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Abstract: Polyacrylamide (PAM) is a water-soluble polymer with the ability to enhance a soil’s
stability. PAM is currently being used to prevent irrigation-induced erosion and enhance the
infiltration in farmland soil. To improve the compaction properties of the saline-soil-based filling
material that is used in highway subgrade and the cracking resistance capacity of a saline soil’s crust,
the consistency limits, compactability, microstructure, and cracking morphology of untreated and
PAM-treated saline soil were investigated. The saline soils were sampled from the soil crust and a
depth of 2.0–3.0 m in Gansu Province, China. Two PAM concentrations (0.1% and 0.5% in mass ratio)
were selected. The liquid limits and plastic limits of the saline soil samples from the surface (0–0.05 m)
and a depth of 2.0–3.0 m noticeably increased as PAM concentration increased. The maximum dry
densities decreased as PAM concentration and plasticity increased, and the optimum water contents
of the two saline soil types did not significantly change. These results suggest that a higher shearing
resistance between particles partially prevented compression from occurring during compaction.
Mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) test results showed
that the PAM agent dispersed the bulky pellets, and the soil’s structure was formed by flaky and
acicular platelets that filled the micropores. A quantitative analysis of crack patterns showed that the
cross-points of the crack network and the crack length decreased as the PAM concentration increased.
These results indicate that an increase in PAM reduces the shrinkage strain and the flaws or pores
within saline soils. Therefore, PAM’s stabilizing effect on saline soil under a wetting–drying cycle
was proven.

Keywords: saline soil; polyacrylamide; consistency limits; compactability; desiccation crack behavior

1. Introduction

Many deposits of quaternary sediments, such as saline soil, exist in Western China and increasing
soil salinity is a serious land degradation issue around the world. Excessive amounts of salts have
adverse effects on the physical and chemical properties of soil, such as soil collapse, erosion, swelling,
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and desiccation cracks [1]. Therefore, improving the compaction properties and cracking resistance
capacity of the saline-soil-based filling material that is used in highway subgrade is an important
geotechnical engineering issue.

The use of polyacrylamide (PAM) in soil conditioning began in the 1950s. The concept that anionic
polymers can flocculate aqueous clay suspensions was first introduced by Ruehrwein and Ward
(1952) [2], who proposed that a single polymeric chain could attach itself to more than one particle’s
surface. Since then, polymeric-based additives have been demonstrated to reduce permeability and
increase durability, and are not time-dependent during the mixing stage [3–6]. PAM is a water-soluble
polymer with the ability to enhance a soil’s stability. It is currently being used to prevent the
irrigation-induced erosion and enhance the infiltration of farmland soil [7–11]. Construction sites, such
as foundations and highway embankments, are also vulnerable to drying-induced soil cracking and
aggregate soil stability degradation. Civil engineering has been intensely focusing on the use of PAM
as a soil-stabilizing additive. Orts et al. (2007) [10] reported the rapid formation of helicopter landing
pads that can minimize the dust clouds that appear during helicopter landings in military operations.
Deng et al. (2012) [3] found that a PAM dosage of 0.3% can improve the flexibility of cemented soil by
increasing the failure strain by up to 6%. Georgees et al. (2018) [12] conducted unconfined compressive
strength (UCS) and repeated load triaxial (RLT) tests on PAM-treated soils. The results showed that
the addition of PAM consistently improved the strength properties and resilience moduli of the tested
soils. Although some physicochemical properties of PAM-stabilized soils have been studied, data for
the compactability and cracking behavior of PAM-stabilized saline soil from Gansu Province, China
are lacking.

In this study, saline soil was sampled from the crust and at a depth of 2.0–3.0 m in Gansu
Province, China. Then, the basic physical properties, compactability, microstructure, and cracking
morphology of untreated and PAM-treated soil samples were investigated. Two PAM concentrations
(0.1% and 0.5% mass ratio) were selected. First, consistency tests were conducted by mixing saline
soil samples with PAM solutions. Second, proctor compaction tests were performed to determine the
soil samples’ compaction curves. After that, their microstructures were investigated using mercury
intrusion porosimetry (MIP) and scanning electron microscopy (SEM) tests. Using an image-processing
technique, surface crack lengths were characterized quantitatively after desiccation tests. Finally, the
correlations among the obtained results were identified.

2. Experimental Methods

2.1. Materials

The Dunhuang region is located in the western section of Hexi Corridor in Gansu Province,
China. Saline drylands cover a large area of this region. The water table lies between 2 and 3 m from
the surface of the soil. As shown in Figure 1, the saline soil samples were obtained near a highway
(from Liuyuan to Dunhuang) embankment in Dunhuang at depths of 0–0.05 m and 2.0–3.0 m. Soil
salinization was observed on the surface, and the lower-depth soil was soft and had a high water
content. The soil’s basic physical properties, such as the natural water content w0, the dry density
ρd, and the compression coefficient a, are shown in Table 1. The results show that the in-situ water
content, void ratio, and compressibility of the soil at a depth of 2–3 m were higher than those of the
surface soil. The ion concentrations, which are shown in Table 2, were determined in accordance with
Chinese standard GB/T 50123. The results show that the total salinity in the upper soil was 1.53%
as compared to 0.99% in the lower soil. Ca2+ and Cl− were found to be the main ions in the surface
soil, whereas Na+/K+ and Cl− were found to be the main ions in the soil at a depth of 2.0–3.0 m. The
concentration of the main monovalent cation (Na+/K+) in the soil at a depth of 2.0–3.0 m was found
to be approximately 50 times higher than in the surface soil. The concentration of the main bivalent
cation (Ca2+) in the surface soil was found to be 15 times higher than in the soil at a depth of 2.0–3.0
m. The liquid limits (LLs) and plastic limits (PLs) of the selected soil samples were determined using
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the cone method in accordance with GB/T 50123. As shown in Figure 2, based on the United Soil
Classification System ASTM-D2487, the tested materials were both classified as low-plasticity clays
(CL). A commercial polyacrylamide (PAM) reagent of analytical grade was adopted in this study.
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Table 1. Physical properties of selected saline soil samples.

Soil Depth

Natural
Water

Content w0
(%)

Wet Density
(Mg/m3)

Dry Density
(Mg/m3)

Saturation
Degree Sr

(%)
Void Ratio e

Compression
Coefficient

a

0–0.05 m 12.2 1.86 1.66 60.4 0.5 0.1
2.0–3.0 m 27.1 2.05 1.61 100.0 0.8 0.4
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Table 2. Chemical composition of two selected soil samples.

Soil
Depth PH CO3

2−

(mg/kg)
HCO3

−

(mg/kg)
Cl−

(mg/kg)
Ca2+

(mg/kg)
Mg2+

(mg/kg)

Na+ +
K+

(mg/kg)

Total
Soluble

Salt
(mg/kg)

Salinity
(%)

0–0.05 m 7.84 0 404.93 7407.77 4987.56 148.84 75.02 15,326.68 1.53
2.0–3.0 m 8.22 0 438.67 3037.36 337.27 55.81 3716.87 9913.03 0.99

2.2. Test Method

To investigate the basic properties of the PAM-treated saline soil samples, consistency tests were
conducted by mixing saline soil samples with PAM solutions (the mass concentrations were 0.1% and
0.5%). The test procedures followed Chinese Standard GB/T 50123. During the preparation of the
PAM solution, a decrease in the fluidity and an increase in the viscosity were observed, as shown in
Figure 3. The reason for this finding is that PAM powder is highly water-absorbent and forms a soft
gel when it is hydrated.
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The Proctor compaction tests were performed following Chinese standard GB/T 50123. The
soil samples were sieved through a 5-mm sieve, then carefully wetted to the required water content
and sealed in plastic bags for 24 h. The mold’s diameter was 102 mm. The compaction energy was
592.2 kJ/m3. Finally, compaction curves for the water content w and the dry density ρd were obtained.

After the compaction curves were obtained, the microstructures of PAM-treated saline soil samples
were investigated using MIP and SEM tests. MIP is a method for determining the pore size distribution
of a porous material. It is based on the unique relationship between intrusion pressure and equivalent
pore diameter proposed by Washburn (1921) [13] and shown in Equation (1)

D = −4γ cos θ

P
(1)

where D is the pore diameter, γ is the surface tension of mercury, θ is the contact angle, and P is the
applied pressure. Based on the contact-angle measurements of mercury with typical clays performed by
the previous researchers [14–16], a contact angle of 140◦ and a mercury surface tension of 0.480 N/m
were adopted in this study. As the intrusion pressure range of a PoreMaster-60 (Quantachrome
Instruments Corporation, Boynton Beach, FL, USA) was 3.7 KPa to 241.1 MPa, the pore sizes measured
from 0.005 to 340 µm. To minimize sample shrinkage, small soil specimens were taken from a
compacted soil sample, then immersed in liquid nitrogen (−196 ◦C) to instantly freeze them. Then,
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the frozen specimens were transferred to the vacuum chamber of a freeze dryer for sublimation for
approximately 24 h [17].

To prepare the samples that were used in the SEM tests, compacted soil samples were carefully
trimmed to appropriate sizes and then immersed in liquid nitrogen [17]. Finally, they were lyophilized,
vacuum-coated with a layer of gold, and installed in the instrument JSM-5600LV (JEOL Ltd., Tokyo,
Japan).

The desiccation tests were conducted following the procedure described by Tang et al. (2010) [18].
Specimens were prepared by mixing the dry soil powder (sampled at depths of 0–0.05 m and 2.0–3.0 m)
with distilled water or a PAM solution (0.1% and 0.5% in mass ratio) to achieve a higher water content
than the liquid limit (w0 = 75%). The mixtures were thoroughly stirred for 10 min, and then a quantity
of the soil-water slurry was slowly poured into a round glass container with a 120–mm diameter. To
homogenize the slurry’s density, the containers were vibrated for at least 5 min. All samples were
placed in an oven at 50 °C. During the drying process, the water loss was tracked by weighting each
specimen, and a digital camera D750 (Nikon Co., Tokyo, Japan) was used to monitor the evolution of
surface cracks.

To quantitatively investigate the soil salinity’s effect on the cracking behavior, digital
image-processing techniques were introduced. First, an original photo was transformed to a grey
image. Second, the grey image was converted to binary information to separate the clods and cracks.
Third, the black parts, which represent a network of cracks, were recognized using the commercial
software ‘Image J’ (National Institutes of Health, Research Triangle Region, NC, USA). Finally, the total
crack length was quantitatively summarized.

3. Results

3.1. Consistency Limits of the PAM-Treated Saline Soil Samples

The LLs and PLs of two PAM-treated soil samples with changing PAM concentrations (0.1% and
0.5% in mass ratio) are shown in Figure 4. The results show that the two saline soil samples behave
similarly with respect to the PAM concentration. In the case of Sample #1 (0–0.05 m), as the PAM
concentration in the pore water increased, the LLs and PLs increased from 22.0% and 13.4% to 24.6%
and 16.6%, respectively. In the case of Sample #2 (2.0–3.0 m), the LLs and PLs increased from 33.6%
and 20.0% to 37.5% and 23.9%, respectively, as the PAM concentration increased. Sridharan and Rao
(1975) [19] and Sridharan et al. (2002) [20] proposed that inter-particle friction and the absorbed water
volume dominate the liquid limit. Thus, these results indicate that the polymer may increase the
amount of water that is stored between particles and increase the inter-particle friction.
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3.2. Compaction Curves for the PAM-Treated Saline Soil Samples

Figure 5 shows the standard Proctor compaction curves for the samples. The maximum dry
densities of Sample #1 with distilled water, 0.1% PAM, and 0.5% PAM were 1.69, 1.67, and 1.66 Mg/m3,
respectively. The maximum dry densities of Sample #2 with distilled water, 0.1% PAM, and 0.5% PAM
were 1.63, 1.61, and 1.59 Mg/m3, respectively. The maximum dry densities decreased as the PAM
concentration and the plasticity increased (the LL of Sample #2 was higher than that of Sample #1).
Similar trends in experimental results were reported by Blotz et al. (1998) [21]. The optimum water
contents of Samples #1 and #2 were 11% and 12%, respectively, and the PAM concentration had no
significant influence.
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3.3. Microstructure of the PAM-Treated Saline Soil Samples

The PAM solution’s effect on the microstructure of the saline soil samples was examined by MIP
and SEM at a magnification of 3000×. As shown in Figure 6, the pore diameter distribution of the
1# samples (samples from the crust), which were compacted at different PAM concentrations and
with different water contents, were represented as d versus -dV/d(logd) curves, where d is the pore
diameter. Hereafter, 1#-PAM0.5-W16 denotes a saline soil sample from the surface that was treated
with a 0.5% PAM solution and compacted at an initial water content of 16%. The controlling pore
diameter of 1#-PAM0.5-W16, which is on the wet side of the optimum water content, was around 7 µm.
The controlling pore diameter of 1#-PAM0.5-W10, which is on the dry side of the optimum water
content, was around 12 µm. A comparison between samples 1#-PAM0.5-W16 and 1#-PAM0.5-W10
showed that they both had a monomodel distribution, and the controlling pore diameter decreased as
the water content increased in the PAM-treated soil. The pore diameter distribution of 1#-PAM0-W10
showed a typical bimodel curve, and the two peak values were 0.1 µm and 12 µm. A comparison
between samples 1#-PAM0.5-W10 and 1#-PAM0-W10 indicates that the small pores could be filled
by PAM.

The fabric elements of specimens 1#-PAM0-W10 and 1#-PAM0.5-W10 are shown in Figure 7.
In Figure 7a, the particles in 1#-PAM0-W10 have a bulky pellet shape. In the compacted sample
1#-PAM0.5-W10, platelets that have a flaky and acicular shape were observed (Figure 7b). These
results indicate that the micropores were filled by PAM agent during hydration. Thus, the macropores’
intensity decreased.
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3.4. Cracking Behavior of the PAM-Treated Saline Soil Samples

Previous studies have found that a soil’s mass first decreases at a constant initial evaporation rate,
then the mass loss subsequently slows during a falling evaporation rate stage, until the soil’s mass
reaches a stable state [22,23]. In this study, the constant evaporation rate of both the untreated soil
samples and the PAM-treated soil samples was 4.2 g per hour, and the soils cracked after six hours
of evaporation. This indicated that influence of PAM concentration on the evaporation process for
the surface saline soil samples was not significant. Figure 8 shows the typical crack pattern of the
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#1 samples after six hours of drying. The binary images show that the intensity of the network of
cracks decreased as PAM concentration increased. According to the introduction of digital image
processing techniques [24], the original photograph of the crack pattern was firstly changed to a grey
level image. Secondly, due to the high contrast in grey level between cracks and aggregates, they
were segmented into cracks and aggregates. This process was called binarization, resulting in binary
black and white image. Thirdly, in order to determine the crack lengths, schematized structure of
crack network was created by skeletonizing, which is defined as the middle line of crack segment.
Finally, a further quantitative statistic of the length of skeleton was conducted. All these processes
were operated automatically and conveniently in the software ‘Image J’ (National Institutes of Health,
Research Triangle Region, ND, USA). The total crack length is illustrated in Figure 9. The results show
that the total crack length in the surface saline soil sample decreased as PAM concentration increased
(from 924 mm to 817 mm). Therefore, PAM’s stabilizing effect on saline soil under a wetting-drying
cycle was confirmed.
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4. Discussion

4.1. Compactibility and Physical Properties

A comparison between Figures 4 and 5 shows that the maximum dry densities were lower for
higher liquid limits, whereas the optimum moisture contents were close. A similar trend, based on
Proctor compaction tests for 22 clayey soils (wL = 20–70%), was reported by Blotz et al. (1998) [21].

It is widely accepted that the liquid limit is essentially a measure of the viscous resistance or shear
strength of a soil as it approaches the liquid state [19]. Koumoto and Houlsby (2001) [25] analyzed the
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penetration mechanism of a fall cone into clay and suggested that the relationship between the water
content w and the undrained shear strength su for a highly plastic remoulded clay is approximately
linear on a double logarithmic scale over the entire water content range, from above the liquid limit to
near the plastic limit. Consequently, the relationship between w and the cone penetration depth h is
also linear on the double logarithmic plot. Sharma and Bora (2003) [26] experimentally verified that
the undrained shear strength-water content relationship has been found to be log-linear for a wide
range of water contents, starting from lower than the plastic limit to higher than the liquid limit.

Therefore, when the water content of two soils is close, the soil with the higher liquid limit will
have a higher shear strength than the soil with the lower liquid limit. Figure 4 indicates that more
water is needed for PAM-treated soil to disperse when it approaches a particular shearing resistance,
and the undrained shear strength at a similar water content increases as the plastic limits and PAM
concentration increase. From the Proctor compaction test results, the deformation is an instantaneous
response to a reduction in weight, and the particles’ movement is mainly controlled by the soil’s
undrained shear strength. During the compaction process, and under a certain compaction energy,
a higher shearing resistance partially prevented the soil’s compression and dissipated some of the
energy that makes the particles approach one another. As a result, the maximum dry densities of the
#1 and #2 saline soil samples decreased as the PAM concentration increased to close to the optimum
moisture content. This indicates that PAM-treated soil has potential as a lightweight filling material.

The SEM results show that the PAM agent dispersed the bulky pellets and flaky and acicular
platelets formed the soil’s structure. The micropores were filled, and the shearing resistance between
particles increased.

4.2. Cracking Behavior and Physical Properties

Many factors, such as a boundary constraint, flaws in the soil, the drying rate, shrinkage strain
during drying, temperature, the soil layer’s thickness, and wetting and drying cycles, influence a
soil surface’s cracking pattern. Generally, when the increase in tensile stress caused by desiccation
exceeds the tensile strength within the upper layer of the soil, desiccation cracks occur on the
surface [18,23,24,27–35].

According to previous studies, the drying process can result in the development of suction in the
upper layer due to meniscus surface tension effects [35]. This increase in suction leads to volumetric
shrinkage and a new arrangement of soil particles [36,37]. Thus, particles approach each other under
volumetric shrinkage. Under a boundary constraint condition, tensile stress develops within the
soil when it is restrained against shrinkage. If the initial water content, temperature, and boundary
constraint are unified, soils with higher plasticity generally have a higher volume of water and are
thus more prone to large volumetric shrinkage strains during drying [30,38,39]. Tang et al. (2008) [24]
proposed that the crack intensity factor (CIF), which is the ratio of the crack area to the total surface
area of a drying soil mass, is related to the soil fineness fraction, i.e., the more fine the content, the
higher the obtained CIF.

As shown in Figure 7, a lower crack length was found for PAM-treated saline soil. This indicates
that the PAM solution can aggregate fine particles. As indicated in Figure 4, an increase in the tensile
strength between particles in PAM-treated soil reduced the shrinkage strain and the total crack length.

Macrocracks normally develop with the growth of microcracks, which is related to the
inter-granular voids [40]. Costa et al. (2013) [41] identified that the flaws or pores within the material
control crack initiation. As shown in Figure 6, a lower number of cross-points in the network of cracks
in the PAM-treated saline soil were observed. This suggests that the number of flaws or pores within
the material may decrease as PAM concentration increases. Thus, there are fewer initial microcracks
and the crack tips develop a lower total crack length.
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5. Conclusions

The consistency limits, compactability, and cracking behavior of PAM-treated saline soil from
Gansu Province, China were investigated in this paper. The main conclusions are as follows:

(1) The liquid limits (LLs) and plastic limits (PLs) of saline soil from the surface (0–0.05 m) and
at a depth of 2.0–3.0 m increased as PAM concentration increased (0.1–0.5% in mass ratio). Previous
studies have verified that the LLs and PLs determined by cone penetration tests can be redefined in
terms of their undrained shear strength. So, these results indicate that the undrained shear strength at
a similar water content may be increased by increasing the PAM concentration.

(2) The maximum dry densities decreased as the PAM concentration and plasticity increased,
and the optimum water contents of the two saline soil sample types did not significantly change. A
comparison between liquid limits and compaction curves suggested that a higher shearing resistance
partially prevented the soil’s compression and dissipated some of energy that causes the particles
approach one another. Then, the maximum dry densities of the two saline soil sample types decreased
as PAM concentration increased for a close to optimum moisture content. This indicates that
PAM-treated soil has potential as a lightweight filling material. The SEM micrographs show that the
PAM agent dispersed the bulky pellets, and flaky and acicular platelets formed the soil’s structure.
The micropores were then filled.

(3) The quantitative analysis of crack patterns showed that the number of cross-points in the
network of cracks and the crack length decreased as the PAM concentration increased. These results
indicate that an increase in the tensile strength between particles reduces the shrinkage strain, and
the number of flaws or pores within the material may decrease as the PAM concentration increases.
Therefore, PAM’s stabilizing effect on saline soil under a wetting-drying cycle has been proven. Then,
a potential use of polyacrylamide treated saline soil in embankment filling could be applied in practice.
Besides, to clarify the economics of PAM usages, more tests should be performed by varying the PAM
concentrations more finely in the future.
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