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Abstract: An adequate visualization form is required to gain an overview and ultimately understand
the complex and diverse biological mechanisms of diseases. Recently, disease maps have been
introduced for this purpose. A disease map is defined as a systems biological map or model that
combines metabolic, signaling, and physiological pathways to create a comprehensive overview of
known disease mechanisms. With the increase in publications describing biological interactions,
efforts in creating and curating comprehensive disease maps is growing accordingly. Therefore,
new computational approaches are needed to reduce the time that manual curation takes. Test
mining algorithms can be used to analyse the natural language of scientific publications. These
types of algorithms can take humanly readable text passages and convert them into a more ordered,
machine-usable data structure. To support the creation of disease maps by text mining, we developed
an interactive, user-friendly disease map viewer. The disease map viewer displays text mining results
in a systems biology map, where the user can review them and either validate or reject identified
interactions. Ultimately, the viewer brings together the time-saving advantages of text mining with
the accuracy of manual data curation.

Keywords: text mining; disease maps; systems biology

1. Introduction

Every day, more and more data and knowledge on different diseases and their under-
lying biological pathways are being acquired. Thus, it is becoming increasingly important
to develop methods of data and knowledge integration, storage, and representation in
ways that can be interpreted and analysed by humans and computers alike. One of these
approaches is systems medicine disease maps, which has been proposed by Mazein et al. in
2018. The authors define disease maps as a “comprehensive, knowledge-based representa-
tion of disease mechanisms” [1]. They evolved from and are comparable to metabolic and
signaling pathways, stored and represented in standardized formats such as the Systems
Biology Graphical Notation (SBGN) [2] or Systems Biology Markup Language (SBML) [3].
A major difference between metabolic or signaling pathways and disease maps is that the
latter are not limited to biochemical or regulatory relations between entities but can also
include physiological ones. Disease maps can be used for a multitude of purposes, such as
identifying disease biomarkers and drug targets, drug repositioning, structuring omics data,
and developing improved diagnostics [1,4]. Most recently, a large, interdisciplinary commu-
nity of over 230 researchers launched a project to create a COVID-19 disease map [5]. This
resulted in what, to the best of our knowledge, is the largest disease map to date, currently
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consisting of 5499 elements, which are connected by 1836 interactions across 42 diagrams.
The data for this enormous knowledge resource were curated from 617 publications and
preprints, highlighting the sheer time and manpower required to create these manually
curated disease maps. One way to support the construction of disease maps is text mining,
the automated annotation of texts that produces a condensed keyword list, which can then
be formatted into machine- and human-readable media and to consist of the core informa-
tion of that text. In principle, text mining means the extraction of information from textual
data, thereby speeding up the curation and annotation process of human-written text [6].
To do so, many possible information technologies are applicable, for example, machine
learning, pattern matching, or the processing of natural, human-readable language [7].

In general, a text mining algorithm will follow the steps below. As an input, the
algorithm will take a human-readable sentence, in this case from a biological paper. It
will then first highlight the named entities (NE), which are terms that are then normalized
and transformed into identifiers. These NEs can be proteins, genes, diseases, or any other
biologically relevant term, taken from an underlying database that contains NEs that the
system should be able to identify. This recognition (named entity recognition (NER)) is
crucial for the success and effectiveness of text mining and is therefore a focus of refinement
to increase the specificity and sensitivity of the algorithm. The entities are then assigned
to unique identifiers, which are then organized into an identifier scheme. Afterward, the
extracted relationships from the input text data are included between named entities. The
resulting network of nodes and relationships can then be compared and expanded with
additional text data. With the help of this network, new hypotheses can be formed and
these can then be the subject of further research [7].

One of the main challenges in NER is the multitude of different identifiers for almost
anything in biology or chemistry, sometimes varying greatly between different publica-
tions and databases. This variation in names for the same biological entity needs to be
recognized and normalized by the algorithms. In addition to these intended differences in
nomenclature, there are more variations that need normalization: for example, variations in
orthography (“amino acid” vs. “amino-acid”), abbreviations, and spelling variations, such
as upper/lower case or American vs. British English wording [8]. All these variations must
be taken into account, and the term needs to be assigned to the same biological identifier,
which then results in a list of possible terms all referring to the same ID. When it comes to
interactions, even more words can be used to describe similar relations between entities.
The system needs to recognize the buzzwords for relations and the entity terms to create
the desired entity-relationship model. Moreover, differences in the structure of the sentence
in combination with the wording can be challenging to the system.

Text mining has been gaining more and more applications in scientific projects over
the last two decades. The principle and technique of data mining have been known since
the late 1990s but have not been widely used by the scientific community [9]. In particular,
in systems biology and biomedicine, the use of text mining can be of essential value. Even
if those scientific fields rely heavily on data stored in unified formats and databases to
ensure cross-author usability, a substantial proportion of essential information is still only
available as text in human-written publications. As of now, there are many algorithms that
are specialized for biological terms that are implemented as NER. In order to establish,
compare, and evaluate common standards challenges such as BioCreative (http://www.
biocreative.org, accessed on 1 September 2022) have been put into place, which aims to
compare methods and critically assess scientific progress in text mining [10]. Currently,
biological text mining and NER specifically already find applications in the curation of
different databases. For example, the BRENDA database (BRaunschweigENzymeDatabase;
http://www.brenda-enzymes.org, accessed on 1 September 2022) [11], which collects
enzyme functional data, employs text mining approaches to extract kinetic data from
PubMed abstracts [11]. Furthermore, the protein interaction database STRING (https:
//string-db.org/, accessed on 1 September 2022) uses text-mined data to identify protein–
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protein interactions [12]. A more extensive overview of many more examples of existing
text mining applications with a focus on cancer research can be found in Zhu et al., 2013 [7].

Nonetheless, even though great strides have been made in the development of text
mining algorithms with high sensitivity and specificity, they cannot yet replace a human
expert curator. We, therefore, developed a tool to bring together the advantages of text
mining and the expert knowledge and experience of scientists to support the creation of
systems biology disease maps. Our tool consists of an interactive disease map viewer,
which takes the output of an independent text mining system, translates it to the required
format, and displays it in a disease map-like cellular layout. This allows the user to utilize
the text mining approach they find most suitable for their use case or even include results
from more than one system. The user then has the possibility to examine the interactions
identified by the text mining algorithm and evaluate them based on the text passage they
are based on. In the end, this results in a list of automatically parsed but expert-validated
interactions, which can then be used as a basis for a disease map. Ultimately, this simplifies
and significantly speeds up the curation step during the construction of disease maps.

2. Materials and Methods
2.1. Data Preparation

To bring text mining results into a format appropriate for further use, the results from
an independent text mining algorithm were brought into a simple, reproducible format,
consisting of two tables in CSV format. One table consists of all mined entities and their
subcellular localization, and the other includes derived interactions observed between
them. The tables were then parsed into the JavaScript Object Notation (JSON) format.
The JSON format is a very storage-efficient way to save and interchange data between
different JavaScript applications. Currently, it is widely used for providing data to the user
from a server or a web service, where data can be parsed via a host’s API (Application
Programming Interface). The conversion of the tables into JSON format was performed
using Python with the libraries: pandas [13,14], numpy [15], libsbgnpy [16], and json.

The resulting JSON file was then further used as an exemplary disease map for the
disease map viewer.

2.2. Disease Map Viewer Implementation

The disease map viewer tool was implemented with the Cytoscape.js library [17].
Cytoscape.js is the JavaScript variant of the Cytoscape software [18]. Cytoscape itself is an
open-source project for accessing and viewing graphical networks inside a downloadable
instance. This software can be programmatically accessed and therefore personalized
and implemented into our tool via the JS library Cytoscape.js. Another big advantage of
the Cytoscape.js variant is the capability of loading data dynamically while the user is
browsing the graphical map. Furthermore, it is possible to load big maps in a memory-
efficient manner into the Cytoscape.js instance using the JSON format.

To make our Cytoscape.js instance accessible, we used Grails and our previously de-
veloped CandActBase [19] as an underlying framework. We used the AJAX (Asynchronous
JavaScript and XML) protocol to dynamically load data into a JavaScript application from a
web server [20]. AJAX is capable of loading data dynamically based on the input of the
user, even if the website has already been loaded completely. The AJAX call will access a
defined URL (in this case, a local file) and load the data into the JS script. This data can then
be processed, altered, and presented by the rest of the code. This asynchronous behaviour
makes AJAX valuable for our purpose and improves the speed of the script significantly.

3. Results

In order to support the creation of disease maps, we developed a tool capable of
displaying text mining results as disease maps and validating them through the integration
of expert domain knowledge.
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For this purpose, we used an independent, exchangeable text mining algorithm to
parse molecular interactions between biological entities’ data from publicly available
scientific text. The results are output in two simple, reproducible CSV files, one containing
the interactions between the entities themselves and the other specifying their subcellular
localization. A flowchart of the input data, software, and output data of the systems can be
seen in Figure 1.
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Figure 1. Flowchart of the processes included in the tool. Input knowledge and data are shown in
green on the right, the software modules are shown in yellow, and the output files are shown in blue
on the right. Two CSV files, one containing the list of interactions and one containing the subcellular
localisation of the entities, serve as input for the CytoscapeJSON parser implemented in Python. The
resulting JSON file serves as input for the disease map viewer, where the interactions are validated
by expert knowledge. The validated interactions can then be exported in a cellular layout in a JSON
file or as a list of interactions in a CSV file.

To prepare text mining results that are easy to store, share, and use, we used a Python
script to convert them from a simple CSV file to JSON format. Simply put, the JSON
data structure of the text mining results is a list of every element (nodes, compartments,
and edges) in the disease map. Depending on the element, the structure differs slightly.
Each element has three basic properties: “data”, “position”, and “group”. The “group”
specifies if the element is a node or an edge, i.e., a molecular entity or an interaction. The
“position” property, which is automatically created by the python script, sets the x and
y parameters to assign it to a specific location on the map. The most advanced property
of each element is the “data” property, where all associated data are stored. Additionally,
edge-type entities have the property “classes”, where the category of the interaction is
defined (“neutral”, “inhibit”, “activate”, and “undefined”). Further properties are the
unique identifier, and cytoscape.js-specific parameters (For more external information
visit https://js.cytoscape.org/, accessed on 1 September 2022). The following additional
parameters are important for representation in the SBGN format: For nodes, the “label” is
the name specified, and the “parent” is the cellular compartment in which the gene is active.
For edges, the start and end nodes are defined by the respective identifiers. Furthermore,
all edges have a parameter called “references”, which lists the PubMed IDs of all references
this edge is based on. For each reference, the PubMed ID is given together with the sentence
where the interaction was identified. Moreover, all verbs found in those sentences as well
as the categorization of those verbs are stored.

This SBML-based JSON format is used by the Cytoscape.js library to create the graphi-
cal SBGN map from it.

The interface is built around the Cytoscape.js instance that renders and displays disease
maps to help the user annotate and review the text-mined disease map conveniently.

https://js.cytoscape.org/
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Figure 2 shows the interface with exemplary data. The main graph is shown in a
cell-like layout, where the user can zoom in and out. The rectangular nodes represent the
molecular entities and are localized in the subcellular compartment specified in the JSON
file. The arrow-shaped edges represent molecular interactions between them. All entities
(genes/proteins and compartments), as well as their respective edges, can be moved freely
by dragging to improve structure and visibility to fit the user’s needs.

Biomolecules 2022, 12, x FOR PEER REVIEW 5 of 8 
 

This SBML-based JSON format is used by the Cytoscape.js library to create the graph-

ical SBGN map from it. 

The interface is built around the Cytoscape.js instance that renders and displays dis-

ease maps to help the user annotate and review the text-mined disease map conveniently. 

Figure 2 shows the interface with exemplary data. The main graph is shown in a cell-

like layout, where the user can zoom in and out. The rectangular nodes represent the mo-

lecular entities and are localized in the subcellular compartment specified in the JSON file. 

The arrow-shaped edges represent molecular interactions between them. All entities 

(genes/proteins and compartments), as well as their respective edges, can be moved freely 

by dragging to improve structure and visibility to fit the user’s needs. 

 

Figure 2. Interface of the disease map viewer. The large window in the middle shows the text mining 

data as a coarse disease map in a cellular layout. The left sidebar shows the legend and filter options, 

and the right sidebar shows the review function, where the supporting sentences from the parsed 

publications are displayed and the user can validate or reject an interaction. The buttons on the 

bottom left show the timeline option, where the interaction data can be filtered by date of publica-

tion. 

The colouring is the colour of categorization of found verbs. All “activating” edges 

are coloured green, “inhibiting” edges are coloured red, “neutral” edges are coloured 

blue, and “undefined” edges have a grey colour, while incoherent interactions are shown 

in brown. 

The left sidebar shows the legend and filter options for the edges in the graph. As a 

default, all edges are displayed, but the user can uncheck types of edges to hide them and 

thus obtain a better overview of the remaining categories of edges. This legend can be 

opened and closed by clicking the top button “hide/show filter”. 

Another way the data from the text mining are categorized is by the thickness of the 

edges in the graph. The more distinct publications have been found to have both con-

nected nodes mentioned in the same sentence, the thicker the edge between them. In the 

bottom-left corner of the filter window, the user can filter the edges depending on the 

number of supporting publications. The slider can be moved to define a minimum num-

ber of publications an edge needs to have to display it. Moreover, below the slider is a 

button that will reset the filter and reload the map. 

Another feature of the disease map/SBGN map viewer is the timeline function. As an 

interesting use case of our text mining workflow, we chose to create a timeline made from 

SBGN maps from publications published in different years and, thus, show the focus of 

research in the past. To obtain biological interactions that are associated with the query 

subject over time, we categorized texts by their years of publication. Thus, we created 

Figure 2. Interface of the disease map viewer. The large window in the middle shows the text mining
data as a coarse disease map in a cellular layout. The left sidebar shows the legend and filter options,
and the right sidebar shows the review function, where the supporting sentences from the parsed
publications are displayed and the user can validate or reject an interaction. The buttons on the
bottom left show the timeline option, where the interaction data can be filtered by date of publication.

The colouring is the colour of categorization of found verbs. All “activating” edges are
coloured green, “inhibiting” edges are coloured red, “neutral” edges are coloured blue, and
“undefined” edges have a grey colour, while incoherent interactions are shown in brown.

The left sidebar shows the legend and filter options for the edges in the graph. As
a default, all edges are displayed, but the user can uncheck types of edges to hide them
and thus obtain a better overview of the remaining categories of edges. This legend can be
opened and closed by clicking the top button “hide/show filter”.

Another way the data from the text mining are categorized is by the thickness of
the edges in the graph. The more distinct publications have been found to have both
connected nodes mentioned in the same sentence, the thicker the edge between them. In
the bottom-left corner of the filter window, the user can filter the edges depending on the
number of supporting publications. The slider can be moved to define a minimum number
of publications an edge needs to have to display it. Moreover, below the slider is a button
that will reset the filter and reload the map.

Another feature of the disease map/SBGN map viewer is the timeline function. As
an interesting use case of our text mining workflow, we chose to create a timeline made
from SBGN maps from publications published in different years and, thus, show the focus
of research in the past. To obtain biological interactions that are associated with the query
subject over time, we categorized texts by their years of publication. Thus, we created
exemplary momentary snapshots over the years. The user can choose which disease map
from which year they would like to access between the years 1990 and 2020 in 5-year steps.
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In order to integrate expert knowledge and validate text-mined data, we included
a review function, as observed in the right-hand panel of the interface. The user can
examine all interactions with two methods: by clicking the “Next edge” button to iterate
all interactions that need to be reviewed or by directly selecting a specific edge from
the graph. The review panel will then display the two nodes connected by the clicked
edge and the colour of the edge between both, as well as the current review status of the
interaction. Below this, a list of PubMed IDs is displayed together with the sentences that
have been used to identify the interaction in each reference. The verbs that have been used
to categorize the interaction are coloured in red. The user can then load the entire text to
obtain more context for the sentence. The user can then review the interaction with all
available data on hand and assign a status to the interaction. If the expert approves the text-
mined interaction, the “accept” status can be selected. If the text-mined interaction is a false
positive, the “decline” status is appropriate, and if more research needs to be conducted to
approve the interaction, the “further inspection needed” status can be assigned.

To view the status of the review process, the data can be downloaded either as a CSV
file with all interactions, their current review status, and the PubMed ID from with the
interaction, which was text mined from the disease map, or as a JSON file with the entire
disease map in a JSON object that can be saved for reloading in a later session or to share
with other users.

4. Discussion

With more and more biological and biomedical data being published, more knowledge
is available and needs to be processed and structured. One way to do so in biomedicine
is by using disease maps that visualize and describe disease pathways in a human- and
machine-readable medium [1]. However, with the increasing number of publications every
year, new computational approaches are needed to support researchers and clinicians in
filtering and annotating large data sets to extract scientifically meaningful knowledge. Here,
we propose a tool to (re)view text-mined data and display it appropriately to accelerate
the curation process of textual data significantly. It spares the researcher from having to
manually read large sets of publications to construct or curate disease maps but allows
them to conveniently iterate text-mined interactions and preprocessed publications to verify
found interactions.

Our tool can be used in combination with text mining software to preprocess large
textual data sets and review the text mining results easily to ultimately combine the
advantages of the speed of text mining with the accuracy of manual data curation reviewed
by experts in the scientific field in question. The interface is kept clearly laid out and is
easy to use; thus, researchers with limited experience in computational software can use
it intuitively.

To ensure maximum transparency, the text-mined data can be reviewed in a very
detailed manner. Every text-mined interaction can be examined to see which terms in
which sentences from which publications were used to identify an interaction. In this way,
the reviewer can closely inspect if the interaction is a true or false positive and mark the
interaction accordingly. Moreover, all data can be downloaded at every step of the curation
process. In this way, the data can be shared with co-workers and peer-reviewed easily.
For this purpose, standardized data formats are used to ensure the exchangeability of the
input text mining data. Therefore, the viewer can use interchangeable external text mining
software just by making little adjustments to the input data. This is important with respect
to the rapid improvement of text mining algorithms. The tool can be used to display results
from all kinds of text mining software and can be employed for comparison purposes.

To the best of our knowledge, this is the first tool that integrates text mining directly
into the disease map curation process. Several different tools have been developed to
extract interactions between biological entities and can create protein–protein Interaction
(PPI) networks [21–23]. The HPIminer, for example, uses NER to identify interactions from
sentences and then adds information from PPI databases and additionally extracts, overlays,
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and displays KEGG (http://www.kegg.jp, accessed on 1 September 2022) pathways from
the two interacting proteins [21]. All these tools come with their own highly sophisticated
text mining algorithms and include different data sources to produce extensive networks.
In contrast, our tool does not focus on text mining itself but on making the results from the
already existing, high-quality text mining tools usable and integratable. Users can use their
preferred text mining tool or algorithm and visualize the results in the disease map viewer
so domain experts can verify the data and then further utilize it, e.g., in a disease map.

To show how the viewer operates, we used an individualized text mining workflow
to create a sample data set with the use case of cystic fibrosis, based on the CFTR Lifecycle
Map we previously curated [24].

The disease map viewer, installation instructions, and the exemplary cystic fibrosis
data set are available under https://s.gwdg.de/8bK6f5, accessed on 2 September 2022
(Supplementary Materials).

5. Conclusions

We developed a tool to create an interface between biological text mining and the cre-
ation of systems medicine disease maps. Our disease map viewer takes the interaction data
extracted by a text mining algorithm of choice and displays it in a cellular layout and inter-
active manner. Domain experts can then intuitively examine individual interactions and
validate or reject them, and the verified interactions can be exported for further use. This
supports the creation of disease maps and systems biological models, as it brings together
the speed of automated text mining and the high accuracy of human expert knowledge,
thereby using the benefits of both without sacrificing quality or time effectiveness.

Supplementary Materials: The code for the disease map viewer plugin as well as installation
instructions can be found on https://s.gwdg.de/8bK6f5, accessed on 2 September 2022.
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