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Abstract

ENGRAILED 2 (En2), a homeobox transcription factor, functions as a patterning gene in the early development and
connectivity of rodent hindbrain and cerebellum, and regulates neurogenesis and development of monoaminergic
pathways. To further understand the neurobiological functions of En2, we conducted neuroanatomical expression profiling
of En2 wildtype mice. RTQPCR assays demonstrated that En2 is expressed in adult brain structures including the
somatosensory cortex, hippocampus, striatum, thalamus, hypothalamus and brainstem. Human genetic studies indicate
that EN2 is associated with autism. To determine the consequences of En2 mutations on mouse behaviors, including
outcomes potentially relevant to autism, we conducted comprehensive phenotyping of social, communication, repetitive,
and cognitive behaviors. En2 null mutants exhibited robust deficits in reciprocal social interactions as juveniles and adults,
and absence of sociability in adults, replicated in two independent cohorts. Fear conditioning and water maze learning were
impaired in En2 null mutants. High immobility in the forced swim test, reduced prepulse inhibition, mild motor coordination
impairments and reduced grip strength were detected in En2 null mutants. No genotype differences were found on
measures of ultrasonic vocalizations in social contexts, and no stereotyped or repetitive behaviors were observed.
Developmental milestones, general health, olfactory abilities, exploratory locomotor activity, anxiety-like behaviors and pain
responses did not differ across genotypes, indicating that the behavioral abnormalities detected in En2 null mutants were
not attributable to physical or procedural confounds. Our findings provide new insight into the role of En2 in complex
behaviors and suggest that disturbances in En2 signaling may contribute to neuropsychiatric disorders marked by social and
cognitive deficits, including autism spectrum disorders.
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Introduction

Mutations in genes that control early neurodevelopmental

processes impact complex behaviors in mice, including social

behaviors [1–4], cognitive abilities [3,5–11], anxiety- and depres-

sion-related behaviors [2,7,9,12,13], and motor functions [5,6,14].

There is compelling evidence that disturbances in neurodevelop-

ment underlie psychiatric disorders such as autism spectrum

disorders (ASD) and schizophrenia [15–18]. Comprehensive

phenotyping of mice with targeted mutations in neurodevelop-

mental genes could shed light on the mechanisms that contribute

to the social impairments, cognitive deficits and other behavioral

abnormalities that characterize these disorders.

Engrailed-2 is a homeobox transcription factor that coordinates

multiple aspects of CNS development [19,20] and is upregulated

during neural differentiation [21]. In the developing mouse brain,

En2 restricts the fate of progenitor cells to a midbrain or hindbrain

lineage [22,23] and regulates cerebellar patterning and connec-

tivity [24–30]. Animal studies have also demonstrated that En2

coordinates the development and maintenance of monoaminergic

neurons [31–35] and retinal-tectal axon guidance [36,37]. En2

developmental studies have focused on the mid-hindbrain because

the gene is expressed at highest levels in these structures

[20,22,23,38], and in adulthood, En2 is expressed primarily in

mature cerebellar granule cells [23,38]. However, recent

RTQPCR analysis indicated that En2 is transcribed at lower

levels in the hippocampus and cortex, and is associated with kainic

acid induced seizures and possibly excitatory/inhibitory circuit

imbalance [39].

Mice with a deletion in En2 display multiple neuroanatomical

abnormalities including cerebellar hypoplasia, reduced Purkinje

cell numbers, disruptions in cerebellar patterning and foliation,

reduced hippocampal weight, increased dentate gyrus cell

turnover and an anterior shift in the position of the amygdala

[25,26,28,40–42]. Neurochemical investigations revealed that En2
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null mutant mice display perturbations in monoamine neuro-

transmitter pathways. En2 null mutants exhibit reduced levels of

tyrosine hydroxylase, norepinephrine and/or serotonin in the

hippocampus and cerebral cortex with increased levels of these

transmitters in the cerebellum [42–44].

Previous human genetic studies have demonstrated that EN2 is

significantly associated with autism spectrum disorders (ASD). The

common alleles (underlined) of two intronic EN2 SNPs, rs1861972

(A/G) and rs1861973 (C/T), are inherited more frequently in

affected individuals while the G–T haplotype is overrepresented in

unaffected siblings [43,44]. These results were initially observed in

167 families and then replicated in two additional datasets (518

families; P = 00000035). The A–C haplotype was also recently

found to be functional and increases gene expression [45]. Six

other groups have demonstrated association for EN2 with ASD

[46–51], supporting the interpretation that EN2 is an ASD

susceptibility gene.

To further understand the functions of En2, we conducted

comprehensive behavioral phenotyping of mice with a deletion in

En2. Although the human A–C allele changes protein expression

in the opposite direction to the mouse knockout, we reasoned that

explicating the basic role of En2 in mediating mouse behaviors

would shed light on our understanding of the functions of this

developmental gene. Considering the consequences of other

homeobox genes on cognitive abilities, we evaluated En2 mutant

mice on three cognitive tasks. Given the association between EN2

mutations and autism, we evaluated a wide range of behavioral

phenotypes relevant to the diagnostic and associated symptoms of

ASD, along with control measures. Male and female littermates of

all three genotypes (En2+/+, +/2 and 2/2) were tested across

developmental ages in two large independent cohorts of mice. To

begin to identify possible neuroanatomical substrates for these

behavioral phenotypes, we employed RTQPCR to determine the

distribution of En2 expression throughout the +/+ adult mouse

brain. Our findings, which confirm and extend previous reports,

indicate the importance of En2 in regulation of social behaviors,

cognitive abilities and motor functions in mice, the disruption of

which may lead to behavioral phenotypes relevant to autism and

related neuropsychiatric disorders.

Materials and Methods

Ethics Statement
All experimental protocols were conducted in strict compliance

with the National Institutes of Health Guidelines for the Care and

Use of Laboratory Animals and approved by the NIMH Animal

Care and Use Committee and the UMDNJ Institutional Animal

Care and Use Committee.

Mice
En2 tm1Alj/tm1Alj (En22/2 mice), generated on a 129S2/SvPas

background as previously described [20,25,26], were purchased

from The Jackson Laboratories (Bar Harbor, ME) and delivered to

the University of Medicine and Dentistry of New Jersey-Robert

Wood Johnson Medical School (UMDNJ-RWJMS) in Piscataway,

NJ. En2 heterozygous offspring on the B6/Pas hybrid genetic

background were intercrossed to non-littermates to maintain the

line. The mice were maintained on a 12:12 light:dark cycle as

approved by the RWJMS IACUC. En2 heterozygous breeding

pairs were imported from UMDNJ to the National Institute of

Mental Health (NIMH) in Bethesda, MD for behavioral testing.

Heterozygotes were bred in a conventional mouse vivarium using

harem breeding trios. Pups were kept with the dam until weaning

at postnatal day (pnd) 21. After weaning, juveniles were housed by

sex in groups of two to four. All experiments were conducted using

En2 wildtype (+/+), heterozygote (+/2) and null mutant (2/2)

male and female littermates. Mice were housed in standard plastic

cages in a colony room maintained at approximately 20uC, with ad

libitum access to food and water. The colony room was maintained

on a 12:12 light:dark cycle with lights on at 06:00 hours.

Genotyping
Mice bred in Bethesda were genotyped by PCR analysis of tail

DNA using standard PCR methods. Briefly, 0.5–1 cm tail snips

were digested using the Promega Wizard SV Genomic DNA

Purification System (Promega, Madison, WI). The following

primers were utilized in the PCR reaction: GTTCA-

CAGTCCTGTGAAATGCAGC, a sequence common to both

En2+/+ and En22/2 mice; (2) ACCAACAGGTACCTGACA-

GAGC, a sequence specific for the En2+/+ homeobox; and (3)

CTTGGGTGGAAGGGCTATTC, a sequence in the neomycin

gene in the En22/2 mutation. These primers amplify a 600-bp

band in En2+/+ mice, a 950-bp band in En22/2 mice, and one

band of each size in En2+/2 mice.

RTQPCR
First strand cDNA was generated using 1 mg of RNA and High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems,

Foster City, CA) following manufacturer’s instructions and an En2

primer (GAAGATGATTCCAACTCGCTCT). Quantitative

PCR was conducted using one twentieth of total cDNA and

TaqmanH probe sets for mouse En2 (Mm00438710_m1, fluores-

cent dye FAM labeled) and GAPDH internal control (4352339E,

fluorescent dye VIC labeled) on ABI7900HT (Applied Biosys-

tems). En2 level was normalized to endogenous Gapdh level by

subtracting Gapdh Ct from En2 Ct (nCt). The average of the

normalized Ct (nCt) values was obtained from three replicates of

qRT-PCR reaction.

Behavioral Tests
Behavioral experiments were conducted between 10:00 and

16:00 in dedicated testing rooms, using methods previously

described [52–55]. To evaluate the replicability of behavioral

phenotypes detected, most tasks were repeated using a second

cohort of mice. Identification was done by paw tattooing at age 2–

4 days. All behavioral ratings were conducted by investigators who

were blind to the genotype of the subject mice. To ensure that

investigators were unaware of the genotype during the test session,

tattoo markings were recorded in the datasheet only after the end

of the test session, for each subject mouse. In cases where scoring

was conducted from videotapes, the video was assigned a code

number, and the genotype identification number of the subject

mouse was attached to the data after completion of the

experiment.

Order of testing was as follows: (1) developmental milestones

across postnatal days 2–14 in one cohort; pup ultrasonic

vocalizations on postnatal days 4, 6, 8 and 11 in a separate

cohort; (2) juvenile reciprocal social interactions at age 20–

22 days; (3) elevated plus-maze and light « dark exploration tests

for anxiety-related behaviors at age 6–7 weeks; (4) open field

locomotion and rotarod motor coordination and balance at age 8–

9 weeks; (5) adult 3-chambered social approach at age 8–

10 weeks; (6) general health, neurological reflexes, pain sensitivity

and grip strength at age 9–11 weeks; (7) novel object recognition

memory test at 10–11 weeks; (8) adult male-female social

interactions at age 9–12 weeks; (9) self-grooming at age 12–

13 weeks; (10) olfactory habituation/dishabituation at age 13–

14 weeks; (11) acoustic startle and prepulse inhibition at age 14–
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16 weeks; (12) tail suspension and forced swim tests at age 15–

16 weeks; (13) fear conditioning at age 16–18 weeks; and (14)

Morris water maze at age 18–20 weeks. Males and females were

used in approximately equal proportions for each experiment.

Developmental Milestones
Developmental milestones were assayed in En2 pups using a

modified Fox battery [56,57] as previously described [58]. Every

other day from pnd 2 to 14, body temperature and somatic growth

parameters including body weight, body length, day of eyelid

opening and pinnae detachment were measured. Reflexes and

responses including negative geotaxis, vertical screen climbing,

righting reflex and auditory startle were assayed on the same days,

as previously described [58]. Body weight was measured to the

nearest 0.1 g and body temperature to the nearest 0.01uC.

Latency to display the righting reflex was measured in seconds

using a stopwatch. Other somatic and behavioral variables were

rated semi-quantitatively using the following scoring system: 0 =

no response or occurrence of the event, 1 = slight response or

occurrence of the event, 2 = incomplete or ambiguous response or

occurrence of the event, and 3 = complete, unambiguous response

or occurrence of the event. Investigators were trained until the

inter-observer reliability was greater than 95%. The absence of a

milestone was scored as zero if the mouse did not exhibit the

behavior within 60 seconds.

Pup Ultrasonic Vocalizations
Ultrasonic vocalizations (USVs) were recorded from En2 pups

separated from the mother and nest as previously described

[53,58,59]. Litters tested for ultrasonic vocalizations were not used

for developmental milestones testing, to avoid potential confounds

from using previously handled animals. Measurements of USVs

were taken on postnatal days 4, 6, 8 and 11. On each day of

testing, the pup was removed from the home cage and placed into

an empty glass container (5610 cm) situated inside a sound-

attenuating styrofoam box. USVs were recorded over a 3 minute

recording session. At the end of the recording session, each pup

was weighed and its body temperature measured. The tempera-

ture of the room was maintained at 2361uC.

Ultrasonic calls were recorded in a sound-attenuating environ-

mental chamber using an ultrasound microphone (Avisoft

UltraSoundGate condenser microphone capsule CM16, Avisoft

Bioacoustics, Berlin, Germany) sensitive to frequencies of 10–

180 kHz. The microphone was placed through a hole in the

middle of the cover of a styrofoam sound-attenuating box, about

20 cm above the pup, and connected to a PC installed with Avisoft

Recorder software (version 3.2, Avisoft Bioacoustics, Berlin,

Germany). The microphone sampling frequency was set to

205 kHz, and the resolution set to 16 bits. For acoustical analysis,.

WAV files containing the USV recordings were transferred to

Avisoft SASLab Pro software (version 4.40) and a fast Fourier

transformation (FFT) was conducted. Spectrograms were gener-

ated with an FFT-length of 512 points and a time window overlap

of 75% (100% Frame, Hamming window). The spectrogram was

produced at a frequency resolution of 488 Hz and a time

resolution of 1 ms. A lower cut-off frequency of 15 kHz was used

to reduce background noise outside the relevant frequency band to

0 dB. Call detection was provided by an automatic threshold-

based algorithm and a hold-time mechanism (hold time: 0.01 sec-

onds). An experienced user checked the accuracy of call detection,

and obtained greater than 99% concordance between automated

and observational detection. Parameters analyzed for each test day

included total number of calls, mean duration of calls, and mean

call frequency and amplitude.

Juvenile Reciprocal Social Interactions
Multiple parameters of social interactions were scored in freely

moving pairs of juvenile mice aged 20–22 days as previously

described [55,60–63]. Subjects were individually housed in

standard mouse cages for 1 hour prior to the test session. Testing

was conducted in the Noldus PhenoTyper Observer 3000

chamber (30630630 cm, Noldus Information Technology, Lees-

burg, VA), with a thin layer of bedding covering the floor. The En2

subject mouse was placed into the arena with an age- and sex-

matched juvenile C57BL6/J (B6) partner mouse. B6 were chosen

for the partners because this strain exhibits the high levels of social

behaviors that characterize most inbred strains of mice, and B6 are

neither unusually high nor unusually low on most behavior traits.

Interactions were recorded for 10 minutes using a top-mounted

CCTV camera (Security Cameras Direct, Luling, TX). Behaviors

were subsequently scored from videotapes by a highly trained

observer uninformed of genotype using Noldus Observer 8.0 XT

software (Noldus Information Technology, Leesburg, VA).

Parameters of interest were chosen from the literature and from

our previous studies [61,62,64,65]. Parameters scored included

approaching the partner from the front, nose-to-nose sniffing and

anogenital sniffing, grooming the partner, following the partner,

pushing underneath the partner’s body or crawling over or under

the partner (combined as a single parameter termed ‘‘push-

crawl’’). Bouts of arena exploration were scored as a control for

general locomotor activity. Bouts of self-grooming were also

scored.

Elevated Plus-maze
The elevated plus-maze test for anxiety-like behavior was

performed as previously described [66–68]. The apparatus (San

Diego Instruments, San Diego, CA) was comprised of two open

arms (306565 cm) and two closed arms (3065615 cm) that

extended from a common central platform (565 cm). Each mouse

was individually placed in the center facing an open arm and

allowed to freely explore the apparatus for 5 minutes. The

illumination on the open arms was approximately 30 lux. The

5 minute session was recorded using a CCTV camera mounted

overhead approximately 1 m from the plus-maze, for subsequent

scoring of behavior. The apparatus was cleaned with 70% ethanol

and water between subjects. Time spent in the open arms and

numbers of open and closed arm entries were scored by a trained

observer using Noldus Observer 8.0 XT software (Noldus

Information Technology, Leesburg, VA). An open or closed arm

entry was defined as all four paws in an arm. The number of open

and closed arm entries was combined to yield a measure of total

entries, which reflected general exploratory activity during the

5 minute test.

Light « Dark Exploration
The light « dark exploration test for anxiety-like behavior was

conducted as previously described [67,69]. The apparatus

consisted of a Plexiglas cage (45626628 cm) separated into two

compartments by a partition, which had a small opening

(1065 cm) at floor level. The larger compartment

(29.5626628 cm) was open on top, transparent, and illuminated

by overhead fluorescent ceiling lights (350 lx). The smaller

compartment (16.5626628 cm) was closed on top and painted

black. The partition between compartments contained embedded

photocells that detected beam breaks as the subject mouse moved

between the light and dark compartments and was connected to a

PC equipped with dedicated software (equipment and software

built by George Dold and coworkers, Research Services Branch,

NIH, Bethesda, MD). Mice were individually placed in the center
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of the light compartment, facing away from the partition, and

allowed to freely explore the apparatus for 10 minutes. The

number of transitions between the light and dark compartments,

total time spent in each compartment, and the latency to the first

entry from the light compartment to the dark compartment, were

automatically recorded by the photocells embedded in the

partition. Data from the beam breaks were automatically analyzed

by the software.

Open Field Activity
General exploratory activity in a novel open field was assessed

using the automated VersaMax Animal Activity Monitoring

System (AccuScan Instruments, Columbus, OH) as previously

described [53,55,66–68]. The open field was a square arena

(40640630.5 cm) equipped with photocell beams for automatic

detection of activity. Mice were placed in the center of the open

field and left to freely explore for a 30 minute test session. The

number of horizontal and vertical beam breaks was taken as a

measure of horizontal and vertical activity, respectively. Total

distance traveled and time spent in the central 20620 cm area of

the open field were automatically recorded by the VersaMax

system. Test chambers were cleaned with 70% ethanol between

subjects.

Rotarod
Motor coordination, balance and motor learning were assessed

using an accelerating rotarod (Ugo Basile, Schwenksville, PA) as

previously described [5,53,55,63]. Mice were placed on a cylinder

that slowly accelerated from 4 to 40 revolutions per minute over a

5-minute (300-second) test session. Two cohorts of mice were

tested, each for a total of six trials. Mice tested in Cohort 1 were

given two trials per day over three consecutive days, with an

intertrial interval of 60 minutes. Mice tested in Cohort 2 were

given three trials per day over two consecutive days, with an

intertrial interval of 30 minutes. Latency to fall from the rotating

rod was recorded with a maximum trial length of 300 seconds. A

group of C57BL6/J mice were tested within the same experiment

as En2 mice from Cohort 1, to allow comparison of baseline motor

performance.

Sociability
Adult sociability was tested in our automated three-chambered

social approach apparatus using methods previously described

[55,61,70–72]. The apparatus was a rectangular box made of clear

polycarbonate, divided into a center chamber and two side

chambers. Retractable doors built into the two dividing walls

allowed access to the side chambers. Number of entries and time

spent in each of the three chambers were detected by photocells

embedded in the doorways and automatically recorded by the

software. Equipment and the Labview software program were

designed and built by George Dold and coworkers, Section on

Instrumentation, NIH, Bethesda, MD. A top mounted CCTV

camera (Security Cameras Direct, Luling, TX) was positioned

over the box to videotape the session. Time spent sniffing the novel

mouse and time spent sniffing the novel object were subsequently

scored from the videos by investigators who were uninformed of

the genotype of the subject mouse.

The subject mouse was acclimated to the apparatus before

sociability testing, beginning with a 10 minute habituation session

in the empty center chamber, followed by a 10 minute habituation

to all three empty chambers. The second habituation session

served to confirm a lack of innate side chamber preference. The

subject was then briefly confined to the center chamber while a

novel object (inverted wire pencil cup, Galaxy, Kitchen Plus,

http://www.kitchen-plus.com) was placed in one side chamber

and a novel mouse contained inside an identical inverted wire cup

was placed in the other side chamber. Mice used as the novel

mouse stimuli were age- and sex-matched 129S1/SvImJ mice

obtained from The Jackson Laboratory (Bar Harbor, ME), a strain

that is relatively inactive. After both stimuli were positioned, the

two side doors were lifted and the subject mouse was allowed

access to all three chambers for 10 minutes. Time spent in each

chamber and number of entries was automatically recorded by the

software. Number of entries served as a within-task control for

levels of general exploratory locomotion. Cumulative time spent

sniffing the novel mouse and novel object were later scored by a

trained observer uninformed of genotype. The apparatus was

cleaned with 70% ethanol and water between subjects. At the end

of each testing day, the boxes were thoroughly washed with soap

and warm water and air dried.

General Health, Neurological Reflexes and Pain Sensitivity
The general health of adult En2 mice was assessed using

methods previously described [55,63,68,73]. Empty cage behav-

iors were scored by placing the mouse into a clean, empty cage

and noting incidents of transfer freezing, wild running, stereoty-

pies, and excessive exploration levels. General health evaluation

included assessment of body weight, the condition of the fur and

whiskers, skin color, limb tone and body tone. Neurological

reflexes tested included whisker twitch, pinna twitch, eyeblink

response, auditory startle, righting reflex, forepaw reaching and

trunk curl. Behavioral reactivity was measured using tests assessing

responsiveness to petting by the investigator, intensity of a dowel

biting response and degree of struggling and vocalization during

handling. Responsiveness to painful stimuli was assessed using the

hot plate and tail flick tests as previously described [53,68,74]. For

the hot plate test, the mouse was placed on the surface of a hot

plate apparatus (Columbus Instruments, Columbus, OH) main-

tained at 55uC. Latency to the first paw lick, jump or vocalization

was measured by an observer uninformed of genotype. A

maximum cut-off latency of 30 seconds was used to prevent the

risk of tissue damage to the paws. For the tail flick test, mice were

gently restrained with the tail lying in the groove of a tail flick

apparatus (Columbus Instruments). Thermal stimulation of the tail

was provided by application of an intense photobeam. The latency

for the mouse to move its tail out of the path of the beam was

timed automatically by the apparatus. A maximum cut-off latency

of 10 seconds was used to prevent the risk of tissue damage.

Grip Strength
Forelimb grip strength was measured as an indicator of

neuromuscular function as previously described [53,75]. Mice

were raised toward a grip strength meter (Columbus Instruments,

Columbus, OH), positioned horizontally and allowed to grasp the

pull bar of the apparatus using only their forepaws. Mice were

slowly pulled by the base of the tail, away from the bar at a

horizontal plane, until the forepaws released from the bar. The

force applied to the bar at the moment the grasp was released was

recorded as the peak tension. The test was repeated 3 consecutive

times within the same session. The mean score of all 3 trials was

used for data analysis.

Male-Female Social Interactions
Male-female social interactions were evaluated in a 5-minute

test session as previously described [76,77]. Each of the En2+/+,

+/2 and 2/2 subject mice, aged 9–12 weeks, was paired with a

different unfamiliar estrus B6 female. Both the subject mice and

the female partner mice were group-housed. The test session was
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conducted in a clean cage with clean bedding, representing a novel

situation for both the male subject and the female partner. A

digital closed-circuit television camera (Panasonic, Secaucus, NJ)

was positioned horizontally 30 cm in front of the cage.

Ultrasonic calls were recorded in a sound-attenuating chamber

using an ultrasound microphone as previously described for

recording of pup ultrasonic vocalizations. The microphone was

mounted 20 cm above the test cage and the chamber was

illuminated by a red light. Procedures for acoustical analysis and

call detection were identical to those used for analysis of pup

ultrasonic vocalizations.

Digital videos recorded during the test session were subsequent-

ly scored using Noldus Observer software (Noldus Information

Technology, Leesburg, VA, USA) as previously described [76,77].

Parameters scored included nose-to-nose sniffing, nose-to-anogen-

ital sniffing, body sniffing and bouts of exploration of the test cage.

Novel Object Recognition
The novel object recognition test was conducted in the open

field arena using methods previously described [63,78]. The

experiment took place over two days and consisted of two

habituation sessions, a 10 minute object familiarization session,

and a 5 minute object recognition test. On day 1, each subject was

habituated to a clean empty open field arena for 30 minutes.

Twenty-four hours later, each mouse was returned to the open

field for a second habituation phase which lasted 10 minutes. The

mouse was then removed from the open field and placed in a clean

temporary holding cage for approximately 2 minutes, during

which time two identical objects were placed in the arena. Each

subject was returned to the open field in which it had been

habituated, and allowed to freely explore the objects for

10 minutes. After the object familiarization session, subjects were

returned to their holding cages, which were transferred from the

testing room to a nearby holding area. The open field was

cleaned with 70% ethanol and let dry. One clean familiar object

and one clean novel object were placed in the arena, where the

two identical objects had been located during the familiarization

phase. Thirty minutes after the familiarization session, each

subject was returned to its open field for a 5 minute object

recognition test, during which time it was allowed to freely

explore the familiar object and the novel object. The familiar-

ization session and recognition test were videotaped and

subsequently scored by a highly trained investigator uninformed

of genotype. Object investigation was defined as time spent

sniffing the object when the nose was in contact with the object or

within ,2 cm from the object. Recognition memory was defined

as spending significantly more time sniffing the novel object than

the familiar object. Total time spent sniffing both objects was

used as a measure of general exploration. Time spent sniffing two

identical objects during the familiarization phase confirmed the

lack of an innate side bias.

Self-grooming
Mice were assessed for spontaneous self-grooming behaviors as

previously described [53,61,62,79]. Each mouse was placed

individually into a clean standard mouse cage (46623.5620 cm)

under dim light (25–30 lx). After a 10 minute habituation period,

a highly trained observer who remained blind to genotype scored

cumulative time spent grooming any region of the body over a

10 minute test session. The observer sat approximately 2 m from

the test cage and scored time spent self-grooming with a silenced

stopwatch.

Olfactory Habituation/Dishabituation
Olfactory abilities were assessed using the olfactory habituation/

dishabituation assay as previously described [55,80,81]. Prior to

the start of testing, each mouse was placed into a clean standard

cage containing fresh bedding and a plain cotton swab tip

(MediChoice, Owens & Minor, Mechanicsville, VA) suspended

from the cage lid. After a 45 minute acclimation period, olfactory

testing began. Subjects were tested for time spent sniffing cotton

swab tips saturated with familiar and unfamiliar odors, with and

without social valence. Sequences of three identical swab tips

assayed habituation to the same odor. A different odor presented

on the swab tip assayed dishabituation, i.e. recognition that an

odor is new. Swab tips were dipped in (1) distilled water, (2)

almond extract (McCormick, Hunt Valley, MD; 1:100 dilution)

and (3) banana flavoring (McCormick, Hunt Valley, MD; 1:100

dilution) to represent a range of non-social odors. Swabs were

wiped across the bottom surface of a plastic cage that contained (4)

sex-matched unfamiliar mice of a different strain, 129S1/SvImJ,

and (5) sex-matched unfamiliar mice of another different strain,

C57BL6/J, to represent two distinct social odors. Each swab was

presented for a 2 minute period, immediately following the last

swab presentation, for a total session length of approximately

30 minutes per mouse. Order of presentation of non-social and

social odors was counterbalanced within each genotype.

Acoustic Startle Threshold and Prepulse Inhibition
Acoustic startle threshold and prepulse inhibition (PPI) were

measured using the SR-Lab System (San Diego Instruments, San

Diego, CA) as previously described [53,82,83]. Each test session

began by placing the mouse in the Plexiglas cylinder for a

5 minute acclimation period. A background noise level of 70 dB

was maintained over the duration of the test sessions. Acoustic

startle testing occurred over an 8 minute session. Mice were

presented with each of six trial types across six discrete blocks of

trials for a total of 36 trials. One trial type measured the response

to no stimulus (baseline movement). The other five trial types

measured the response to a 40 millisecond startle stimulus of 80,

90, 100, 110 or 120 dB. The six trial types were presented in

pseudorandom order such that each trial type was presented once

within a block of seven trials. PPI testing occurred over a

10.5 minute trial. Mice were presented with each of seven trial

types across six discrete blocks of trials for a total of 42 trials. One

trial type measured the response to no stimulus, and another to a

40 millisecond 110 dB startle stimulus. The other five trial types

were acoustic prepulse plus acoustic startle stimulus trials. The

20 millisecond prepulse stimuli were sounds of 74, 78, 82, 86, or

92 dB, presented 100 milliseconds before the onset of the 110 dB

startle stimulus. The seven trial types were presented in

pseudorandom order such that each trial type was presented once

within a block of seven trials. The intertrial interval was 10–

20 seconds. For both acoustic startle and PPI testing, startle

amplitude was measured every 1 milliseconds over a 65 ms period

beginning at the onset of the startle stimulus. The maximum startle

amplitude over this sampling period was taken as the dependent

variable.

Tail Suspension Test
The tail suspension test was conducted as previously described

[52,84–86]. Mice were securely fastened by taping the distal end of

the tail to the edge of a metallic shelf, and suspended in a visually

isolated area. A CCTV camera (Security Cameras Direct, Luling,

TX) placed approximately 1 m in front of the shelf recorded each

session for subsequent scoring of time spent immobile. The

presence or absence of immobility, defined as the absence of limb
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movement, was sampled every 5 seconds over a 6 minute test

session by a highly trained observer who remained blind to

genotype. The shelf was cleaned with 70% ethanol between

subjects.

Forced Swim Test
The Porsolt forced swim test was conducted as previously

described [86–88]. Mice were gently placed in a transparent

Plexiglas cylinder (20 cm in diameter) filled to a depth of 15 cm

with tap water (24+1uC). A CCTV camera (Security Cameras

Direct, Luling, TX) placed 30–40 cm in front of the cylinder

recorded each session for subsequent scoring of time spent

immobile. The presence or absence of immobility, defined as the

cessation of limb movements except minor movement necessary to

keep the mouse afloat, was sampled every 5 seconds during the last

4 minutes of a 6 minute test session by a highly trained observer

blind to genotype.

Contextual and Cued Fear Conditioning
Standard delay contextual and cued fear conditioning were

conducted as previously described [53,89]. The conditioning

chamber (32625623 cm, Med Associates, St. Albans, VT) was

interfaced to a PC installed with VideoFreeze software (version

1.12.0.0, Med Associates) and enclosed in a sound-attenuating

cubicle (64676642 cm, Med Associates). Training consisted of a

2 minute acclimation period followed by three tone-shock (CS–

US) pairings (80 dB tone, duration 30 seconds; 0.5 mA footshock,

duration 1 second; intershock interval 90 seconds) and a 2.5 min-

ute period during which no stimuli were presented. Cumulative

time spent freezing before and after the CS–US pairings was

quantified by the VideoFreeze software. A 5 minute test of

contextual fear conditioning was performed 24 hours after

training, in the absence of the tone and footshock. The

conditioning chamber and test room environments were identical

to those used on the training day. Cumulative time spent freezing

during the 5 minute test was similarly quantified by the software.

48 hours after training, cued fear conditioning was assessed in a

novel environment with distinct visual, tactile and olfactory cues.

The cued test consisted of a 3 minute acclimation period followed

by a 3 minute presentation of the tone CS for 3 minutes and a

90 second exploration period. Cumulative time spent freezing

before and after CS presentation was quantified by the software.

The chamber was cleaned with 70% ethanol between subjects.

Morris Water Maze
Spatial learning was assessed using standard equipment and

procedures as previously described [53,63,83,89]. Mice were

trained to find a hidden platform in a circular pool of water

(120 cm diameter) filled 45 cm deep with tap water rendered

opaque by the addition of white non-toxic paint (Crayola, Easton,

PA). The water temperature was maintained at 23+1uC. Training

consisted of 4 trials per day over 5 days. The start position and the

location of the platform (NE, SE, NW, or SW) were pseudor-

andomized across trials. For a given subject, the hidden platform

remained in the same quadrant for all trials across all training

sessions. Mice were given 60 seconds to locate the hidden

platform. After reaching the hidden platform, subjects were left

on the platform for 15 seconds before being removed and placed

under a warming light for a 1 minute intertrial interval. A mouse

that failed to find the platform within the time limit was ascribed

an escape latency of 60 seconds and guided to the platform by the

experimenter. Trials were videotaped and scored with WaterMaze

video tracking software (Actimetrics, Inc., Wilmette, IL). Latency

to find the platform, average swim speed (total cm distance

traveled/seconds to reach the platform), and thigmotaxis (percent

time spent in the outer 8 cm annulus at the perimeter of the pool)

were automatically measured for each training trial. Hidden

platform training continued until the En2+/+ group met the

latency criterion of 15 seconds or less to find the hidden platform.

Mice were tested on a 60 second probe trial 2–3 hours after

completing hidden platform testing on the day in which the

latency criterion was met. Mice were placed into the pool in the

quadrant opposite to the quadrant containing the platform during

training. Percent time spent in each quadrant, the number of

crossings over the trained platform location and the corresponding

regions in non-trained quadrants, swim speed and thigmotaxis

were automatically recorded. Probe trial selective search was

assessed by time spent in each quadrant and the number of

crossings over the trained platform location as compared to the

analogous locations in the non-trained quadrants.

Statistics
En2+/+, +/2 and 2/2 littermate controls were compared for

each behavioral task. Data from males and females were also

compared for sex differences. When no sex differences were

detected, data from males and females were combined. Genotype

differences in juvenile reciprocal social interactions, elevated plus-

maze, light « dark exploration, male-female social interactions,

self-grooming, tail suspension, forced swim and contextual fear

conditioning were analyzed using one-way analyses of variance

(ANOVAs), as were measures of development, general health and

neurological reflexes that utilized continuous variables, such as

temperature and weight. Open field locomotion, rotarod, olfactory

habituation/dishabituation, acoustic startle, PPI and cued fear

conditioning were analyzed with between groups repeated

measures ANOVAs. Significant ANOVA results were followed

by Bonferroni/Dunn post hoc tests, where applicable. Social

approach results were analyzed using within groups repeated

measures ANOVAs, to compare time spent in the two side

chambers, and to compare time spent sniffing the novel mouse

versus the novel object, within each genotype. Time spent in the

center chamber is shown in the graphs for illustrative purposes

only. Novel object recognition results were also analyzed using a

within groups repeated measures ANOVA, to compare time spent

sniffing the novel object versus the familiar object, within each

genotype. Morris water maze probe trial results were similarly

analyzed using a within groups repeated measures ANOVA, to

compare time spent in the four quadrants within each genotype,

and number of crossings over the four imaginary platform

locations within each genotype. Measures of health and reflexes

that utilized a rating of present or absent were analyzed for

genotype differences using a Chi-squared statistic, as were data on

proportion of mice reaching the learning criterion during Morris

water maze hidden platform training. Reflexes or physical

parameters that were rated on a 3 point ranking scale were

analyzed using a non-parametric Kruskal-Wallis for ranks

ANOVA. Data are presented as means 6 SEMs.

Results

En2 is Widely Expressed in aDult Brain Structures
To investigate whether En2 is expressed throughout multiple

adult brain structures, we dissected the olfactory bulb, prefrontal

cortex, visual cortex, somatosensory cortex, striatum, hippocam-

pus, amygdala, hypothalamus, thalamus, colliculi, cerebellum and

brainstem from En2+/+ adult brains and performed RTQPCR.

En2 expression was observed at the highest levels in the

cerebellum, colliculi and brainstem. Lower levels of expression
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were detected in several forebrain structures including thalamus,

hippocampus, striatum and hypothalamus. No En2 expression was

detectable in the amygdala, visual cortex, prefrontal cortex or

olfactory bulb of +/+ mice (Figure 1). Since expression levels were

low in some structures, we repeated the analysis in En22/2 mice.

No signal was detected in any of the structures examined (data not

shown). These results demonstrate that En2 is widely expressed in

adult brain structures.

En2 Heterozygous and Null Mutant Mice Display
Impairments in Juvenile Social Interactions

Genotype differences were detected in Cohort 1 for nose-to-

nose sniffing, anogenital sniffing, and following the partner mouse

(Figures 2A–2C). No genotype differences were found for bouts of

front approach behaviors, bouts of self-grooming behavior, or

general exploration of the test arena (Figures 2D–2F). For F and p

values, see Table 1. No significant genotype differences were

detected for bouts of push-crawl behaviors (F(2,43) = 1.99,

p = 0.149; means + SEMs: 15.73+2.38 for +/+; 13.2+1.6 for +/

2; 10.93+0.91 for 2/2), or social grooming (F(2,43) = 1.25,

p = 0.298; means 6 SEMs: 0.4760.22 for +/+; 0.2760.15 for

+/2; 0.7560.27 for 2/2).

Significant genotype differences were found in Cohort 2 for

nose-to-nose sniffing, anogenital sniffing and front approach

behaviors (Figures 2G, 2H and 2J). No genotype differences in

following behaviors or bouts of exploration were found in Cohort

2 (Figures 2I and 2L). F and p values are listed in Table 1. The

genotypes also did not differ on bouts of push-crawl behaviors

(F(2,36) = 0.77, p = 0.471; means + SEMs: 19.7161.53 for +/+;

19.67+1.84 for +/2; 16.961.57 for 2/2), or social grooming

(F(2,36) = 2.45, p = 0.101; means + SEMs: 3.86+0.88 for +/+;

2.060.66 for +/2; 1.860.53 for 2/2).

Lack of Sociability in Adult En2 Null Mutant Mice
In Cohorts 1 and 2, En2+/+ and +/2 mice spent more time in

the chamber containing the novel mouse than the novel object

chamber (Figures 3A and 3D) and spent more time sniffing the

novel mouse than the novel object (Figures 3B and 3E), indicating

high sociability. En22/2 mice in Cohorts 1 and 2 failed to display

sociability. Table 2 contains a summary of statistical results. No

genotype differences were found for time spent in each chamber

during the habituation phase (p.05 for all comparisons)

(Figures 3C and 3F), indicating that there were no genotype

differences in exploratory activity during this task.

Male En2 Null Mutants Display Reduced Social
Interactions with an Estrus Female Mouse

Significant genotype differences were detected for time spent

engaged in sniffing the anogenital region (F(2,33) = 3.24, p = 0.05)

and other body regions of the female (F(2,33) = 3.64, p = 0.037)

(Figure 3G). En22/2 spent less time engaged in anogenital and

body sniffing as compared to +/+ (p,05 for each comparison). No

genotype differences were found for time spent engaged in nose-to-

nose sniffing (F(2,33) = 0.86, p = 0.305). All three genotypes emitted

a similar number of USVs during the test session (F(2,33) = 0.35,

p = 0.711) (Figure 3H). Bouts of test cage exploration did not differ

between genotypes (F(2,33) = 1.24, p = 0.302) (Figure 3I).

En2 Null Mutant Mice are Impaired in Contextual and
Cued Fear Conditioning

All three genotypes displayed high levels of freezing subsequent

to the CS–US pairings on the training day (main effect of training

phase, F(1, 63) = 653.15, p,001, Figure 4A). No genotype

differences were detected on the training day (main effect of

genotype, F(2,63) = 0.47, p = 0.629; genotype 6 training phase

interaction, F(2, 63) = 0.21, p = 0.82). A genotype difference was

detected for contextual fear conditioning (F(2,63) = 5.28, p = 0.008).

En22/2 displayed less freezing as compared to +/+ and +/2

(p,0.010 for each comparison). All three genotypes displayed

increased freezing following presentation of the CS on the cued

day as compared to before the CS presentation (main effect of cue,

F(1,63) = 171.52, p,0.001). Significant genotype differences were

detected for freezing in response to the cue (main effect of

genotype, F(2,63) = 6.17, p = 0.004; genotype 6 cue interaction,

F(1,63) = 5.36, p = 0.007). En22/2 mice displayed significantly less

freezing upon presentation of the cue as compared to +/+
(p,0.005 for each comparison).

En2 Null Mutant Mice Fail to Display Novel Object
Recognition Memory

No innate preference for object position was exhibited in En2+/

+ (F(1,15) = 1.51, p = 0.239), +/2 (F(1,14) = 1.97, p = 0.182), or 2/2

(F(1,15) = 1.73, p = 0.209), as indicated by similar amounts of time

spent sniffing the left and right objects during the 10 minute

familiarization session (Figure 4B). En2+/+ mice displayed a

preference for the novel object over the familiar object during the

5 minute test phase (F(1,15) = 4.88, p = 0.043) (Figure 4C). A trend

towards a significant preference for the novel object over the

familiar object was detected for +/2 mice (F(1,17) = 3.05,

p = 0.099). En22/2 mice failed to display a preference for the

novel object over the familiar object (F(1,15) = 0.07, p = 0.801).

Total time spent sniffing the two objects, used as a measure of

Figure 1. RTQPCR analysis demonstrates that En2 is expressed
in multiple adult brain structures. Average nCt values with
standard error are shown for the following brain structures and tissue:
somatosensory cortex (ssctx), hippocampus (hippo), striatum, hypo-
thalamus (hypoth), thalamus (thal), colliculi (coll), cerebellum (cereb),
brainstem (bstem), amygdala (amyg), visual cortex (vctx), prefrontal
cortex (pctx), olfactory bulb (ob), and hindlimb muscle (ms). Lower nCt
values indicate high gene expression, whereas higher values reflect
lower levels. nd = none detected.
doi:10.1371/journal.pone.0040914.g001
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general object exploration, did not differ between genotypes

(F(2,46) = 0.28, p = 0.757).

En2 Null Mutant Mice Display Spatial Learning Deficits
Latency to escape to the hidden platform decreased over the

training days for all three genotypes (main effect of training day,

F(4,156) = 39.20, p,001). Genotype differences were detected for

latency to escape to the hidden platform (main effect of genotype,

F(2,39) = 5.91, p = 0.006; genotype 6 training day interaction,

F(8,156) = 2.79, p = 0.014) (Figure 4D). Escape latencies for each

training day differed across genotypes on training days 2

(F(2,39) = 6.11, p = 0.005), 3 (F(2,39) = 3.70, p = 0.034), 4

(F(2,39) = 5.63, p = 0.010), and 5 (F(2,39) = 4.21, p = 0.025). En22/

2 mice displayed longer latencies to escape over all of these

training days as compared to +/+ controls (p#0.01 for each

comparison). A greater proportion of +/+ reached the 15 second

latency criterion by the fifth day of hidden platform training as

compared to 2/2 (X2
(2) = 8.51, p = 0.014). Genotypes did not

differ on swim speed (main effect of genotype, F(2,39) = 2.44,

p = 0.101; genotype 6 training day interaction, F(6,117) = 0.25,

p = 0.958) or time spent in the perimeter of the pool (main effect of

genotype, F(2,39) = 0.63, p = 0.534; genotype 6 training day

interaction, F (6,117) = 1.44, p = 0.205) over hidden platform

training.

On the probe trial, En2+/+ and +/2 mice spent a greater

proportion of time in the previously trained quadrant than in the

three untrained quadrants (F(3,45) = 9.24, p,0.001 for +/+;

F(3,36) = 3.42, p = 0.027 for +/2), indicating selective quadrant

search. En22/2 mice did not spend more time in the trained

quadrant as compared to the untrained quadrants (F(3,36) = 0.52,

p = 0.674), indicating a lack of selective quadrant search

(Figure 4E). Similarly, En2+/+ mice made a greater number of

crossings over the former location of the hidden platform as

compared to analogous locations in the untrained quadrants

(F(3,45) = 9.24, p,0.001), again indicating selective quadrant search

(Figure 4F). Number of platform crossings in the trained quadrant

as compared to analogous locations in the non-trained quadrants

was not significantly different for En2+/2 (F(3,36) = 1.82, p = 0.160)

or 2/2 mice (F(3,36) = 2.92, p = 0.074). A genotype difference was

detected for total number of platform crossings made during the

probe trial (F(2,39) = 6.28, p = 0.005). En22/2 mice made fewer

total crossings as compared to +/+ and +/2 (p#0.01 for each

comparison). No genotype differences were detected for swim

speed (F(2,39) = 0.95, p = 0.394) or time spent near the perimeter of

the pool during the 60-second probe trial (F(2,39) = 1.06, p = 0.355).

En2 Null Mutant Mice Display Increased Immobility in the
Forced Swim Test

A genotype difference was detected in the forced swim test

(F(2,43) = 1.52, p = 0.004) (Figure 5A). A greater number of percent

immobile observations were detected for 2/2 mice as compared

to +/+ and +/2 (p,0.005 for each comparison). No significant

genotype differences were detected for immobility in the tail

suspension test (F(2,43) = 1.52, p = 0.230) (Figure 5B).

Variable Genotype Differences in Startle Reactivity
All three genotypes displayed the expected graded startle

response (main effect of stimulus intensity, Cohort 1:

Figure 2. Juvenile En2 mutant mice display fewer reciprocal social interactions, as replicated in two cohorts. Cohort 1: As compared to
wildtype littermates (+/+), En2 null mutant mice (2/2) exhibited fewer bouts of (A) nose-to-nose sniffing. En2+/2 and 2/2 mice displayed fewer
bouts of (B) anogenital sniffing, and (C) following as compared to +/+ controls. No significant genotype differences were detected in (D) front
approach, (E) self-grooming, and (F) exploration. Cohort 2: As compared to +/+, +/2 and 2/2 exhibited fewer bouts of (G) nose-to-nose sniffing and
(H) anogenital sniffing. En22/2 mice exhibited fewer bouts of (J) front approach as compared to +/+. No significant genotype differences were
detected for (I) following behaviors, (K) self-grooming, or (L) arena exploration. Cohort 1: N = 15+/+; N = 15+/2; N = 162/2; Cohort 2: N = 14+/+;
N = 15+/2; N = 102/2. *p,05 vs. +/+.
doi:10.1371/journal.pone.0040914.g002

Table 1. Statistical results of reciprocal social interactions.

Cohort Behavioral parameters One-way ANOVA Post hoc test Figure

F and p values p value

1 Nose-to-nose sniffing F(2,43) = 3.99, p = 0.026 p = 0.015 (2/2 vs. +/+) 2A

Anogenital sniffing F(2,43) = 6.13, p = 0.005 p,0.05 (2/2 and +/2 vs. +/+) 2B

Following F(2,43) = 4.50, p = 0.017 p,0.05 (2/2 and +/2 vs. +/+) 2C

Front approach F(2,43) = 0.73, p = 0.490 2D

Self-grooming F(2,43) = 0.86, p = 0.432 2E

Exploration F(2,43) = 0.51, p = 0.603 2F

2 Nose-to-nose sniffing F(2,36) = 13.43, p,0.001 p,0.05 (2/2 vs. +/+ and +/2) 2G

p = 0.005 (+/2 vs. +/+)

Anogenital sniffing F(2,36) = 5.58, p = 0.008 p,0.01 (2/2 and +/2 vs. +/+) 2H

Following F(2,36) = 0.033, p = 0.968 2I

Front approach F(2,36) = 5.50, p = 0.008 p = 0.002 (2/2 vs. +/+) 2J

Self-grooming F(2,36) = 3.36, p = 0.046 p = 0.051 (2/2 vs. +/+) 2K

Exploration F(2,36) = 2.46, p = 0.010 2L

Summary of statistical results of reciprocal social interactions in juvenile En2+/+, +/2 and 2/2 mice paired with novel B6 partners. Data are presented in Figure 2.
doi:10.1371/journal.pone.0040914.t001
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F(5,255) = 299.91, p,0.001; Cohort 2: F(5,109) = 196.11, p,0.001).

Genotype differences in startle reactivity were detected in Cohort

1 (main effect of genotype, F(2,51) = 4.89, p = 0.011; genotype 6
stimulus intensity interaction, F(10,255) = 4.89, p,0.001) (Figure 6A).

F and p values for each startle stimulus trial type are listed in

Table 3. No genotype differences in startle reactivity were detected

in Cohort 2 (main effect of genotype, F(2,38) = 1.76, p = 0.186;

genotype 6 stimulus intensity interaction, F(10,190) = 1.24,

p = 0.267) (Figure 6B).

En2 Null Mutant Mice Display Reduced Prepulse
Inhibition of Acoustic Startle

All three genotypes displayed increased inhibition of startle with

increasing prepulse intensity (main effect of prepulse intensity,

Cohort 1: F(5,220) = 297.63, p,0.001; Cohort 2: F(5,175) = 237.28,

p,0.001). Genotype differences in PPI were also detected (main

effect of genotype, Cohort 1: F(2,44) = 8.83, p,0.001; Cohort 2:

F(2,35) = 5.27, p = 0.01; genotype 6 prepulse intensity interaction,

Cohort 1: F(10,220) = 2.04, p = 0.031; Cohort 2: F(10, 175) = 2.41,

p = 0.012) (Figures 6C and 6D). Genotype differences in PPI were

detected for selected prepulse trials. Table 3 lists F and p values for

specific trials.

En2 Null Mutant Mice Display Mild Impairments in Motor
Abilities

Grip strength differed across genotypes in both cohorts (main

effect of genotype, Cohort 1: F(2,43) = 12.08, p,0.001; Cohort 2:

F(2,34) = 10.02, p,0.001). Grip strength was reduced in En22/2

mice as compared to both +/+ and +/2 mice for Cohort 1

(p,0.001 for each comparison) (Figure 7A). En22/2 mice

displayed reduced grip strength as compared to +/+ mice only

for Cohort 2 (p = 0.001) (Figure 7B), though a trend toward was

observed in comparison to +/2 (p = 0.068). Males of both cohorts

exhibited greater grip strength as compared to females (main effect

of sex, Cohort 1: F(1,43) = 12.40, p,001; Cohort 2: F(1,34) = 11.95,

p = 0.002).

Figures 7C and 7D illustrate performance on the accelerating

rotarod test of motor coordination and balance in two cohorts of

adult En2 mice, which were tested under slightly different

conditions. Rotarod data from C57BL6/J mice are shown for

comparative purposes, as these mice were not littermates of the

En2 mice. As expected, latency to fall increased over the six trials

independent of genotype in Cohorts 1 and 2 (main effect of trial,

Cohort 1: F(5,230) = 9.82, p,000; Cohort 2: F(5,185) = 8.79,

p,0001). No genotype differences were found for latency to fall

in Cohort 1 (main effect of genotype, F(2,37) = 1.53, p = 0.227)

(Figure 7C). A genotype difference was detected in Cohort 2 (main

effect of genotype, F(2,27) = 3.72, p = 0.034) (Figure 7D). Genotype

differences were detected for latency to fall on trials 3

(F(2,37) = 3.74, p = 0.033) and 6 (F(2,37) = 4.08, p = 0.025). En22/

2 mice displayed lower latencies to fall as compared to +/+ mice

during these trials (p,0.01 for each comparison). Near-significant

trends toward lower latencies to fall were detected for En2+/2

mice as compared to +/+ on these trials (p,0.10 for each

comparison). A trend toward a genotype difference was found for

trial 4 (F(2,37) = 3.13, p = 0.055).

En2 Mutant Mice do not Display an Anxiety-like
Phenotype

No significant genotype differences were detected for percent-

age of time spent on the open arms of the plus-maze (Figures 8A

and 8B), entries into the open arm (Figures 8C and 8D), or total

entries into the open and closed arms (Figures 8E and 8F). For the

light « dark exploration test, no significant genotype differences

were detected for number of light « dark transitions (Figures 8G

and 8H) or time spent in the dark chamber (Figures 8I and 8J). A

genotype difference was found for latency to enter the dark

chamber from the light chamber (Figures 8K and 8L). En22/2

mice displayed a longer latency to enter the dark chamber as

compared to +/+ and +/2 mice in Cohort 1 and as compared to

+/2 mice only in Cohort 2. Latency to enter the dark chamber is

thought to reflect exploratory activity, and is not the standard

parameter for anxiety-like traits or responses to anxiolytic drugs in

this task. F and p values for all genotype comparisons are listed in

Table 4.

Table 2. Statistical results of adult social approach.

Cohort Genotype # of animals Chamber time Sniff time Sociability

F and p values F and p values

1 +/+ 16 F(1,15) = 6.47 F(1,15) = 34.05 Present

p = 0.023 p,0.001

+/2 F(1,15) = 8.07, F(1,15) = 10.74, Present

p = 0.012 p = 0.005

2/2 15 F(1,14) = 0.20, F(1,14) = 1.29, Absent

p = 0.307 p = 0.242

2 +/+ 10 F(1,9) = 10.71, F(1,9) = 11.37, Present

p = 0.010 p = 0.008

+/2 13 F(1,12) = 5.90, F(1,12) = 17.63, Present

p = 0.032 p = 0.001

2/2 14 F(1,13) = 0.93, F(1,13) = 2.70, Absent

p = 0.352 p = 0.125

Summary of statistical results of social approach behaviors in En2+/+, +/2 and 2/2 mice. Data are presented in Figure 3.
doi:10.1371/journal.pone.0040914.t002
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Exploratory Activity is Normal in En2 Mutant Mice
All three genotypes displayed decreases in total distance traveled

(main effect of time, Cohort 1: F(5,220) = 68.31, p,0.001; Cohort 2:

F(5,230) = 85.66, p,0.001) (Figures 9A and 9B), horizontal activity

(Cohort 1: F(5,220) = 83.46, p,0.001; Cohort 2: F(5,230) = 137.18,

p,0.001) (Figures 9C and 9D), center time (Cohort 1:

F(5,220) = 12.52, p = 0.050; Cohort 2: F(5, 230) = 14.32, p,0.001)

(Figures 9E and 9F) and vertical activity (Cohort 1: F(5,220) = 4.12,

p = 0.001; Cohort 2: F(5,230) = 2.16, p = 0.050) (Figures 9G and 9H)

over the 30 minute test session, reflecting normal habituation to

the novel open field. In Cohort 1, genotype differences were

detected for total distance traveled and vertical activity. In Cohort

2, genotype differences were detected for horizontal activity. F and

p values for genotype comparisons of total distance traveled,

horizontal activity, and vertical activity are listed in Table 5.

Figure 3. Adult En22/2 exhibit absence of sociability and deficits in male-female social interactions. Social approach was tested in two
separate cohorts using our automated three-chambered apparatus. Cohort 1: (A) En2+/+ and +/2 displayed sociability, defined as spending more
time in the chamber with the novel mouse than in the chamber with the novel object. En22/2 did not spend more time in the novel mouse
chamber as compared to the novel object chamber, meeting the definition of lack of sociability for this task. (B) En2+/+ and +/2 spent more time
sniffing the novel mouse than the novel object. En22/2 did not spend more time sniffing the novel mouse than the novel object, meeting the
definition of lack of sociability on this more sensitive parameter of social interaction, and confirming results from the chamber time parameter
investigation. (C) No genotype differences were found for time spent in each chamber during the habituation phase. Cohort 2: (D) Similar lack of
sociability was seen in En22/2 mice for time spent in the novel mouse chamber vs. the novel object chamber. (E) En22/2 mice again failed to spend
more time sniffing the novel mouse vs. the novel object. (F) Time spent in each chamber during the habituation phase was not different between
genotypes. Cohort 1: N = 16+/+, N = 16+/2, N = 152/2; Cohort 2: N = 10+/+, N = 13+/2, N = 142/2. *p,05 vs. novel object. Reciprocal social
interactions and ultrasonic vocalizations (USVs) were measured in male En2 mice during interaction with an unfamiliar estrus female mouse. (G)
En22/2 males spent less time engaged in sniffing the body and anogenital regions of the female as compared to +/+ males. (H) The total number of
USVs emitted during the test session did not differ between genotypes. (I) No genotype differences were found for bouts of test cage exploration
during the 5-minute test session. N = 10+/+, N = 13+/2, N = 132/2. *p,05 vs. +/+.
doi:10.1371/journal.pone.0040914.g003
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Figure 4. Cognitive deficits in En2 null mutants. Cumulative time spent freezing during the fear conditioning test sessions, as quantified by the
VideoFreeze software, was converted to percent time freezing for data analysis and presentation. (A) Despite normal postshock freezing during
training, En22/2 exhibited significantly less freezing than En2+/+ and +/2 mice upon testing of contextual and cued fear memory. N = 23+/+,
N = 23+/2, N = 202/2. *p,.005 vs. +/+ and +/2. (B) In the novel object recognition test, a lack of innate object preference was observed for En2+/+,
+/2 and 2/2 mice during the familiarization phase of the task. (C) En2+/+ displayed novel object recognition memory, defined as spending more
time sniffing the novel object as compared to the familiar object. En2+/2 exhibited a trend towards significant preference for the novel object,
whereas 2/2 failed to display a preference for the novel object. N = 16+/+, N = 17+/2, N = 162/2. *p,0.05 vs. familiar object. (D) In the Morris water
maze, En22/2 showed longer latencies to reach the hidden platform during training trials as compared to +/+. *p,.01 vs. +/+. (E) In the probe trial,
+/+ and +/2 mice showed selective quadrant search with a greater percentage of time spent in the training quadrant as compared to the non-
trained quadrants, while 2/2 failed to show selective search. (F) En2+/+ displayed a greater proportion of platform crossings in the trained quadrant
as compared to the analogous locations in the non-trained quadrants, whereas +/2 and 2/2 did not. N = 16+/+, N = 13+/2, N = 132/2. *p,05 vs.
non-trained quadrant.
doi:10.1371/journal.pone.0040914.g004
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Normal Olfactory Abilities in En2 Mutant Mice
All three genotypes in Cohorts 1 (Figure 10A) and 2 (Figure 10B)

displayed olfactory habituation as indicated by the decline in time

spent sniffing on repeated exposures to water, non-social odor 1,

non-social odor 2, social odor 1, and social odor 2. No genotype

differences were detected across the trials. All three genotypes

displayed dishabituation upon presentation of a new odor as

indicated by increases in time spent sniffing from presentation of

water to non-social odor 1, non-social odor 1 to non-social odor 2,

non-social odor 2 to social odor 1, and social odor 1 to social odor

2. No genotype differences in dishabituation to a new odor were

detected. F and p values for specific habituation and dishabituation

trials are listed in Table 6.

No Genotype Differences in Repetitive Self-grooming
Behavior

Figures 10C and 10D illustrate time spent engaged in repetitive

self-grooming by two separate cohorts of adult En2 mice. No

genotype differences were detected for time spent self-grooming in

either cohort (Cohort 1: F(2,43) = 1.43, p = 0.250; Cohort 2:

F(2,33) = 1.13, p = 0.334).

Normal Neurobehavioral Development in En2 Mutant
Mice

All three genotypes displayed proper growth and reflex

development as indicated by significant main effects of postnatal

day for body length (F(6,240) = 575.61, p,0.001) (Figure 11A), body

weight (F(6,240) = 3.22, p,0.001) (Figure 11B), eye opening

(F(6,240) = 232.69, p,0.001) (Figure. 11C), pinnae detachment

(F(6,240) = 2163.69, p,0.001) (Figure 11D), righting reflex

(F(6,240) = 660.35, p,0.001) (Figure 11E) and negative geotaxis

(F(6,240) = 264.79, p,0.001) (Figure 11F). A genotype difference

was found for body length (main effect of genotype, F(2,40) = 3.70,

p = 0.034). En22/2 displayed reduced body length as compared

to +/+ littermates on pnd 6 only (p = 0.010). A trend toward a

significant genotype difference was detected for body weight

(F(2,40) = 3.22, p = 0.051). No genotype differences were detected

for eye opening (F(2,40) = 0.48, p = 0.624), pinnae detachment

(F(2,40) = 0.85, p = 0.433), righting reflex (F(2,40) = 1.57, p = 0.220) or

negative geotaxis (F(2,40) = 0.45, p = 0.640).

No Genotype Differences in Pup Ultrasonic Vocalizations
The number of calls emitted during the 3 minute test session

decreased over postnatal days 4–11 independent of genotype

(main effect of day, F(3,108) = 16.34, p,0.001). No genotype

differences were detected for mean total number of calls (main

effect of genotype, F(2,36) = 0.56, p = 0.577) (Figure 11G). All three

genotypes displayed the expected increases in body weight over

postnatal days 4–11 (main effect of day, F(3,108) = 1079.02, p,0.00)

and body temperature (F(3,108) = 16.93, p,.0001) (Figure 11H).

Normal General Health and Pain Sensitivity in En2 Mutant
Mice

General health and sensitivity to painful stimuli were assessed in

two separate cohorts of En2 adult mice. Table 7 lists scores for

measures of general health and pain sensitivity for Cohort 1 only.

No genotype differences were detected for body weight

(F(2,42) = 0.94, p = 0.398 for Cohort 1; F(2,39) = 1.19, p = 0.317 for

Cohort 2), or body temperature (F(2,42) = 1.42, p = 0.252 for

Cohort 1; F(2,39) = 0.82, p = 0.449 for Cohort 2). Appearance of

the fur, body tone, limb tone and skin color were also similar

across genotypes (p.0.792 for each comparison in Cohorts 1 and

2). No obvious physical abnormalities were seen in any of the mice.

A significant sex difference was detected for body weight, with

males displaying higher body weights than females independent of

genotype (significant main effect of sex, F(1,42) = 50.34, p,0.001 for

Cohort 1; (F(1,46) = 29.26, p,0.001 for Cohort 2). All 3 genotypes

displayed normal reflexes including eye blink, ear twitch, whisker

twitch, righting reflex, Preyer startle response as a measure of

hearing, and forepaw reaching (X2
(2),5.51, p.0.064 for all

comparisons in Cohorts 1 and 2). No genotype differences were

found in latency to fall in the wire hang test (Cohort 1:

F(2,42) = 0.92, p = 0.405; Cohort 2: F(2,39) = 0.40, p = 0.673).

Reactivity as measured by struggling or vocalizations and dowel

biting did not differ across genotypes (p.0.142 for each

comparison for Cohorts 1 and 2). Observations of empty cage

behaviors did not reveal any genotype differences in exploration of

the cage, bouts of self-grooming and stereotypy, or behaviors such

as freezing or wild running upon transfer to the cage (p.0.196 for

each comparison in Cohorts 1 and 2). No significant genotype

differences were found in the latency to respond in the hot plate

test (Cohort 1: F(2,44) = 0.12, p = 0.493; Cohort 2: F(2, 36) = 1.83,

p = 0.174) or in the tail flick test (Cohort 1: F(3,43) = 1.60, p = 0.213;

Cohort 2: F(2,37) = 1.41, p = 0.258 for Cohort 2) of pain sensitivity.

Figure 5. Increased depression-related behavior in En2 null
mutants. (A) Percentage of observations in which immobility was
displayed, during the last 4 min of the forced swim test, was
significantly greater for En22/2 as compared to +/+ and +/2.
N = 16+/+; N = 14+/2; N = 132/2. *p,.005 vs. +/+ and +/2. (B) No
genotype differences in immobility were observed over the 6-min test
session for the tail suspension test. N = 15+/+; N = 16+/2; N = 152/2.
doi:10.1371/journal.pone.0040914.g005
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Behavioral Phenotypes in En2 Mutant Mice do not
Depend on Sex.

No differences were detected between males and females of

En2+/+, +/2 and 2/2 mice for juvenile reciprocal social

interactions, adult social approach, fear conditioning, Morris

water maze, forced swim, tail suspension, acoustic startle, prepulse

inhibition, pup ultrasonic vocalizations, anxiety-like behaviors,

open field locomotor activity, rotarod performance, olfactory

habituation/dishabituation, self-grooming, pup developmental

milestones and the majority of general health parameters. Sex

differences were detected for two parameters, forelimb grip

strength and body weight. Males displayed greater grip strength

as compared to females in Cohorts 1 and 2, independent of

genotype. Males also displayed higher body weights than females,

with no differences between genotypes within each sex. No

genotype by sex interactions were detected for any of the tasks.

Discussion

Deletion of En2 in mice disrupts patterning of the mid/

hindbrain and produces multiple neuroanatomical and neuro-

chemical abnormalities. Given the critical role of En2 expression in

early brain development, we sought to further understand the

consequences of En2 mutations on mouse behaviors. We

investigated a comprehensive range of behavioral phenotypes in

mice with heterozygous and homozygous mutations deletions in

En2, as compared to their wildtype littermates. Cognitive deficits

on three tasks, a sensorimotor gating impairment, and a

depression-related phenotype were seen in two independent

cohorts of En2 null mutants, and in heterozygotes in some cases,

as compared to wildtype littermates. Recent evidence indicates

that EN2 is a risk gene for autism [43,44,46–51]. Although the

ASD-associated EN2 rs1861972-rs1861973 A–C haplotype con-

veys a gain of function [45], while deletion of En2 in mice conveys

a loss of function, we detected striking social deficits in En2

Table 3. Statistical results for acoustic startle reactivity and prepulse inhibition of startle.

Task Cohort Stimulus trial One-way ANOVA Post hoc test Figure

F and p values p value

Acoustic startle 1 No stimulus F(2,51) = 1.35, p = 0.268 6A

reactivity

80 dB F(2,51) = 0.65, p = 0.525

90 dB F (2,51) = 2.50, p = 0.092

100 dB F(2, 51) = 1.89, p = 0.162

110 dB F(2,51) = 4.60, p = 0.015 p,0.01 (2/2 vs. +/2)

120 dB F(2,51) = 4.43, p = 0.017 p,0.005 (2/2 vs. +/2)

2 No stimulus F(2,38) = 2.08, p = 0.139 6B

80 dB F(2,38) = 0.23, p = 0.799

90 dB F(2,38) = 2.10, p = 0.137

100 dB F(2,38) = 0.66, p = 0.521

110 dB F(2,38) = 1.30, p = 0.283

120 dB F(2,38) = 1.43, p = 0.250

Prepulse 1 No stimulus F(2,44) = 0.73, p = 0.486 6C

inhibition

74 dB F(2,44) = 2.35, p = 0.107

78 dB F(2,44) = 6.12, p,0.005 p,0.002 (2/2 vs. +/2)

82 dB F(2,44) = 6.80, p,0.003 p = 0.015 (2/2 vs. +/+)

p,0.001 (2/2 vs. +/2)

86 dB F(2,44) = 7.61, p,0.002 p = 0.009 (2/2 vs. +/+)

p,0.001 (2/2 vs. +/2)

92 dB F(2,44) = 7.14, p = 0.002 p,0.002 (2/2 vs. +/+)

p,0.003 (2/2 vs. +/2)

2 No stimulus F(2,35) = 0.66, p = 0.532 6D

74 dB F(2,35) = 1.42, p = 0.255

78 dB F(2,35) = 6.94, p,0.003 p,0.002 (2/2 vs. +/+)

p = 0.005 (2/2 vs. +/2)

82 dB F(2,35) = 4.50, p = 0.018 p = 0.012 (2/2 vs. +/+)

p = 0.014 (2/2 vs. +/2)

86 dB F(2,35) = 2.69, p = 0.082

92 dB F(2,35) = 1.21, p = 0.311

Summary of statistical results of acoustic startle reactivity and prepulse inhibition of startle in En2+/+, +/2 and 2/2 mice. Data are presented in Figure 6.
doi:10.1371/journal.pone.0040914.t003
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knockouts in sociability tasks that incorporate conceptual analogies

to the symptoms of autism. Mice with a deletion in En2 may

represent an informative model for understanding how neurode-

velopmental defects can lead to neuroanatomical or neurochem-

ical disruptions that directly or indirectly impact behaviors

relevant to psychiatric disorders.

Our behavioral findings, replicated across two cohorts of mice,

demonstrate that En2 deletion produces robust, reproducible

social deficits at multiple ages and under multiple testing

conditions. Both En2 heterozygotes and null mutants displayed

fewer reciprocal social interactions in freely moving dyads of same-

sex juveniles and opposite-sex adult mice, specifically on param-

eters of investigative sniffing, following, and front approach,

although not on social grooming or push-crawl behaviors. En2

adult null mutants failed to display sociability in our three-

chambered social approach task. These social deficits are

qualitatively similar to those reported in mice with targeted

mutations in genes implicated in autism [2,63,76,90–92]. Our

RTQPCR data indicate that En2 is expressed in several brain

structures that have been reported to mediate components of

rodent social behaviors, including the hypothalamus [93–95],

somatosensory cortex [96], hippocampus [97], striatum [93,98]

and thalamus [93]. It is interesting to speculate that deletion of En2

in these brain structures directly or indirectly impacts social

Figure 6. En2 null mutants display reduced startle reactivity and reduced prepulse inhibition of acoustic startle. All three genotypes in
both cohorts displayed graded startle reactivity as expected, and minimal reactivity at baseline. Cohort 1: (A) En22/2 displayed significantly lower
startle responses to the 110 and 120 dB startle stimuli as compared to +/2. Cohort 2: (B) No genotype differences in startle reactivity were found.
Cohort 1: N = 16+/+; N = 20+/2; N = 182/2; Cohort 2: N = 12+/+, N = 14+/2, N = 152/2. All three genotypes in both cohorts also displayed the
expected increase in prepulse inhibition (PPI) of acoustic startle as a function of increasing prepulse intensity. Cohort 1: (C) En22/2 displayed
significantly lower PPI as compared to +/2 at the 78 dB prepulse intensity and significantly lower PPI as compared to +/+ and +/2 mice at the 82, 86
and 92 dB prepulse intensities. N = 15+/+; N = 17+/2; N = 152/2. *p,.05 vs. +/+ and +/2; #p,.05 vs. +/2. Cohort 2: (D) En22/2 displayed lower PPI
as compared to +/+ at the 78 and 82 dB prepulse intensities. N = 13+/+, N = 13+/2, N = 12. *p,.05 vs. +/+.
doi:10.1371/journal.pone.0040914.g006
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behaviors in mutant mice. Findings from our reciprocal social

interaction and social approach tasks are consistent with a

previous report, in which En2 null mutants and wildtypes

separately inbred as independent colonies showed reduced social

interactions in freely moving pairs of sex- and genotype-matched

mice [99]. The social deficits detected in En2 mutant mice provide

face validity to the aberrant social interactions and lack of interest

in others that are core features of autism [100–102], and may be

relevant to other psychiatric disorders marked by social deficits,

such as schizophrenia [103–105].

Mutations in homeobox genes regulating early brain develop-

ment often impact cognitive abilities [6,8–10]. En2 null mutant

mice exhibited deficits in contextual and cued fear conditioning

despite normal postshock freezing during training, deficits in

acquisition of water maze hidden platform training, and lack of

selective quadrant search during the probe trial. Intact hippo-

campal function is essential for performance on the water maze

and fear conditioning [106–108]. A role for the cerebellum in

associative fear learning has also been demonstrated [109,110].

En2 is expressed in multiple regions known to mediate learning

Figure 7. En2 mice display deficits in forelimb grip strength and in rotarod motor learning and coordination under certain testing
conditions. Cohort 1: (A) Grip strength was reduced in En22/2 as compared to +/+ and +/2. N = 19+/+, N = 15+/2, N = 152/2; *p,.005 vs. +/+ and
+/2. Cohort 2: (B) En22/2 displayed reduced grip strength as compared to +/+ only. N = 11+/+, N = 13+/2, N = 162/2. *p,005 vs. +/+. Mice were
tested for rotarod motor coordination and learning over a total of 6 trials. Cohort 1: (C) Mice were given two trials per day for three days, with a
60 minute intertrial interval. No genotype differences were observed in latency to fall from the rotarod. Mean latency to fall for the standard C57BL6/J
(B6) strain is shown as an illustrative comparison. Cohort 2: (D) Mice were given three trials per day for two days, with a 30 minute intertrial interval.
En22/2 displayed lower latencies to fall as compared to +/+ on trials 3 and 6. Cohort 1: N = 14+/+, N = 18+/2, N = 172/2, N = 7 C57BL6/J; Cohort 2:
N = 13+/+, N = 14+/2, N = 132/2. *p,.05 vs. +/+.
doi:10.1371/journal.pone.0040914.g007
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and memory processes in rodents, including the hippocampus and

thalamus, as detected in the present study, and the locus coeruleus

and cerebellum [31,39,41,99,111]. Deletion of En2 in these

structures may produce neurobiological changes that contribute

to the cognitive deficits detected in En2 null mutant mice. Our

findings of impairments in fear memory, novel object recognition

memory and spatial learning may be relevant to the cognitive

impairments which are frequently associated with ASD [112–114]

and are prominent in other disorders such as schizophrenia [115–

117].

We detected reduced PPI in two cohorts of En2 null mutant

mice, suggesting that En2 contributes to normal sensorimotor

gating. Pharmacological treatments that alter monoamine trans-

mission disrupt PPI in rodents [118–120], suggesting that the PPI

deficits observed in En2 null mutants may be related to

perturbations in monoamine transmitter pathways [42,99,111].

Prepulse inhibition deficits are an endophenotype of schizophrenia

[121–123] and have also been reported in individuals with other

disorders characterized by deficits in the gating of sensory, motor

or cognitive information [121,124], including autism [125,126].

Forced swim and tail suspension are two tests conceptualized as

‘‘behavioral despair’’ paradigms, which are commonly used to

detect antidepressant drug effects [127,128]. En2 null mutants

displayed markedly higher levels of immobility on forced swim as

compared to heterozygotes and wildtypes, suggesting a depression-

related phenotype. Though we initially reported that male but not

female null mutants displayed increased forced swim immobility

[111], both sexes of null mutants displayed higher immobility

times in the present study. In contrast, no genotype differences

were observed in the tail suspension test, which is a putatively

similar task. Changes in monoamine neurotransmitter levels differ

following tail suspension versus forced swim [129], suggesting that

the two tasks involve different neuronal mechanisms. Monoamine

abnormalities reported in En2 mice include reduced tyrosine

hydroxylase, norepinephrine, and serotonin levels in the forebrain

with increased levels of these transmitters in hindbrain structures

[42,99,111]. Detection of a depression-related phenotype in En2

null mutants, which replicates and extends our initial finding

[111], is notable in light of reports of depression in some autistic

individuals [130–132].

Motor functions assessed using the grip strength test and the

accelerating rotarod revealed reduced forelimb grip strength in

En2 null mutants as compared to wildtypes, and indications of

rotarod deficits, consistent with previous reports [99,133].

Detection of genotype differences in rotarod performance was

dependent on the testing conditions used for each of the two

cohorts. When two trials were given per day with a 1 hour

intertrial interval, all three genotypes exhibited poor rotarod

performance. In a second cohort given three trials per day with a

30 minute intertrial interval, which also displayed low baseline

performance for all three genotypes, rotarod performance by En2

null mutants was significantly worse than wildtypes. However, an

interaction of the mutation with the background strain may be an

explanatory factor for the rapid latencies to fall. 129S2/SvPas

mice, the background 129 substrain originally used to generate our

line of En2 knockouts, are known to display poor performance on

the rotarod and other motor tasks [134,135]. In the present

experiments, all three genotypes displayed unusually short

latencies to fall, while C57BL6/J (B6) control mice displayed

Figure 8. Anxiety-like behaviors are normal in En2 null
mutants. On the elevated plus-maze, no genotype differences were
seen in (A–B) percent open arm time, (C–D) number of open arm
entries, or (E–F) total number of arm entries. Cohort 1: N = 16+/+;
N = 15+/2; N = 152/2; Cohort 2: N = 16+/+, N = 15+/2, N = 132/2. In
the light « dark exploration task, no genotype differences were
observed in (G–H) the number of transitions between the light and
dark chambers or (I–J) time spent in the dark chamber. In Cohort 1 (K)
and Cohort 2 (L), En22/2 mice displayed a higher mean latency to
enter the dark chamber as compared to +/2 and 2/2 mice. Latency to
enter the dark chamber is not a standard parameter for anxiety-like
traits or responses to anxiolytic drugs in this task, but may instead
reflect the somewhat lower exploratory activity in 2/2, as shown in

Figure 8. Cohort 1: N = 16+/+; N = 15+/2; N = 152/2; Cohort 2: N = 16+/
+, N = 16+/2, N = 142/2. *p,.005 vs. +/+ and +/2.
doi:10.1371/journal.pone.0040914.g008
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good rotarod performance using identical methods. However,

despite the background strain phenotype, when trained with more

trials at shorter intervals, En2 null mutants showed the poorest

rotarod performance of the three genotypes. These deficits are

consistent with the expression of En2 in cerebellum. The

cerebellum plays a crucial role in the development of motor skills,

including muscle strength [136] and motor coordination and

learning [137,138], and deletion of En2 disrupts cerebellar

development and patterning. The observed impairments in motor

coordination and balance, and in neuromuscular strength, are

reminiscent of the impaired motor coordination and clumsiness

reported in many cases of ASD [139,140] and offer translational

read-outs of the documented anatomical abnormalities in the

cerebellum of En2 mutant mice [24–26,28].

Our results demonstrate that En2 deletion in mice reduces social

behaviors on several corroborative tasks relevant to the first

diagnostic symptom of autism [101,102,141]. Face validity for the

second and third diagnostic symptoms of autism, however, was not

apparent in En2 nulls or heterozygotes. All three En2 genotypes

emitted similar numbers of ultrasonic vocalizations in social

contexts as pups and adults. Similarly, responses to social olfactory

cues did not differ across genotypes. Reduced ultrasonic vocali-

zations have been detected in other mouse models with targeted

mutations in autism candidate genes [76,77,92,142–145], as have

repetitive behaviors [91,92,145–148]. Our findings suggest that

En2 mutations lead to deficits in social behaviors but not in social

communication. With the exception of a trend toward increased

self-grooming in the second cohort of juveniles during reciprocal

social interactions, we found no evidence for increased repetitive

behaviors in En2 mutant mice. The observed lack of genotype

differences is inconsistent with a previous study which reported

increased self-grooming in En22/2 males during social interac-

tions with a genotype- and sex-matched partner [99]. Differences

in testing or housing conditions might have contributed to the

divergent findings.

No genotype differences were detected for parameters of

neurobehavioral development, general health, pain sensitivity,

open field locomotor activity, anxiety-like behaviors, sensory

abilities, acoustic startle reactivity and pain sensitivity, with the

exception of small differences in some measures of light « dark

exploration and open field activity. Findings from these control

tasks indicate that the social abnormalities detected in En2 mutant

mice cannot be attributed to an obvious physical defect or

confounding phenotype. Our findings indicate a specific social

deficit in En2 null mutants, recapitulating the first diagnostic

Table 4. Statistical results for anxiety-like behaviors.

Cohort Task Behavioral parameter One-way ANOVA Post hoc test Figure

F and p values p value

1

Elevated Time spent in open arm F(2,43) = 1.15, 8A

plus-maze (% of total time) p = 0.327

Entries into open arm F(2,43) = 0.32, 8C

p = 0.731

Total open and closed arm F(2,43) = 0.05, 8E

entries p = 0.955

Light « dark Number of light « dark F(2,43) = 0.13, 8G

exploration transitions p = 0.088

Time spent in the dark F(2,43) = 0.53, 8I

chamber p = 0.590

Latency to enter the dark F(2,43) = 6.56, p = 0.030 (2/2 vs. +/+) 8K

chamber p = 0.003 p = 0.007 (2/2 vs. +/2)

2

Elevated Time spent in open arm F(2,41) = 1.11, 8B

plus-maze (% of total time) p = 0.338

Entries into open arm F(2,41) = 2.23, 8D

p = 0.120

Total open and closed arm F(2,41) = 1.65, 8F

entries p = 0.205

Light « dark Number of light « dark F(2,43) = 0.41, 8H

exploration transitions p = 0.667

Time spent in the dark F(2,43) = 0.53, 8J

chamber p = 0.590

Latency to enter the dark F(2,43) = 4.38, p,0.005 (2/2 vs. +/+) 8L

chamber p = 0.019 p = 0.007 (2/2 vs. +/2)

Summary of statistical results of elevated-plus maze and light « dark exploration. Data are presented in Figure 8.
doi:10.1371/journal.pone.0040914.t004
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Figure 9. Genotype differences in selected parameters of open field activity in adult En2 mice. Cohort 1: En22/2 mice (A) traversed less
total distance as compared to +/2 and (G) exhibited fewer bouts of vertical activity as compared to +/+ and +/2 mice. No genotype differences were
detected for (C) horizontal activity or (E) center time. N = 15+/+; N = 17+/2; N = 152/2. *p,.05 vs. +/+ and +/2; #p,.005 vs. +/2. Cohort 2: En2+/2
and 2/2 mice exhibited greater (D) horizontal activity as compared to +/+ mice during minutes 6–10 of the test session. No genotype differences
were found for (B) total distance traveled, (F) center time or (H) vertical activity. N = 15+/+, N = 19+/2, N = 152/2. *p,05 vs. +/+.
doi:10.1371/journal.pone.0040914.g009

Table 5. Statistical results for selected parameters of open field locomotor activity.

Parameter Session Cohort 1 Cohort 1 Cohort 2 Cohort 2 Figures

Interval One-way ANOVA Post hoc test One-way ANOVA Post hoc test

(min) F and p value p value F and p value p value

Total distance 1–5 F(2,44) = 1.75, F(2,46) = 2.88, 9A–B

traveled p = 0.186 p = 0.067

6–10 F(2,44) = 5.20, p = 0.010 F(2,46) = 1.64,

p = 0.009 (2/2 vs. +/2) p = 0.205

11–15 F(2,44) = 5.94, p,0.002 F(2,46) = 1.68,

p = 0.005 (2/2 vs. +/2) p = 0.199

16–20 F(2,44) = 4.09, p = 0.010 F(2,46) = 0.91,

p = 0.023 (2/2 vs. +/2) p = 0.411

21–25 F(2,44) = 2.12, F(2,46) = 1.20,

p = 0.078 p = 0.311

26–30 F(2,44) = 0.83, F(2,46) = 0.66,

p = 0.441 p = 0.520

Horizontal 1–5 F(2,44) = 2.00, F(2,46) = 1.52, 9C–D

activity

p = 0.148 p = 0.229

6–10 F(2,44) = 1.72, F(2,46) = 7.70, p,0.001

p = 0.190 p = 0.001 (2/2 vs. +/+)

p,0.015

(2/2 vs. +/2)

11–15 F(2,44) = 2.82, F(2,46) = 2.82,

p = 0.071 p = 0.070

16–20 F(2,44) = 0.37, F(2,46) = 2.62,

p = 0.691 p = 0.083

21–25 F(2,44) = 0.49, F(2,46) = 2.85,

p = 0.618 p = 0.068

26–30 F(2,44) = 0.25, F(2,46) = 1.57,

p = 0.780 p = 0.219

Vertical activity 1–5 F(2,44) = 7.84, p,0.006 F(2,46) = 0.97, 9G–H

p = 0.001 (2/2 vs. +/+) p = 0.388

p,0.001

(2/2 vs. +/2)

6–10 F(2,44) = 3.56, p,0.002 F(2,46) = 0.75,

p = 0.037 (2/2 vs. +/2) p = 0.478

11–15 F(2,44) = 4.39, p,0.007 F(2,46) = 1.32,

p = 0.018 (2/2 vs. +/2) p = 0.278

16–20 F(2,44) = 1.94, F(2,46) = 1.43,

p = 0.155 p = 0.250

21–25 F(2,44) = 2.72, F(2,46) = 2.63,

p = 0.077 p = 0.830

26–30 F(2,44) = 1.75, F(2,46) = 2.19,

p = 0.186 p = 0.123

Summary of statistical results of selected parameters of open field locomotor activity. Data are presented in Figure 9.
doi:10.1371/journal.pone.0040914.t005
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symptom of autism, without abnormalities in the communication

and repetitive symptom domains.

Our RTQPCR results recapitulate previous findings demon-

strating that En2 is expressed in the hippocampus and cortex in

wild type but not En22/2 mice [39]. We have now extended this

analysis by showing that En2 is transcribed at high or intermediate

levels in cerebellum, colliculi, brainstem and thalamus, while low

level expression is seen in the hypothalamus, hippocampus,

striatum and somatosensory cortex. These results demonstrate

that En2 is widely expressed in adult brain structures, some of

which contribute to behaviors relevant to autism and other

psychiatric disorders. For example, social behaviors in rodents are

regulated in part by the hypothalamus [94], and cognitive and

sensorimotor abilities are regulated in part by the hippocampus

[108,149,150], somatosensory cortex [96,151] thalamus [152–

154], striatum [98,125,154,155] and brainstem [153,156]. No

expression of En2 was detectable in En22/2 mice, as expected.

Lack of En2 expression in these adult structures could contribute

directly or indirectly to the behavioral abnormalities observed in

the En22/2 mice. Further, the En2 mutation results in numerous

aberrations in brain development, including connectivity defects,

which could contribute to the behavioral phenotypes. En2 protein

has been detected in both the nucleus and in vesicles of neurons,

and a small proportion of the protein is secreted [157,158].

Figure 10. No genotype differences in olfactory habituation/dishabituation to social and non-social odors or repetitive self-
grooming. In cohort 1 (A) and cohort 2 (B), a significant decline in sniffing (habituation) to repeated presentations of water, two non-social odors
and two social odors was observed all three genotypes. A significant increase in sniffing upon the first presentation of a novel odor (dishabituation)
was also observed across genotypes. Cohort 1: N = 15+/+, N = 15+/2, N = 152/2; Cohort 2: N = 12+/+, N = 10+/2, N = 102/2. En2+/+, +/2 and 2/2
mice in Cohort 1 (C) and Cohort 2 (D) spent a similar amount of cumulative time engaged in self-grooming during a 10 min test session. Cohort 1:
N = 15+/+, N = 16+/2, N = 152/2; Cohort 2: N = 11+/+, N = 13+/2, N = 152/2.
doi:10.1371/journal.pone.0040914.g010

Engrailed-2 Deletion and Autism-Relevant Behaviors

PLoS ONE | www.plosone.org 21 July 2012 | Volume 7 | Issue 7 | e40914



Investigations of subcellular localization of En2 within forebrain

regions might shed light on its role in development of brain

structures responsible for complex behaviors relevant to autism

and other disorders.

En2 heterozygotes generally resembled wildtypes, although

trends for intermediate phenotypes appeared on selected param-

eters of juvenile reciprocal social interactions, Morris water maze
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Table 7. General health, neurological reflexes, and pain
sensitivity.

Genotype +/+ +/2 2/2
Sig.
Level

N = 17 N = 16 N = 15

Physical Characteristics

Fur condition (3 pt scale) 3 3 3 NS

Bald patches (%) 5.9 6.3 6.7 NS

Missing whiskers (%) 17.7 6.3 40 NS

Piloerection (%) 0 0 0 NS

Body tone (3 pt scale) 2.8+0.10 2.9+0.09 2.7+0.12 NS

Limb tone (3 pt scale) 3 3 3 NS

Skin color (3 pt scale) 3 3 3 NS

Physical abnormalities (%) 0 0 0 NS

Body weight, males (g) 26.5+1.0 26.8+0.76 26.2+0.93 NS

Body weight, females (g) 20.4+0.63 20.9+0.62 18.6+0.79 NS

Body Temperature (uC) 36.1+0.23 35.2+0.22 35.5+0.26 NS

Empty cage behavior

Transfer freezing (%) 0 0 0 NS

Wild running (%) 0 0 0 NS

Stereotypy (3 pt scale) 0 0 0 NS

Self-Grooming (3 pt scale) 0.71+0.17 1.00+0.20 1.20+0.22 NS

Exploration (3 pt scale) 2.7+0.17 2.6+0.16 2.9+0.10 NS

Motoric abilities

Trunk curl (3 pt scale) 2.0+0.15 2.3+0.16 2.3+0.11 NS

Wire hang (latency sec) 59.9+0.12 59.9+0.13 58.5+1.53 NS

Reflexes

Forepaw reach (%) 100 100 100 NS

Righting reflex (%) 100 100 100 NS

Corneal (%) 100 100 100 NS

Ear twitch (%) 100 100 100 NS

Whisker twitch (%) 100 100 90 NS

Reactivity

Auditory Startle (%) 100 100 100 NS

Struggle/Vocalizations (%) 41.2 25.0 53.3 NS

Dowel Biting (3 pt scale) 0.65+0.17 0.38+0.16 0.33+0.16 NS

Pain Sensitivity

Hot plate (latency sec) 5.4+0.57 5.4+0.42 6.2+0.48 NS

Tail flick (latency sec) 4.2+0.53 2.9+0.30 3.5+0.54 NS

Normal general health and pain responses in Cohort 1 of En2 mice. No
genotype differences were detected using a standard battery of parameters.
Data shown are means 6 standard error of the mean (SEM) for body weight,
temperature, wire hang latency, hot plate and tail flick latency, and behaviors
assessed using a 3 point ranking scale. Percentage of mice that exhibited a
specific neurological reflex or physical abnormality is expressed as percent of
total mice within each genotype. N = 17+/+, N = 16+/2, N = 152/2. Similar
results were obtained for Cohort 2 (data not shown).
doi:10.1371/journal.pone.0040914.t007
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spatial learning, forelimb grip strength, and rotarod motor

coordination and balance, indicating the possibility of gene dose

effects. Consistent with a previous report [99], we did not detect

sex differences in any of the behavioral abnormalities observed in

En2 null mutants. The occurrence of autism is significantly higher

in males than in females, with a male to female ratio of 4:1 [159].

Thus, an animal model that displays relevant phenotypes in males

but not females could be considered to have face validity with

regard to the prevalence of ASD. Sex differences have been

reported for a few mouse models of autism. For example, social

deficits have been detected in male but not female mice of the

inbred C58/J strain [160], and male mice with a deletion in Shank3

display more severe impairments in motor coordination as

compared to females [63,148]. However, the majority of studies

have detected autism-relevant behavioral phenotypes in both male

and female mice (e.g. [77,146,161–163]). It is possible that

mutations in mice are not as likely to result in sex-specific

differences that appear in humans, for mechanistic reasons that

will be interesting to explore.

Our comprehensive behavioral findings, which appear remark-

ably similar across two independent cohorts of wildtype, hetero-

zygous and null mutant En2 mice, confirm a previous report of

reduced social interactions in En2 null mutants bred separately

from wildtypes [99], confirming the robustness and replicability of

these behavioral abnormalities in En2 mice, independent of

breeding strategy. We further replicated our initial finding of a

depression-relevant phenotype, which provides a functional read-

out relevant to monoamine abnormalities in En2 null mutant mice

[111]. The neuroanatomical expression pattern of En2 found in

our wildtype and mutant mice supports mechanistic hypotheses

about anatomical disruptions in brain regions mediating social

behaviors, cognitive abilities, depression-relevant behaviors, sen-

sorimotor gating, and motor functions [108,124,164–166]. Our

results suggest new directions for understanding the precise role of

EN2 in elaborating neuroanatomical circuits during early brain

development, which may contribute the symptoms of autism and

other neurodevelopmental and psychiatric disorders.
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