
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IOV values found by Chung et al. [17] for validation, that differ from the 
IOV values measured by Almberg et al. for their benchmark, quantitative 
results of both models were found sufficient in their studies. Besides, 
both studies already previously showed good qualitative results [14,15]. 
Lastly, both models resulted in a reduction of delineation time, which is 
the main outcome. Therefore both models were found to be clinically 
applicable in the institutes where they were trained and validated. 

Various quantitative metrics were used in this study to assess and 
compare the performance of both models. Although statistically signif-
icant differences were found for most of the ROIs, the results of both 
models were within the range of reported IOV values, suggesting the 
models perform as well as an observer. The third quantitative param-
eter, the sDSC score, was introduced by Nikolov et al. [16]. It was 
introduced to better reflect the corrections needed by quantifying the 
deviation in contours rather than volumes, as is the case for the regular 
DSC score. Besides, a stronger correlation with time needed for correc-
tion, and relative time saved, was found for this metric, compared with 
the other quantitative metrics [20,21]. Since the sDSC was higher for the 
in-house developed model, except for the thyroid and humeral head, it 
could be stated that implementing the in-house developed model could 
reduce more delineation time than the external model. More research on 
actual time saving should be performed to validate this hypothesis. 

By evaluating the two DL models on one dataset, it ought to reflect 
the reality in which an institute will use an externally trained model, 
which is for example the case for commercially available models. The 
purpose of this study is to stress the importance of thorough validation of 
the outcomes of the model in your own clinic. For the CTVn4, it was 
found that the external model delineated a larger area in cranial direc-
tion, which is remarkable since both models follow the same delineation 
guidelines. Apparently, there is a difference in interpretation and use of 
these guidelines in practice, which is an important finding. According to 
the ESTRO guideline, CTVn4 includes the cranial extent of the subcla-
vian artery (i.e. 5 mm cranial of subclavian vein). 

For the esophagus, it became clear that the found differences are due 
to the difference in the length of the region that is delineated, which 

stresses the importance of clear delineation guidelines and additional 
visual inspection, next to quantitative analysis. Lastly, for the thyroid, 
the difference in absence or presence of the connection between the 
lobes could be explained by a lack of consistency in the presence of this 
connection in the training dataset for the in-house model. This result was 
already noticed in the previous study of the in-house developed model. 
However, in most cases the delineation was still considered useful as a 
starting point for correction [15]. 

The study design has some limitations. Although general observa-
tions could be made based on this study, the results are intrinsically 
biased as we intentionally used our own manual delineations to compare 
with. Furthermore, no IOV values were obtained in our own institute, 
and the used IOV values varied for some structures, such as the lymph 
node levels. 

Comparing the overlap between the structures resulting from both 
models show comparable results as when comparing to manual de-
lineations, within the range of IOV for most structures, suggesting that 
the differences between the models are similar to differences between 
multiple observers. Furthermore, it indicates that the data used for 
training of both models was within this variability. 

Performing this study led to practical adjustments. For example, the 
in-house delineation guidelines for the cranial and caudal ends of the 
esophagus were revised and a new consensus was reached. Furthermore, 
the difference in interpretation of the CTVn4 volume is seen as an 
important finding for both institutes, as well as for the vendor devel-
oping commercially DL segmentation models. To further investigate the 
nature of this difference, a multi-center study within the Netherlands 
will be performed, in which both the in-house as external model per-
formance will be studied. These results could lead to a further refine-
ment of the clinical guidelines, which will not only decrease the inter- 
observer but also the inter-institute variations. Therefore, studies of 
this nature are not only valuable to evaluate a model for clinical use in 
one institute, but the results can encourage discussion about and revi-
sion of existing guidelines and stimulate updates of the DL models 
thereafter. 

Table 2 
sDSC values (mean ± std) for the in-house and external DL model for all ROIs, compared to manual delineations and each other. Significant difference of metrics 
between the two models, when compared to manual delineations, is indicated with an asterisk.    

In-house vs manual External vs 
manual 

In-house vs 
external 

CTVp mean ± std 0.87 ± 0.05 0.86 ± 0.06 * 0.89 ± 0.06 
median (range) 0.88 (0.70, 0.98) 0.87 (0.70, 0.97)  0.90 (0.63, 0.96) 

CTVn1 mean ± std 0.70 ± 0.10 0.65 ± 0.12 * 0.68 ± 0.11 
median (range) 0.69 (0.40, 0.89) 0.63 (0.40, 0.84)  0.68 (0.40, 0.83) 

CTVn2 mean ± std 0.82 ± 0.08 0.80 ± 0.07  0.76 ± 0.09 
median (range) 0.84 (0.60, 0.98) 0.81 (0.60, 0.89)  0.77 (0.57, 0.91) 

CTVn3 mean ± std 0.84 ± 0.08 0.75 ± 0.10 * 0.80 ± 0.10 
median (range) 0.86 (0.70, 0.96) 0.77 (0.50, 0.96)  0.82 (0.57, 0.95) 

CTVn4 mean ± std 0.79 ± 0.14 0.43 ± 0.11 * 0.36 ± 0.10 
median (range) 0.82 (0.40, 0.98) 0.44 (0.10, 0.69)  0.36 (0.18, 0.57) 

Heart mean ± std 0.85 ± 0.07 0.82 ± 0.07 * 0.94 ± 0.06 
median (range) 0.86 (0.70, 0.96) 0.82 (0.60, 0.97)  0.84 (0.65, 0.92) 

Lung (left) mean ± std 0.98 ± 0.02 0.93 ± 0.06 * 0.93 ± 0.05 
median (range) 0.99 (0.90, 1.00) 0.96 (0.80, 0.99)  0.95 (0.82, 0.99) 

Lung (right) mean ± std 0.98 ± 0.02 0.92 ± 0.09 * 0.93 ± 0.08 
median (range) 0.98 (0.90, 1.00) 0.98 (0.70, 0.99)  0.99 (0.77, 1.00) 

Thyroid mean ± std 0.80 ± 0.19 0.87 ± 0.18 * 0.88 ± 0.09 
median (range) 0.88 (0.10, 0.97) 0.95 (0.10, 0.99)  0.90 (0.67, 0.99) 

Esophagus mean ± std 0.87 ± 0.09 0.42 ± 0.07 * 0.38 ± 0.04 
median (range) 0.91 (0.70, 0.99) 0.42 (0.30, 0.55)  0.39 (0.29, 0.45) 

Esophagus (overlap) mean ± std 0.95 ± 0.06 0.99 ± 0.02 * 0.94 ± 0.05 
median (range) 0.97 (0.74, 1.00) 1.00 (0.92, 1.00)  0.96 (0.73, 1.00) 

Humeral head mean ± std 0.71 ± 0.09 0.82 ± 0.11  0.78 ± 0.09 
median (range) 0.79 (0.70, 1.00) 0.80 (0.60, 1.00)  0.75 (0.64, 0.98)  
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Fig. 1. Three transversal slices of an example patient of the test set, showing 
different structures delineated manually (red) and by the in-house (blue) and 
external (yellow) DL model. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Sagittal (A) and coronal (B) view of CTVn4 delineated manually (red) 
and by the in-house (blue) and external (yellow) DL model of a patient with left- 
sided breast cancer, showing a larger volume delineated by the external model. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 4. Transversal view of the thyroid delineated manually (red) and by the in- 
house (blue) and external (yellow) DL model, showing the absence of a 
connection between the two lobes for the in-house model. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 3. Sagittal view of the esophagus delineated manually (red) and by the in- 
house (blue) and external (yellow) DL model, showing a difference in length for 
the external and in-house model. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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